# **University of Mosul / College of Engineering / Courses**

## The Second level for the academic year 2020-2021

# **Computer Department Engineering**

| The second academic level (first semester)     |                |                                     |                          |      |          |                                       |                                    |                                               |                         |
|------------------------------------------------|----------------|-------------------------------------|--------------------------|------|----------|---------------------------------------|------------------------------------|-----------------------------------------------|-------------------------|
| Notes                                          | Course<br>Code | Inrerequisite                       | equisite Number of units | l of | l number | Course Name                           |                                    | Dogwinomont true                              |                         |
|                                                |                |                                     |                          |      |          | In English                            | In the Arabic language             | Requirement type<br>Compulsory-<br>(optional) | Requirement name        |
| The student studied 3 units in the first level |                | -                                   | 1                        | -    | 1        | English Language-<br>Pre-intermediate | اللغة الانكليزية ما<br>قبل المتوسط | Mandatory                                     | University requirements |
| Compulsory for students of the department      | ENGE229        | Calculus I,II                       | 3                        | -    | 3        | Engineering<br>Mathematics I          | ریاضیات هندسیة I                   | Optional                                      |                         |
| _                                              | ENGC226        | -                                   | 2                        | -    | 2        | Engineering<br>Economics              | اقتصاد هندسي                       | Mandatory                                     | college<br>requirements |
|                                                | ENGC227        | -                                   | 2                        | -    | 2        | Statistics                            | إحصاء                              | Mandatory                                     |                         |
|                                                | ELCI202        | Electrical circuit analysis         | 4                        | 2    | 3        | Electronics Circuits                  | دوائر الكترونية                    | Mandatory                                     |                         |
|                                                | DAST203        | Object- oriented programming in C++ | 3                        | 2    | 2        | Data Structures                       | هیاکل بیانات                       | Mandatory                                     | Department              |
|                                                | MIPR204        | Digital logic                       | 3                        | 2    | 2        | Micro-Processor I                     | معالجات دقيقة I                    | Mandatory                                     | requirements            |
|                                                | PLDE205        | Digital systems<br>design           | 2                        | -    | 2        | Programmable<br>Logical Design        | تصميم منطق قابل<br>للبرمجة         | Mandatory                                     |                         |
|                                                |                |                                     | 20                       | 6    | 17       | Total hours                           | s and units of the                 | e first semester                              |                         |



## English Language-Pre-intermediate ( )

Lab Tutorial Theory

1

## **Course Objectives:**

English Language will be covered during this course. It focuses on developing communication between teacher and students to give them more opportunities to show their own thoughts and opinion. The course includes activities and exercises that guide students to support their skills in conversation. Students also learn how to manage correct language by using correct grammar. The efforts will be directed towards teaching students how to think beyond common classroom tasks and awaken their desire to excel in English. Four skills will be focused on: reading, writing, listening and speaking.

#### **Course Details:**

| Article                                                                       | Week    |
|-------------------------------------------------------------------------------|---------|
| Tenses: present and past. Future form. Questions+Form/ exercises              | 1 – 2   |
| Present simple: form+use. Present continuous:form+use Have/have got exercises | 3 – 4   |
| Past simple: form+use. Past continuous:form+use exercises                     | 5       |
| Expressions of quantity: much/many, some/any, a lot/lots of exercises         | 6       |
| Verb patterns: like doing and would like to do, will/going to exercises       | 7 – 8   |
| Whatlike? comparative and superlative exercises                               | 9       |
| Present perfect: form/use, present perfect and past simple exercises          | 10      |
| Have to: introduction to modal auxiliary verbs exercises                      | 11 - 12 |
| Time tenses, first condition exercises                                        | 13      |
| Verb patterns: used to, form/use, with past tense exercises                   | 14      |
| The passive + Second conditional exercise                                     | 15      |

#### **Text Books**

Text Book: Pre-Intermediate Student's Book - New Headway Plus by John and Liz Soars



## **Engineering Mathematics I (ENGE229)**

Lab Tutorial Theory

3

## **Course Objectives:**

i) To develop logical understanding of the subject.

ii)To develop **mathematical** skill so that students are able to apply **mathematical** methods & principals in solving problem from **Engineering** fields. iii) To make aware students about the importance and symbiosis between **Mathematics** and **Engineering** 

## **Course Details:** Article Week **Function of two or more variables** 1 - 2Limits & Continuity Partial derivatives (definitions, functions of more than two variables) Second order partial derivatives Chain rule for functions of two or three variables Maxima and minima and saddle point 3 - 7Multiple integral Double integral Properties of double integral Double integral over regions Iterated or revised integrals-finding the limits of integration Average Value ,Areas, moments, and center of mass Double integrals in polar form Integrals in polar coordinates Limits of integration In polar form Changing Cartesian integrals into polar form

| Triple integrals                                                                 |         |
|----------------------------------------------------------------------------------|---------|
| Properties of triple integrals                                                   |         |
| Fourier Analysis                                                                 | 8 – 11  |
| Trigonometric form of Fourier Series                                             |         |
| Wave form Symmetry                                                               |         |
| Odd and Even Functions                                                           |         |
| Half Wave Symmetry                                                               |         |
| Sum and Shift of function                                                        |         |
| Line Spectrum (harmonic) the Fourier Series                                      |         |
| Complex Exponential form of the Fourier Series                                   |         |
| Fourier Transformation                                                           |         |
| Vector analysis                                                                  | 12 – 15 |
| Introduction to Vectors: definition, notation, properties                        |         |
| Vector algebra: addition, subtraction, multiplications                           |         |
| Vector functions: lines, planes, fields                                          |         |
| Vector differential calculus: derivative, Gradient, Laplacian, divergence, curl. |         |
| Eigen values and Eigen vectors.                                                  |         |
| Applications                                                                     |         |
| Vector analysis                                                                  |         |
| Tayt Pools                                                                       |         |

- E. Transcendentals, G. B. Thomas, M. D. Weir, J. Hass, and C. Heil, *Calculus*, 13th ed. 2014. E. Kreyszig, *Advance Engineering Mathematics*, 10 th. 2011.



## **Engineering Economics (ENGC226)**

#### Lab Tutorial Theory

2

## Course Objectives:

| Course Details:                                              |         |  |  |
|--------------------------------------------------------------|---------|--|--|
| Article                                                      | Week    |  |  |
| الاقتصاد الهندسي (تعاريف ، مصطلحات ومفاهيم)                  |         |  |  |
| Engineering Economics (Definitions, Concepts)                | 1 - 2   |  |  |
| الفائدة والعلاقات الاقتصادية                                 |         |  |  |
| Interest and Economic relationships                          | 2 - 3   |  |  |
| Cash flow التدفق النقدي                                      |         |  |  |
| capital time value والقيمة الزمنية لرأس المال                |         |  |  |
| Comparison between alternatives المقارنة بين البدائل         | 3 - 4   |  |  |
| present value Concept طريقة القيمة الحالية                   |         |  |  |
| Equivalent annual cost الكلفة السنوية المكافئة               |         |  |  |
| discount Rate سعر الخصم Economic Appraisal التقييم الاقتصادي | 5       |  |  |
| Payback period فترة الاسترداد                                |         |  |  |
| internal rate of return معدل العائد الداخلي                  |         |  |  |
| Replacement                                                  | 6       |  |  |
| Depreciation                                                 | 7 – 8   |  |  |
| (SOYDD) طريقة جمع ارقام السنوات                              |         |  |  |
| (DBD) القسط الثابت                                           | 9       |  |  |
| inflation التضخم                                             | 10      |  |  |
| Breakeven Point نقطة التعادل                                 | 11 - 12 |  |  |
| sensitivity analysis تحليل الحساسية                          | 13      |  |  |
| feasibility Study الجدوى الاقتصادية والفنية                  | 14 - 15 |  |  |



### **Statistics (ENGC227)**

## Lab Tutorial Theory

2

## **Course Objectives:**

The main objective of this course is to provide students with the foundations of probabilistic and statistical analysis mostly used in varied applications in engineering and science.

### **Course Details:**

| Article                                                                                                                              | Week |
|--------------------------------------------------------------------------------------------------------------------------------------|------|
| Role of statistics in science, types of statistics (Descriptive and Inferential), data presentation (Arithmetic mean, Median, Mode). | 1    |
| Descriptive statistics, histogram frequency distribution, data limits, data tabulations, polygon, ogive.                             | 2    |
| Basic Concepts of Probability Theory (random events and sample space), relationship between statistics and probability.              | 3    |
| Sets and probabilistic models, axioms of probability, rule of Probability                                                            | 4    |
| The definition of conditional probability and their properties                                                                       | 5    |
| Multiplication rule, total probability theorem, Bayes' theorem.                                                                      | 6    |
| Three events, mutually and non-mutually events                                                                                       | 7    |
| Counting, permutation, combination                                                                                                   | 8    |
| The definition and classification of random variable (Discrete and Continuous), type of discrete distribution.                       | 9    |
| Discrete probability distributions, Binomial and Poisson Distribution.                                                               | 10   |
| Continuous distribution , normal distribution                                                                                        | 11   |
| Test of hypothesis, types of errors in hypothesis testing, hypothesis tests of means.                                                | 12   |
| Test of the mean with unknown population variance, hypothesis test of two means with known population variance.                      | 13   |
| The principles design of experiments, one way and two way ANOVA (ANOVA: the Analysis of Variance).                                   | 14   |
| Final Exam.                                                                                                                          | 15   |

- 1- Introduction to Probability and Statistics for Engineers, Holický, Milan.
- 2- Introduction to Statistics, K. M. AL\_Rawi, Second Edition, 2000.
- 3- Statistics and Probability for Engineering Applications With Microsoft« Excel, W.J. De Coursey.
- 4- Probability and Statistics for Engineering and the Sciences, Jay Devore.
- 5- Fundamentals of Probability and Statistics for Engineers, T.T. Soong



## **Electronics Circuits (ELCI202)**

Lab Tutorial Theory

3

2

## **Course Objectives:**

To introduce the analysis and design of analog electronic circuits and subsystems using BJT, FET transistors, operational amplifiers.

## **Course Details:**

| Article                                                                 | Week    |  |  |
|-------------------------------------------------------------------------|---------|--|--|
| Amplifier: bipolar transistors: Biasingcct. AC cct,, frequency response | 1 – 4   |  |  |
| Field Effect Transistors: JFET, MOSFET, Biasing and AC cct.             | 5 – 6   |  |  |
| Feed Back: a- Negative b- Positive                                      | 7 - 8   |  |  |
| Operational Amplifiers                                                  | 9 – 12  |  |  |
| Power Amplifiers                                                        | 13 - 14 |  |  |
| Introduction to IC fabrication                                          | 15      |  |  |

### **Text Books**

1-Electronic devices and circuit theory' Robert L. Boylestad' Louis, Nashelsky, Prentice Hall, 1991.

2-Electronic Devices. By Floyd.2012. Prentice Hall.



**Data Structures (DAST203)** 

Lab Tutorial Theory

2 2

## **Course Objectives:**

Review algorithms for solving problems that use data structures such as arrays linked lists, stacks, queues, graphs and trees, and those that are used for list manipulation, graph manipulation (e.g., depth-first search), and tree traversals. Moreover, implementing algorithms in C++ using good programming style for data structures.

### **Course Details:**

| Article                                                                                                                                                                                                                   | Week   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Introduction and review                                                                                                                                                                                                   | 1      |
| Information hiding, Encapsulation, Design and implementation of list ADTS using arrays and linked lists                                                                                                                   | 2      |
| Recursion in Programming and Problem Solving Recursive valued functions: Factorial, Classical problems: Ackermann's function, 8-Queens problem, Towers of Hanoi, detecting palindromes Relation to mathematical induction | 3 – 4  |
| Stacks: Stack ADT, implementation using arrays, linked lists, and list ADTS, Applications: Checking balanced braces, recognizing strings, depth-first searches on graphs                                                  | 5 – 6  |
| Queues: Queue ADT, implementation using arrays, linked lists, and list ADTS, Applications: breadth-first searches, recognizing palindromes.                                                                               | 7-8    |
| Trees: Introduction, Terminology, Traversals, Applications: Binary Trees, Tree, Huffman's algorithm                                                                                                                       | 9 - 10 |
| Introduction to Graph theory                                                                                                                                                                                              | 11     |
| Hashing Techniques                                                                                                                                                                                                        | 12     |
| Speed memory Trade off                                                                                                                                                                                                    | 13     |

- 1- M.A. Weiss, Data structure and algorithm analysis in C++ Addison Wesley, 2006.
- 2- Michael T. Goodrich, Roberto Tamassia, David M. Mount, Data structure and algorithm in C++,2011



## Micro-Processor I (MIPR204)

**Lab Tutorial** Theory

2 2

## **Course Objectives:**

gives the students the ability to understand the basics of the Microprocessors, through studying the 8086 Microprocessor's architecture, instructions, writing programs in assembly, and design the basic interfacing circuits.

| Course Details:                                                   |      |  |  |
|-------------------------------------------------------------------|------|--|--|
| Article                                                           | Week |  |  |
| Introduction to Microprocessors                                   | 1    |  |  |
| The Architecture and Buses of the 8086 Microprocessor             | 2    |  |  |
| The 8086 Microprocessor's Addressing modes                        | 3    |  |  |
| The 8086 Microprocessor Instruction set, Debug, and MASM software | 4    |  |  |
| The Data-transfer instructions' group                             | 5    |  |  |
| The Logical and Shift & Rotate instructions' group                | 6    |  |  |
| The Loop and Branching instructions' group                        | 7    |  |  |
| The Arithmetic instructions' group                                | 8    |  |  |
| The String instructions' group                                    | 9    |  |  |
| The Control instructions' group                                   | 10   |  |  |
| Evaluation Exam                                                   | 11   |  |  |
| The BIOS and DOS Interrupts                                       | 12   |  |  |
| The BIOS and DOS Interrupts                                       | 13   |  |  |
| Machine language coding                                           | 14   |  |  |
| Machine language coding                                           | 15   |  |  |
| Text Rooks                                                        |      |  |  |

- 1) The 8088 and 8086 Microprocessors: programming, Interfacing, software, Hardware, Applications, by: Walter Triebel and Avtar Singh, 4th edition, prentice-Hall, 2002.
- 2) The Intel microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Pentium Pro processor, Pentium III, Pentium III, Pentium 4, and Core2 with 64-bit extensions: architecture, programming, and interfacing by: Barry B. Brey—8th ed.



## **Programmable Logical Design (PLDE205)**

Lab Tutorial Theory

2

## **Course Objectives:**

To instruct the student in the use of VHDL (very high speed Circuit hardware description language) for designing the behavior of digit systems

## **Course Details:**

| double Detailed                                       |         |  |  |
|-------------------------------------------------------|---------|--|--|
| Article                                               | Week    |  |  |
| Basic principles of digital Systems, PAL., PLD review | 1       |  |  |
| FPGA structure                                        | 2       |  |  |
| VHDL Language                                         | 3 – 4   |  |  |
| Circuit Design in VHDL                                | 5       |  |  |
| code structure of VHDL                                | 6       |  |  |
| Data type of VHDL                                     | 7 – 8   |  |  |
| Operator and attributes of VHDL                       | 9       |  |  |
| Concurrent statement of VHDL                          | 10      |  |  |
| Sequential statement of VHDL                          | 11 – 12 |  |  |
| State machine of VHDL                                 | 13      |  |  |
| System design of VHDL                                 | 14      |  |  |

- 1- Voinci A. pedroni, "Circuit design with VHDLL", MIT press, Cambridge, London 2004.
- 2- Thom A.S. "digital with CPLA application and VHDL.
- 3- Brain Hold: "digital logic Design", 4th Edition, Newmans, 2002