CIVIL ENGINEERING DEPT. 2023-2022 M.Sc.- SOIL MECHANIC

M.Sc-STUDIES SOIL MECHANIC ENGINEERING

Item	code	Subjects	Units	Hr.	
				Theoreti cal	Practi cal
1.	Eng. Civil 512	ADVANCE ENGINEERING MATHEMATICS	2	2	-
2.	Eng. Civil 513	NUMERCAL ANALYSIS	2	1	2
3.	Eng.Civil 520	SPECIAL TOPICS	2	2	
4.	Eng. Civil 515	ADVANCED SHEAR STRENGTH AND APPLICATION	3	2	2
5.	Eng.Civil 516	GROUND IMPROVEMENT	3	3	-
6	Eng.Civil 505	ENGLISH LANGUAGE	1	_	2
TOTAL			13	10	6

First Course

Second Course

	code	Subjects	Units	Hr.	
Item				Theoret ical	Practic al
1.	Eng. Civil 514	ADVANCED MECHANICS	3	2	2
		of MATERIAL			
2.	Eng. Civil 517	ADVANCED STRESSES	2	2	
		AND SETTLEMENT			
		ANALYSIS			
3.	Eng. Civil 518	FINIT ELEMENT	2.5	2	1
4.	Eng. Civil 519	FOUNDATION	2.5	2	1
		ENGINEERING			
5.	Eng.Civil 521	EARTH STRUCTURES	2	2	
6.	Eng.Civil 511	ENGLISH LANGUAGE	1	_	2
TOTAL			13	10	6

ADVANCE ENGINEERING MATHEMATICS\ Eng. Civil 512

- Series Solution of Differential Equations:
 - Power series method.
 - Legender equation
 - Legender polynomials
 - Extended power series method.
- Singularity Functions:
 - Unit step function
 - Delta function
 - Doublet function
 - Integration of singularity functions
 - Applications.
- Laplace transformation:
 - Laplace transformation, inverse transform
 - transform of derivatives.
 - Shifting Laplace transformation, inverse transform
 - Laplace on the S and T axis.
 - Laplace transform of Singularity Functions.
 - Differentiation and integration of transform
 - Convolution, integral equation
 - Periodic Functions
 - Applications
- Partial differential equations:
 - Basic concepts
 - One dimensional wave equation
 - Free longitudinal vibrations of prismatic beams
 - One dimensional heat equation
 - One dimensional Consolidation equation
 - Free transverse vibrations of prismatic beams
 - Two dimensional Laplace equation
 - Laplace transformation applied To partial differential equations

NUMERCAL ANALYSIS\ Eng. Civil 513

- 1. Solution of linear system of equations.
- 2. Eigenvalues and eigenvectors.
- 3. Roots of non-linear equations.
- 4. Solution of ordinary differential equations.
- 5. Solution of partial differential equations.
- 6. Finite difference method.
- 7. Interpolation.
- 8. Numerical integration.

ADVANCED MECHANICS of MATERIAL\ Eng. Civil 514

- 1. Introduction and basics of elasticity.
- 2. Stress Strain Relationship.
- 3. Direct, shear and torsion stresses.
- 4. The kinetic equation.
- 5. The equilibrium equations.
- 6. Experimental strain analysis.
- 7. Viscoelasticty.

ADVANCED SHEAR STRENGTH APPLICATION\Eng. Civil 515

1- Shear strength (Saturated and unsaturated soil, Effective stresses, Pore

water pressure parameters, stress path),

- 2- Slope stability.
- 3- Experimental tests (Index tests, Triaxial test for soil and rock,

Rowe cell, Collapse and swelling tests, etc)

GROUND IMPROVEMENT \ Eng. Civil516

- 1. Problematic soils.
- 2. Expansive soils and introduction to clay mineralogy.
- 3. Mechanical stabilization.

- 4. Soil Stabilization (Cement stabilization, Lime stabilization, Asphalt stabilization).
- 5. Combined stabilization.
- 6. Deep compaction methods.
- 7. Introduction to grouting.
- 8. Introduction to reinforced earth and geotextiles.

ADVANCED STRESSES AND SETTLEMENT ANALYSIS\Eng. Civil 517

- 1. Stresses distribution in soils.
- 2. Compressibility and volume change.
- 3. Settlement analysis.

FINIT ELEMENT\ Eng. Civil 518

1 - Introduction.

Variational methods numerical solution, general concept of the finite element method.

- 2- Programming review, computer methods for problems solving.
- 3- Finite element formulation physical types of problems element type , interpolation shape functions.
- 4- Elements assembling solution methods, with simple examples using Fortran language .
- 5- Introduction in using finite element software instead of programming in Fortran Using ANSYS preprocessing
- 6- Problem modeling solution postprocessing using ANSYS
- 7- Applications on soil problems, seepage & soil structure Interaction.

FOUNDATION ENGINEERING\ Eng. Civil 519

- 1- Introduction.
- 2- Sub-grade reaction.
- 3- Field test and their usage in bearing capacity.

4- Bearing capacity of shallow and deep foundation.

Pile foundation.

SPECIAL TOPICS IN SOIL MECHANICS\ Eng. Civil 520

- 1- Rock mechanics (6 weeks)
- 2- Introduction to soil dynamics (3 weeks)
- 3- Geotechnical site investigation (3 weeks)
- 4- Drilled caissons (3 weeks)

EARTH STRUCTURES\ Eng. Civil 521

- 1- Seepage flow and application
- 2- Lateral earth pressure (Coulomb and Rankine earth pressure theories
- 3- Retaining walls
- 4- Sheet piles
- 5- Anchored bulkheads
- 6- Bracing of excavation)
- 7- Flexible retainin