2025-2024

Module Information							
Module Title	odule Title English Language			Mod	ule Delivery		
Module Type		Support			☑ Theory		
Module Code		MTE 101			☐ Lecture ☐ Lab ☐ Tutorial		
ECTS Credits		2					
SWL (hr/sem)		50			☐ Practical ☐ Seminar		
Module Level		UGI	Semester	of Delive	Delivery One		
Administering Department		MTE	College	COE			
Module Leader	Raghad Raied	Mahmood	e-mail	raghad.m	had.mahmood@uomosul.edu.iq		
Module Leader's A	Acad. Title	Assistant lecturer	Module L	eader's Q	ader's Qualification MSc		
Module Tutor			e-mail				
Peer Reviewer Name			e-mail				
Scientific Committee Approval Date		2024-2025	Version N	lumber	1.0		

Relation with other Modules				
Prerequisite module	None	Semester	None	
Co-requisites module	None	Semester	None	

Module Aims, Learning Outcomes and Indicative Contents					
	The aims of the module are to				
Module Aims أهداف المادة الدراسية	 Foster the development of problem-solving skills, with a particular emphasis on speaking, reading, writing, and listening, while also gaining a comprehensive understanding of the English language as a foreign language through the utilization of various techniques. Comprehend the fundamental principles of the English language. Explore the foundational concepts essential for learning the key principles of English grammar and expanding English vocabulary. Establish a solid foundation for proficient English writing and speaking. 				

	5. Gain a comprehensive understanding of constructing grammatically accurate English sentences.
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Upon completing the course, students will be able to: Demonstrate proficiency in utilizing main and auxiliary verbs, as well as possessive pronouns. Compile a comprehensive list of words associated with questions and various subject pronouns. Engage in conversations concerning social expressions and personal information, particularly regarding jobs, using affirmative, negative, and interrogative sentences. Discuss the usage of adjectives and their placement within sentences. Construct simple present sentences using "I," "we," "you," and "they," and accurately define the usage of articles. Describe the present simple tense utilizing "he" and "she," and explore adverbs of frequency. Identify basic question words and demonstrative pronouns, and effectively apply them in different contexts. Examine the usage of "there is/are" and various prepositions. Analyze the structure of simple past sentences and irregular verbs. Explain the negative and interrogative structures of simple past tense sentences, along with adverbs associated with the past tense. Recognize the usage of multiple adverbs and the use of "can/can't" in sentences, while explaining requests and offers. Elaborate on the usage of "like" and "would you like," as well as the application of "some" and "any" in various expressions. Discuss the application of the present continuous tense and distinguish it from the present simple tense. Explain the structures employed to refer to future plans.
Indicative Contents المحتويات الإرشادية	 The indicative content of the course comprises the following: Introduction to the significance of English language acquisition and its role in social communication. Application and practice of various tenses, such as present and past tenses. Comprehensive exploration of key concepts, including offers, requests, future, personal expressions, and different tenses. Utilization of a range of skills to facilitate English language learning, including listening, reading, writing, and speaking. Additionally, providing diverse examples to enhance understanding of concepts and structures.

Learning and Teaching Strategies			
Strategies	The main strategies adopted in delivering this module include:		

- Encouraging active participation and fostering critical thinking skills through engaging students in discussions.
- Applying the communicative approach to enhance students' English language learning skills and enable effective communication.
- Incorporating authentic materials in the classroom to create a realistic and immersive learning experience.
- Emphasizing student motivation and promoting their engagement in the learning process.
- Enhancing interaction and communication skills to achieve greater success in English language proficiency.

Student Workload (SWL)				
Structured SWL (h/sem) 33 Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب أسبوعيا				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	17	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	1.1	
Total SWL (h/sem) 50 الحمل الدراسي الكلي للطالب خلال الفصل				

Module Evaluation							
	Time/Nu Weight (Marks) Week Due Relevant Learning						
		mber	Weight (Wanks)	Week Due	Outcome		
	Quizzes	2	10% (10)	5 and 1	LO #1, 3 and 6,13		
Formative	Assignments	2	10% (10)	2 and 12	LO #2, 4 and 7, 12		
assessment	Projects / Lab.	1	10% (10)	Continues			
	Report	1	10% (10)	13	LO #5, 8, 9, and 10		
Summative	Midterm Exam	1 hr	10% (10)	7	LO #1 - 7		
assessment	Final Exam	3 hr	50% (50)	16	All		
Total assessment 100% (100 Marks)							

Delivery Plan (Weekly Syllabus)			
	Material Covered		
Week 1	Unit one: Hello Am/are/is. My/your		

	This is with practice in work
	Unit two: Your world
Week 2	He/she/they, his/her
	Questions
Week 3	Unit three: All about you
	Personal information/ social expressions
	Unit four: Family and friends
Week 4	Possessive adjectives/ possessive 's
	Have/has, adjective + noun
	Unit five: The way I live
Week 5	Present simple I/we/you/they
	An/a , adjective + noun
	Unit six: Every day
Week 6	Present simple he/she
	Negatives and questions, adverbs of frequency
Week 7	Midterm Exam
	Unit seven: My favorites
Week 8	Question words, pronouns, this/that
	Unit eight: Where I live
	There is/ are, prepositions
Week 9	Unit nine: Times past
	Was/ were born, past simple and irregular verbs
	Unit ten: We had a great time.
Week 10	Past simple, regular, and irregular
	Questions, negatives, ago
Week 11	Unit eleven: I can do that!
	Can/can't, adverbs, requests Unit twelve: Please and thank you.
Week 12	, , , , , , , , , , , , , , , , , , ,
WCCK 12	I'd like, some and any.
	Like and would like Unit thirteen: Here and now
Week 13	
Treek 15	Present continuous
	Present simple and present continuous Unit fourteen: It's time to go!
Week 14	Future, writing email and information letter
Week 15	Revision
	I .

Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)			
	Material Covered			
Week 1				
Week 2				
Week 3				
Week 4				
Week 5				
Week 6				
Week 7				

Learning and Teaching Resources				
Text Available in the Library?				
Required Texts	John and liz Soar. (New Headway Beginner) 4 th edition. Oxford: Oxford University Press.	Yes		
Recommended Texts		No		
Websites				

Grading Scheme						
Group Grade		التقدير	Marks (%)	Definition		
	A – Excellent	امتياز	90 – 100	Outstanding Performance		
Success Croup	B – Very Good	جید جدا	80 – 89	Above average with some errors		
Success Group (50 – 100)	C – Good	جيد	70 – 79	Sound work with notable errors		
(30 – 100)	D – Satisfactory	متوسط	60 – 69	Fair but with major shortcomings		
	E – Sufficient	مقبول	50 – 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Module Information							
Module Title		Module Delivery					
Module Type		Basic			☑ Theory		
Module Code		MTE 102		☑ Lecture □ Lab			
ECTS Credits		6			☐ Tutorial		
SWL (hr/sem)		150			☐ Practical☐ Seminar		
Module Level		UGI	Semester of Delivery		One		
Administering Dep	partment	MTE	College	ege COE			
Module Leader	Laith Mohamn	ned Jasim	e-mail	Jasiml68@uomosul.edu.iq		.iq	
Module Leader's A	Acad. Title	Assistant Professor	Module Leader's Qualification Ph.		Ph.D.		
Module Tutor	Rashad Adhed	Kamal	e-mail	rashad.alsaigh@uomosul.edu.iq		ul.edu.iq	
Peer Reviewer Name		Dr. Loay Younes Aldabbagh	e-mail	il loayaldabbagh@uomosul.edu.iq		ul.edu.iq	
Scientific Committee Approval Date		2024-2025	Version Number 1.0				

Relation with other Modules						
Prerequisite module	None	Semester	None			
Co-requisites module	None	Semester	None			

Module Aims, Learning Outcomes and Indicative Contents						
Module Aims	The aims of the module are to: 1. review and enhance aspects of pre-university mathematics in order to foster					
أهداف المادة الدراسية	genuine confidence and fluency with the material.					
	present a wide range of mathematics ideas in preparation for more demanding material later.					
	3. introduce crucial basic concepts and important mathematical techniques.					

4. Develop problem-solving skills, especially in formulating verbal descriptions as mathematical problems and in constructing long, multi-step solutions. 5. Know basic differentiation formulas and rules and compute derivatives of elementary functions symbolically. And learn the tools of calculus to solve applied problems. 6. ensure competence in a wide range of essential concepts, techniques, and applications of differential and systems of linear algebraic equations. On completion of the course, students should be able to: 1. Evaluate the behaviors and graphs of a wide variety of functions within a certain domain, including piecewise, polynomial, rational, algebraic, trigonometric, inverse trigonometric, exponential, and logarithmic. 2. Give an intuitive explanation of the process of taking a limit, determine the existence of, compute the basic limits of functions, and identify and analyze the limits of a function. 3. Explain the notion of continuity as related to functions and relate it to the mathematical definition of continuity, determine continuity at a point or on intervals, and distinguish between the types of discontinuities at a point, **Module Learning** compare the ideas of continuity and differentiability. **Outcomes** 4. Define the basic concepts and principles of differential calculus, explain the relationship between the derivative of a function as a function and the notion of the derivative as the slope of the tangent line to a function at a point, and then find the derivatives of various function types. مخرجات التعلم للمادة 5. Understand the information that the first and higher derivatives of a function الدراسية give you about that function, and determine derivatives implicitly. Determine the rate of change of a dependent variable with respect to an independent variable and linear approximations to implicit functions. 6. Determine absolute extrema, critical points, and inflection points of functions, and determine the concavity of curves for a continuous function on a closed interval. Use these and other appropriate techniques to solve optimization problems. 7. Understand the concept of a matrix, and matrix multiplication and addition rules. And determine the transpose, determinant, and Inverse of a matrix. 8. Using Cramer's, Inverse, and Gauss elimination methods to solve the system of linear algebraic equations. Indicative content includes the following. Unit - I: Functions - concept of a function and its types, domain and range, coordinates and graphs in the Plane, directions and quadrants, distance between points, graphs of functions, representing a function numerically, intercepts, slope and equations for lines, slope of lines, vertical line test, piecewise functions, even and odd functions, greatest and least integer functions, function of power, polynomials, rational, algebraic, exponential, and logarithmic, equations for circles, parabolas and ellipses, **Indicative Contents** combining and composite functions, shifting, scaling and reflecting a graph of a المحتوبات الإرشادية function, a review of trigonometric functions, radian measure, the six basic trigonometric functions and their graphs, law of cosines, inverse functions and their graph, logarithm. [10 hrs] UNIT- II: Part A; Limits- definition of limit, rates of change and tangents to curves, secant lines, limit of a function and its laws and theorems, the functions that haven't limits, eliminating common factors from zero denominators, The functions that haven't limits, sandwich theorem, approaching a limit from one side, sin (theta) theta theorem, limits Involving Infinity, horizontal, oblique and vertical asymptote. [10 hrs]

Part B; Continuity- continuity definition, continuity at a point, continuity test, continuous functions and their properties and theorems, inverse functions and continuity; composites of continuous functions, limits of continuous functions. [10 hrs] UNIT- III:

Derivatives- mathematical definition of the derivative, tangents and the derivative at a point, defining slopes and tangent lines, calculating derivatives from the definition, derivative of a function, graphing the derivative, differentiation rules, integer powers, multiples, sums, and differences, second and higher-order derivatives, velocity, speed, and other rate of change such as acceleration and jerk, derivatives of trigonometric functions such as sine, cosine and other basic functions, chain and outside-inside rule, integer powers of differentiable functions, implicit differentiation for find first and higher-order derivatives, lenses, tangents, and normal lines, derivatives of the inverse trigonometric functions, related rates, linearization and differentials. [15 hrs] UNIT – IV:

Applications of Derivatives- related rates of change, maxima, minima, and the mean value theorem, first derivative test, increasing functions and decreasing functions, local extrema, second derivative test, concavity and curve sketching, points of inflection, second derivative test for local extrema, graphical behavior of functions from derivatives, graphing rational functions, asymptotes, hopital's rule, Optimization, applied examples from mathematics, applied examples from industry. [13 hrs] UNIT – V:

Part A; Matrices- general concepts and notations of matrices, square and rectangular matrices, vectors, rules of addition and scalar multiplication of matrices and vectors, equality of matrices, matrix multiplication and their rules, transposition of matrices and their rules, special types of square matrices, determinant of matrix, evaluation of determinants by reduction to triangular form, Adjugate and cofactor of matrix, inverse of a matrix by determinants, Inverse of a matrix by Gauss-Jordan method. [10 hrs] Part B; System of Linear Algebraic Equation- general form, the matrix of equations, direct methods for solving systems of equations, Gramer's rule, matrix inverse, gauss elimination, Gauss-Jordan methods. [7 hrs]

Learning and Teaching Strategies

The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills.

This will be achieved through;

Strategies

- 1- Lectures aim to deliver concepts and fundamental knowledge in relation to calculus and the application of their methods to purely mathematical examples.
- 2- Tutorial sessions are deployed to illustrate the application of fundamental knowledge of calculus to different practical engineering problems.
- 3- Assignments are arranged to provide the opportunity for students to search for information and analyze problems with knowledge obtained, and present the completed tasks.

Student Workload (SWL)

Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	78	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	5.2
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	72	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.8
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150		

Module Evaluation							
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
		mber		Week Bue	Outcome		
	Quizzes	2	10% (10)	5, 10	LO # 1-6		
Formative	Assignments	5	10% (10)	2, 5, 8, 11, 13	LO # 1, 3, 5, 6, 7, and 8		
assessment	Projects / Lab.	1	10% (10)	Continuous			
	Report	1	10% (10)	13	LO # 5-8		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-8		
assessment	Final Exam	3 hr	50% (50)	16	All		
Total assessme	ent		100% (100 Marks)				

Delivery Plan (Weekly Syllabus)					
	Material Covered				
Week 1	Functions - concept of a function and its types, domain and range, coordinates and graphs in the Plane, directions and quadrants, distance between points, graphs of functions, representing a function numerically, intercepts, slope and equations for lines, slope of lines, vertical line test.				
Week 2	Piecewise functions, even and odd functions, greatest and least integer functions, function of power, polynomials, rational, algebraic, exponential, and logarithmic, equations for circles, parabolas and ellipses, combining and composite functions, shifting, scaling and reflecting a graph of a function.				
Week 3	Review of trigonometric functions, radian measure, the six basic trigonometric functions and their graphs, law of cosines, inverse functions and their graph, logarithm. Limits- definition of limit, rates of change and tangents to curves, secant lines, limit of a function and its laws and theorems, the functions that haven't limits, eliminating common factors from zero denominators.				
Week 4	The functions that haven't limits, sandwich theorem, approaching a limit from one side, sin (theta) theta theorem, limits Involving Infinity, horizontal, oblique and vertical asymptote. Continuity-continuity definition, continuity at a point, continuity test.				
Week 5	Continuous functions and their properties and theorems, inverse functions and continuity, composites of continuous functions, limits of continuous functions. Derivatives- mathematical definition of the derivative, tangents and the derivative at a point.				
Week 6	Defining slopes and tangent lines, calculating derivatives from the definition, derivative of a function, graphing the derivative, differentiation rules, integer powers, multiples, sums, and differences, second and higher-order derivatives.				

Week 7	Mid-term Exam + velocity, speed, and other rate of change such as acceleration and jerk, derivatives
	of trigonometric functions such as sine, cosine and other basic functions.
	Chain and outside-inside rule, integer powers of differentiable functions, implicit differentiation for
Week 8	find first and higher-order derivatives, lenses, tangents, and normal lines, derivatives of the inverse
	trigonometric functions, related rates, linearization and differentials.
Week 9	Applications of Derivatives- related rates of change, maxima, minima, and the mean value theorem,
	first derivative test, increasing functions and decreasing functions, local extrema.
	Second derivative test, concavity and curve sketching, points of inflection, second derivative test for
Week 10	local extrema, graphical behavior of functions from derivatives, graphing rational functions,
	asymptotes.
Week 11	Hopital's rule, Optimization, applied examples from mathematics, applied examples from industry.
	Matrices- general concepts and notations of matrices, square and rectangular matrices, vectors,
Week 12	rules of addition and scalar multiplication of matrices and vectors, equality of matrices, matrix
	multiplication and their rules, transposition of matrices and their rules, special types of square
	matrices.
Week 13	Determinant of matrix, evaluation of determinants by reduction to triangular form, adjugate and
	cofactor of matrix, inverse of a matrix by determinants, Inverse of a matrix by Gauss-Jordan method.
Week 14	System of Linear Algebraic Equation- general form, the matrix of equations, direct methods for
	solving systems of equations, Gramer's rule, matrix inverse.
Week 15	Gauss elimination, Gauss-Jordan methods.
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)					
	Material Covered					
Week 1						
Week 2						
Week 3						
Week 4						
Week 5						
Week 6						
Week 7						

Learning and Teaching Resources						
	Available in the Library?					
Required Texts	George Thomas Jr., Maurice Weir, Joel Hass, Thomas' Calculus: Early Transcendentals, Pearson, 13th Edition, October 8, 2013.	Yes				
Recommended Texts	Richard Courant and Fritz John, Introduction to Calculus and Analysis, Vol. 1, Springer; 1999th edition, December 3, 1998.	No				

Grading Scheme						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	More work required but (45-49) راسب (قيد المعالجة			
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Module Information							
Module Title			Modu	le Delivery			
Module Type		Basic			☑ Theory☐ Lecture☑ Lab☐ Tutorial☐ Practical☐ Seminar		
Module Code		MTE 103					
ECTS Credits		6					
SWL (hr/sem)		150					
Module Level		UGI	Semester of Delivery One		One		
Administering Dep	partment	MTE	College	ge COE			
Module Leader	Ahmad Wadol	lah Saleh Al-Sabawi	e-mail	ahmadalsabawi@uomosul.edu.iq		sul.edu.iq	
Module Leader's A	Acad. Title	Lecturer	Module Leader's Qualification MS		MSc		
Module Tutor	Shahad Waleed Ahmed		e-mail	shahad.	shahad.ahmed@uomosul.edu.iq		
Peer Reviewer Name		Loay B. Y.	e-mail	e-mail loayaldabbagh@uomosul.edu		ul.edu.iq	
Scientific Committee Approval Date		2024-2025	Version Number 1.0				

Relation with other Modules						
Prerequisite module	None	Semester				
Co-requisites module	None	Semester				

Module Aims, Learning Outcomes and Indicative Contents						
Module Aims أهداف المادة الدراسية	 Upon successful completion of the course, students should be able to: Model basic and complex parts and components. Describe the fundamental components and limitations of a modern computer numerical control (CNC) machine tool. Select suitable cutting tools and process parameters for a given milling or turning operation. Write, read and troubleshoot NC programs written in standard G-code format. Formulate free-form curves and surfaces mathematically using a parametric expression. 					

	6. Describe the basic principles of Hermite curve, Bezier curve, B-spline curve and						
	NURBS curve representations 7. Use computer-aided manufacturing (CAM) software to generate both						
	roughing and finishing operations.						
	Describe the relative advantages and disadvantages between two and half						
	axis, three-axis and five axis machining.						
	9. Work and operate typical CNC machines.						
	At the completion of course, the student will be able to						
	1. Apply/develop solutions or to do research in the areas of computer aided						
Module Learning	manufacturing.						
Outcomes	Deal with simple or complex part geometries.						
	3. Write gcode for relatively simple shapes and parts.						
	 Edit and develop gcode texts that is generated by CAM software and do in – site modification on a text file format. 						
مخحات التعلم للمادة	5. Exposed to the available basic CNC machines.						
مخرجات التعلم للمادة الدراسية	6. Choose the suitable strategy for machining, either manual or programmed.						
الميان	7. Design and manufacture CNC machines from scratch.						
	8. Get a fundamental knowledge of the software used for CNC simulation and						
	gcode exporting tools.						
	Indicative content includes the following.						
	Section 1 introduction to CAM and NC programming						
	Classification of CAM systems, NC programming, gcode, rapid movement command,						
	G0, feedrate movement command, G1, circular interpolation commands, clockwise						
	command G2, counter clockwise command, G3, pause command, dwell command, G4,						
	XY plane designation, G17, YZ plane designation, G18, ZX plane designation, G19,						
	English units of inputs, G20, metric units of inputs, G21, machine zero return positon						
	check, G27, machine zero return – primary reference point, G28, skip function, G31,						
	threading function, G33, exact stop, G61, Absolute input of motion values, G90,						
Indicative Contents	incremental input of motion values, G91, feedrate per minute in/min or mm/min, G94,						
المحتويات الإرشادية	feedrate per revolution – in/rev or mm/rev, G95, retract motion to the initial level in a						
	fixed cycle, G98, retract motion to the initial level in a fixed cycle, G99 [25 hrs]						
	Section 2 Canned Cycles						
	High speed deep hole drilling cycle, G73, left hand tapping cycle, G74, precision boring						
	cycle, G76, fixed cycle cancel, G80, plain drilling cycle, G81, spot drilling cycle, G82,						
	deep hole drilling cycle (peck drilling), G83, right hand tapping cycle, G84, boring cycle,						
	G85. [15 hrs]						
	Section 3 CNC Milling Operations and Computer Aided Design						
	2.5 milling, facing, slotting, gear machining, 2d pocket machining, profile machining,						
	boring, drilling, 2d contour, 2d adaptive clearing. [25]						

Learning and Teaching Strategies				
Strategies				

Tools and strategies, in addition to the student – teacher interaction in – and – off class, used to deliver the course to the students are basically divided upon the following:

- 1. Lectures
- 2. Lab works.
- 3. Assignments.
- 4. Mini projects

Student Workload (SWL)					
Structured SWL (h/sem) Structured SWL (h/w) 4.2 الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب أسبوعيا 4.2					
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	87	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	5.8		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150				

Module Evaluation							
	Time/Nu Weight (Marks) Week Due Relevant Learning						
		mber			Outcome		
	Quizzes	3	10% (10)	5, 10, 12	LO #2, 4, 7 and 8		
Formative	Assignments	1	10% (10)	Continuous	LO # 3, 5, 6 and 10		
assessment Projects / Lab.		1	10% (10)	Continuous			
	Report	1	10% (10)	13	LO # 1, 6 and 9		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7		
assessment	Final Exam	3 hr	50% (50)	16	All		
Total assessme	Total assessment 100% (100 Marks)						

Delivery Plan (Weekly Syllabus)					
	Material Covered				
Week 1	Introduction to CAM				
Week 2	k 2 Fundamental principles of NC programming				
Week 3	Positional data				

Week 4	Cutting commands I
Week 5	Cutting commands II
Week 6	Canned Cycles, part I
Week 7	Midterm Exam + Canned Cycles, part II
Week 8	Milling cycles, Part I
Week 9	Cutting conditions
Week 10	Tool offsets
Week 11	Milling cycles Part II
Week 12	Basic turning cycles, part I
Week 13	Basic turning cycles, part II
Week 14	Computer aided design, a model drawing section
Week 15	Computer aided design, a model machining section using CAM software
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered				
Week 1	Part or component modeling, section I				
Week 2	Part or component modeling, section 2				
Week 3	Part or component modeling, section 3				
Week 4	Part or component modeling, section 4				
Week 5	Part or component modeling, section 5				
Week 6	Part machining, milling operation, section 1				
Week 7	Part machining, milling operation, section 2				
Week 8	Part machining, milling operation, section 3				
Week 9	Part machining, milling operation, section 4				
Week 10	Part machining, milling operation, section 5				
Week 11	Part machining, turning operation, section 1				
Week 12	Part machining, turning operation, section 2				
Week 13	Part machining, laser cutting, section 1				
Week 14	Part machining, laser cutting, section 2				
Week 15	Part making, 3-d printing				

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	P. Radhakrishanan, and others, CAD/CAM/CIM, 3 rd Ed., New Age International Publishers, 2008	No			
Recommended Texts	Peter Smid, CNC Programming Handbook, 3 rd Ed., Industrial Press, Inc., 2007	No			
Websites	https://ocw.mit.edu/courses/res-2-005-girls-who-build-make-your-own-wearables- workshop-spring-2015/pages/manufacturing-mechanical-design/				

Grading Scheme						
Group	Grade	Marks (%) Definition		Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Suggest Croup	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Module Information						
Module Title	Enginee	Engineering Drawing & AutoCAD			le Delivery	
Module Type				□ Theory ☑ Lecture ☑ Lab		
Module Code						
ECTS Credits				☐ Tutorial		
SWL (hr/sem)				☐ Practical ☐ Seminar		
Module Level		UGI	Semester of Deli		ery	One
Administering Dep	partment	MTE	College	COE		
Module Leader	Zahraa Reyad	Mahmood	e-mail	zahraa.	reyad@uomosul.	<u>.edu.iq</u>
Module Leader's A	Acad. Title	Assistant Lecturer	Module Leader's Qualification Msc.		Msc.	
Module Tutor	Noor Jamal Yo	unis	e-mail	Noor.jamal@uomosul.edu.iq		du.iq
Peer Reviewer Name		Dr. Hassan Mudhafar Saeed	e-mail saeed81@uomosul.edu.iq		<u>iq</u>	
Scientific Committee Approval Date		2024-2025	Version Number 1.0			

Relation with other Modules					
Prerequisite module	None	Semester	None		
Co-requisites module	None	Semester	None		

Module Aims, Learning Outcomes and Indicative Contents			
Module Aims			
أهداف المادة الدراسية	Students will be able to:		

1. Drawing engineering shapes manually and clearly, including the effective use of the computer-aided drawing program (AutoCAD). 2. Develop a solid understanding of the basic principles of engineering drawing, Included: a. Solid conceptual understanding of the central principles of engineering drawing, b. The ability to work with concepts, analytically, and visualize them c. A functional understanding of how these ideas will manifest in the real world. 3. Use the graphic results of a specific design and convert them into engineering drawings. 4. Determine the strategies to be used and the assumptions to be made. 5. Use both manual and computer approaches in drawing figures. 6. Develop the ability to use engineering tools flexibly and creatively. 7. Develop an integrated understanding of the AutoCAD module. 8. Developing their ability to communicate scientific ideas. 9. Identify what they do not understand, and ask specific questions to gain understanding. 10. Develop expertise in experimental methodologies. On completion of the course students should be able to: 1. Understand and apply the basics of drawing types of lines. 2. Define, explain and apply engineering drawing operations. 3. Understand and apply the basic idea of central projection theory. 4. Saving time, effort and fatigue for designers compared to traditional methods of drawing diagrams. 5. Proficiency in AutoCAD: Gain a comprehensive understanding of AutoCAD **Module Learning** software, its basic commands, and tools necessary for professional 2D drawing, **Outcomes** design, and drafting. 6. Application of Drawing Commands: Acquire the ability to utilize various drawing مخرجات التعلم للمادة commands in AutoCAD, including lines, circles, arcs, ellipses, polygons, and other الدراسية geometric shapes, to create accurate and precise 2D drawings. 7. Modification and Editing Techniques: Develop skills in modifying and editing drawings by employing commands such as erase, trim, extend, mirror, lengthen, offset, chamfer, fillet, and other relevant tools to refine and adjust the design as required. 8. Dimensioning and Annotation: Understand the principles of dimensioning and

annotation in engineering drawings. Learn to apply dimensioning commands, create

	text, use different font types, and utilize dimension styles to accurately convey				
	measurements and annotations.				
	9. By the end of the course, students will have developed the necessary skills and				
	knowledge to effectively use AutoCAD for 2D drawing and design tasks, enabling				
	them to create professional engineering drawings in a computer-aided environment.				
	Indicative content includes the following:				
	- Introduction and introducing students to the subject of engineering drawing, which				
	includes the following:Identification of engineering tools and how to use them.				
	- Types of pens used in drawing geometric shapes.				
	- Billboard layout and address field numbers.				
	- How to deal with the engineering board and the engineering Painting.				
	The types of line and its properties, Line :				
	Engineering shapes and the arcs , lamina. , Dimensions:				
	- Various engineering operations: -				
	- Introducing the drawing scale and its types: civil, mechanical, zoom-in, and zoom-out				
	scale.				
	- Teach students how to apply and draw the following engineering operations:				
	- Drawing a straight line parallel to a known straight line				
Indicative Contents	- The division of the rectum into two halves				
المحتويات الإرشادية	- Angle division is known.				
	- Draw an arc tangent to two straight lines				
	- Draw an arc tangent to another arc and a straight line				
	- Draw an arc that touches two other arcs (the inner parenthesis, the outer parenthesis,				
	and the common parenthesis). AutoCAD (first introduction lecture).				
	- Exploring AutoCAD user interface (title bar, menu bar, standard toolbar, drawing area,				
	command window, status bar) and characteristics and benefits of each components to				
	build a drawing in AutoCAD.				
	- Using the keyboard and mouse in AutoCAD.				
	- Use of absolute coordinates (linear and polar) strategy to specify points on				
	workspace.				
	- Use of relative coordinates (linear and polar) strategy to specify points on workspace.				
	- Learning some draw and modify commands (action, access, options).				
	Garage and a second sec				

Learning and Teaching Strategies

Strategies

The primary strategy for delivering this module will be to encourage students to participate in the exercises while refining and expanding their critical thinking skills. This will be accomplished through classes, interactive tutorials, and the consideration of simple experiments involving sampling activities that students find interesting.

Student Workload (SWL)					
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	78	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	5.2		
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	72	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.8		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150				

Module Evaluation								
	Time/Nu Weight (Marks) Week Due Relevant Learning							
		mber			Outcome			
	Quizzes	3	10% (10)	2, 5, 9	LO #2, 5 and 6			
Formative	Assignments	5	10% (10)	2,3, 5, 9,12	LO # 3, 4, 7, and 8			
assessment	Projects / Lab.	6	10% (10)	Continuous				
	Report	1	10% (10)	13	LO # 5			
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7			
assessment	Final Exam	3 hr	50% (50)	16	All			
Total assessme	Total assessment 100% (100 Marks)							

Delivery Plan (Weekly Syllabus)			
	Material Covered		
Week 1	Basic concepts of engineering drawing Types of lines used in engineering drawing Drawing board dimensions, drawing paper layout, and title writing Units used in engineering drawing How to find out the scale of the drawing How to enlarge a scale		

Week 2	Engineering Operations straight line bisection Bisecting the angle Draw a straight line parallel to another line
Week 3	Draw an arc tangent to two straight lines Draw an arc tangent to another arc and a straight line Draw an arc that touches two other arcs (the inner parenthesis, the outer parenthesis, and the common parenthesis).
Week 4	Solve examples
Week 5	Teaching the basics of Autocad Basic settings, change the color, show the command bar, the command line, and convert the line to a center line or a hiden line
Week 6	This lecture contains line and polyline drawing commands: The circle of the circle is the arc of the arc and the drawing of the tangent, the inner arc and the outer arc
Week 7	Mid-Term Exam I
Week 8	This lecture contains drawing commands Polygonal Ellipse Rectangle (Pentagonal & Hexagonal & etc)
Week 9	This lecture includes Modify in modification commands
Week 10	Solving engineering operations in AutoCAD
Week 11	This lecture includes the object of snap
Week 12	
Week 13	This lecture includes Drawing projections in AutoCAD
Week 14	Solve examples
Week 15	Solve examples
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)					
	Material Covered					
Week 1 -	The application of each part of the covered drawing subject theoretically and according to the					
15	weekly sequence of the curriculum in the AutoCAD laboratory					
	Note: By three hours a week					

Learning and Teaching Resources				
	Text	Available in the Library?		

	Engineering Drawing and Graphic Technology, By, French &	
Required Texts	Vierk, Thirteen	Yes
	edition	
Recommended Texts		
Websites	https://help.autodesk.com/view/ACD/2022/ENU/	

Grading Scheme						
Group	Group Grade		Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good عيد		70 - 79	Sound work with notable errors		
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Module Information							
Module Title			Modu	ıle Delivery			
Module Type		Basic			☑ Theory ☐ Lecture ☑ Lab ☐ Tutorial		
Module Code		MTE 105					
ECTS Credits		3					
SWL (hr/sem)		75			☐ Practical☐ Seminar		
Module Level		UG I	Semester of Delivery		One		
Administering Dep	partment	MTE	College	COE			
Module Leader	Mohammed F	alah Mohammed	e-mail	mohammed.falah kanna@uomosul.		@uomosul.edu.iq	
Module Leader's A	Acad. Title	Lecturer	Module Leader's Qualification Ph.E		Ph.D.		
Module Tutor	Raghad Raied Mahmood		e-mail	raghad.mahmood@uomosul.edu.iq		osul.edu.iq	
Peer Reviewer Name		Sayf A. Majeed	e-mail	mail sayf@uomosul.edu.iq			
Scientific Committee Approval Date		2024-2025	Version Number 1.0				

Relation with other Modules					
Prerequisite module	None	Semester	None		
Co-requisites module	None	Semester	None		

Module Aims, Learning Outcomes and Indicative Contents					
	The aims of the module are:				
	1. To familiarize students with computer software and hardware components				
Module Aims	2. To develop proficiency in using Microsoft Office Word for a report and				
أهداف المادة الدراسية	document preparation				
<u></u>	3. To enhance students' ability to design professional presentations and lecture				
	slides using Microsoft Office PowerPoint				
	4. To equip students with the skills to analyze data, create charts and graphs, and				
	utilize different functions in Microsoft Office Excel				

	With the successful completion of this Module, students will be able to:				
	Demonstrate a sound understanding of computer software and hardware components.				
Module Learning	2. Effectively use Microsoft Office Word to prepare reports and documents.				
Outcomes	3. Design professional presentations and lecture slides using Microsoft Office				
	PowerPoint.				
مخرجات التعلم للمادة	4. Analyze data and create visualizations using Microsoft Office Excel charts,				
مخرجات التعلم للمادة الدراسية	graphs, and functions.				
. 3	Apply advanced features and techniques in Microsoft Office applications for enhanced productivity.				
	6. Demonstrate effective time management skills while working on computer-				
	based tasks.				
	Indicative content includes the following.				
	Introduction to Computer Software and Hardware: [10 hrs]				
	Overview of computer components and their functions				
	Introduction to Number System				
	Data and Information				
	Networking				
	 Understanding operating systems and software applications 				
	Microsoft Office Word: [8 hrs]				
	Formatting and layout techniques for professional reports and documents				
	Working with headers, footers, and page numbering				
	 Incorporating tables, images, and hyperlinks in documents 				
	Advanced document formatting, such as styles, templates, and mail merge				
	Microsoft Office PowerPoint: [4 hrs]				
Indicative Contents	Design principles for creating visually appealing presentations				
المحتويات الإرشادية	Creating effective slide layouts and transitions				
	 Incorporating multimedia elements (images, audio, video) 				
	Applying animations and interactive features in presentations				
	Microsoft Office Excel: [10 hrs]				
	Data entry and basic functions (sum, average, count, etc.)				
	Creating and formatting charts and graphs for data visualization				
	Advanced data analysis using functions (IF, VLOOKUP, etc.)				
	Conditional formatting and data validation techniques				
	Collaboration and sharing in Microsoft Office: [4 hrs]				
	Using collaboration features to work on documents simultaneously				
	Sharing and managing documents in a team environment				
	Version control and tracking changes in documents				
	Utilizing cloud storage platforms for document storage and sharing				
	Productivity Tips and Tricks: [4 hrs]				

- Time-saving shortcuts and techniques for efficient document creation
- Customizing toolbars and ribbons for a personalized workflow
- Automating repetitive tasks using macros and templates
- Utilizing add-ins and extensions to enhance productivity

Practical Application Exercises: [6 hrs]

- Hands-on projects and assignments to reinforce learned skills
- Real-world scenarios for report creation, presentation design, and data analysis
- Critical thinking exercises to apply computer skills in various contexts
- Troubleshooting common issues and errors in software applications

Learning and Teaching Strategies

The learning and teaching strategies for the Computer Skills module include a combination of lectures, hands-on labs, group projects, case studies, online resources, and assessments. Here is a summary of the strategies:

- 1. Lectures: Instructors will deliver lectures to introduce theoretical concepts and provide an overview of computer software, hardware, and applications. Visual aids and interactive discussions will enhance understanding.
- 2. Hands-on Labs: Students will participate in lab sessions to gain practical experience with software applications. Instructors will guide them through exercises and projects, providing individualized assistance and feedback.
- 3. Group Projects and Assignments: Collaborative projects and assignments will foster teamwork and problem-solving skills. Students will work together to create documents, presentations, and data analysis projects.
- 4. Case Studies and Real-world Scenarios: Students will analyze and solve problems based on real-world scenarios, applying computer skills to practical situations. Instructors will provide examples from various academic and professional disciplines.
- 5. Assessments and Feedback: Formative and summative assessments, including quizzes, projects, presentations, and examinations, will evaluate students' progress. Constructive feedback will be provided to enhance their skills.

Strategies

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	48	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	3.2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	27	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	1.8	
Total SWL (h/sem)	75			

Module Evaluation							
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
		mber	3 3 (3 3)		Outcome		
	Quizzes	3	10% (10)	4, 7, and 11	LO # 1- 5		
Formative	Assignments	2	10% (10)	7, 15	LO # 1, 5 and 6		
assessment	Projects / Lab.	1	10% (10)	Continuous			
	Report	1	10% (10)	13	LO # 4, 5 and 6		
Summative	Midterm Exam	2 hr	10% (10)	8	LO # 1-4		
assessment	Final Exam	2 hr	50% (50)	16	All		
Total assessme	ent		100% (100 Marks)				

	Delivery Plan (Weekly Syllabus)
	Material Covered
Week 1	Introduction to Computer Hardware
Week 2	Introduction to Computer Software (operating systems and software applications)
Week 3	Introduction to Data, Information, and Networking
Week 4	Getting Started with Microsoft Office Word: Document Formatting and Layout.
WCCK 4	Creating and Formatting Reports in Microsoft Office Word
Week 5	Advanced Document Formatting Techniques in Microsoft Office Word
Week 6	Introduction to Microsoft Office PowerPoint: Slide Design and Layout.
WEER O	Creating Engaging Presentations in Microsoft Office PowerPoint
Week 7	Mid-term Exam + Adding Multimedia and Interactivity to PowerPoint Presentations
Week 8	Introduction to Microsoft Office Excel: Data Entry and Basic Functions
Week 9	Analyzing Data with Charts and Graphs in Microsoft Office Excel
Week 10	Advanced-Data Analysis and Functions in Microsoft Office Excel
Week 11	Enhancing Excel Worksheets: Conditional Formatting and Data Validation
Week 12	Collaboration and sharing in Microsoft Office Applications
Week 13	Tips and Tricks for Productivity in Microsoft Office Word
Week 14	Tips and Tricks for Productivity in Microsoft Office PowerPoint

Week 15	Tips and Tricks for Productivity in Microsoft Office Excel
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)
	Material Covered
Week 1	Hands-on Practice with Microsoft Office Word: Formatting and Document Creation
Week 2	Report and Document Preparation in Microsoft Office Word
Week 3	Advanced Document Formatting Techniques in Microsoft Office Word
Week 4	Designing Professional Presentations in Microsoft Office PowerPoint
Week 5	Enhancing Slide Design and Layout in Microsoft Office PowerPoint
Week 6	Adding Multimedia and Interactivity to PowerPoint Presentations
Week 7	Data Entry and Basic Functions in Microsoft Office Excel
Week 8	Mid-term Exam
Week 9	Creating Charts and Graphs in Microsoft Office Excel
Week 10	Advanced Data Analysis and Functions in Microsoft Office Excel
Week 11	Conditional Formatting and Data Validation in Microsoft Office Excel
Week 12	Collaborative Work and Sharing in Microsoft Office Applications
Week 13	Increasing Productivity in Microsoft Office Word
Week 14	Increasing Productivity in Microsoft Office Excel
Week 15	Time Management Techniques for Computer-Based Tasks

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	Microsoft Office Word 2019 Step by Step" by Joan Lambert	No			
Recommended Texts	"COMPUTER HARDWARE: Installation, Interfacing, Troubleshooting, and Maintenance Kindle Edition," by K. L. James, Kindle Edition, 2013.	No			
Websites	 https://support.microsoft.com/en-us/training https://www.tutorialspoint.com/computer concepts/dware software concept.htm 	computer concepts har			

Grading Scheme

Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Graves	B - Very Good	جيد جدا	80 - 89	Above average with some errors
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
ب (قيد المعالجة) Fail Group FX – Fail		راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Module Information							
Module Title	Elect	trical Circuits Analysi	s I	Modu	le Delivery		
Module Type		Core			☑ Theory		
Module Code		MTE 106			☐ Lecture ☑ Lab		
ECTS Credits				☐ Tutorial			
SWL (hr/sem)			☐ Practical☐ Seminar				
Module Level	UG I		Semester o	ester of Delivery One		One	
Administering Dep	partment	MTE	College	COE			
Module Leader	Sayf A. Majeed	d	e-mail	sayf@u	omosul.edu.iq		
Module Leader's A	Acad. Title	Lecturer	Module Leader's Qualification Ph.D.		Ph.D.		
Module Tutor	Shahad Walee	d Ahmed	e-mail	shahad.ahmed@uomosul.edu.iq		ul.edu.iq	
Peer Reviewer Name Sa'ad Ahmed		Sa'ad Ahmed Salih	e-mail	kazzazs	kazzazs60@uomosul.edu.iq		
Scientific Committee Approval Date		2024-2025	Version Number 1.0				

Relation with other Modules					
Prerequisite module	None	Semester	None		
Co-requisites module	MTE 113 - Electrical Circuits Analysis II	Semester	Two		

Module Aims, Learning Outcomes and Indicative Contents						
Module Aims أهداف المادة الدراسية	The aims of the module are to: 1. Understanding Fundamental Concepts: The course aims to provide students with a solid understanding of fundamental concepts in electrical circuit analysis. This includes voltage, current, resistance, power, etc.					
	 Analysis Methodologies: Students will learn a variety of analysis methods to solve DC circuits, including Kirchhoff's laws and series and parallel circuit analysis. They will gain proficiency in nodal and mesh analysis methods, enabling them to analyze complex circuits systematically. 					

3.	Circuit Simplification: This course aims to provide students with the skills necessary to use methods like Thevenin's and Norton's theorems to simplify complicated DC circuits and find the equivalent circuits.
4.	Problem Solving Skills: The course aims to develop problem-solving skills through hands-on activities and problem-solving exercises.
5.	Laboratory Experience : The course aims to provide hands-on laboratory experiences where students can apply theoretical knowledge to practical scenarios.
6.	Preparation for Advanced Courses: Prepare students for more advanced

Overall, the Electrical Circuits Analysis I course aims to provide Mechatronics Engineering students with a solid foundation in DC circuit analysis, enabling them to understand, analyze, and design electrical circuits relevant to their field of study.

courses. A solid understanding of this course is essential in electronics, signal

With the successful completion of this Module, students will be able to:

processing, control systems, and other specialized areas.

- 1. Understand the fundamental concepts and principles of electric circuits, including circuit elements, systems of units, and voltage-current relations.
- 2. Demonstrate knowledge of Ohm's Law and its application in analyzing direct current (DC) networks.
- 3. Apply Kirchhoff's Laws to analyze and solve DC circuits using nodal and mesh analysis methods.
- 4. Analyze series and parallel resistor combinations and calculate voltage and current division in these configurations.
- 5. Perform Star (Wye)-Delta transformations to simplify complex resistor networks.
- 6. Apply source transformations to simplify circuit analysis and calculations.
- 7. Understand and apply the linearity and superposition theorems in DC circuit analysis.
- 8. Apply Thévenin's and Norton's theorems to simplify complex circuits into equivalent circuits.
- 9. Understand and apply the maximum power transfer theorem to optimize power transfer in DC circuits.
- Analyze the behavior of capacitors and inductors in DC circuits, including their combinations in series and parallel.

Module Learning Outcomes

مخرجات التعلم للمادة الدراسية

Indicative content includes the following.

Part A - Introduction to DC Circuit Concepts

Systems of Units, Current and voltage definitions, Passive sign convention and circuit elements, Combining resistive elements in series and parallel. Circuit Diagrams, Nodes, Branches, Loops, and Ohm's Law in the Direct Current (DC) Network. Kirchhoff's laws, Independent and Dependent sources [25 hrs]

Revision problem Classes [6 hrs]

Indicative Contents

المحتوبات الإرشادية

Part B - Introduction to Methods of Analysis.

Introduction to DC circuit analysis, Fundamentals Resistive networks, voltage and current sources, Voltage and Current Division, Nodal Analysis, and Super node, Mesh Analysis, and Super mesh. [20 hrs]

Part C - Introduction to Circuit Theorems.

Linearity Property, Superposition, Source Transformations, Thevenin and Norton equivalent circuits, and maximum power transfer, [18 hrs]

Part D - Introduction to Capacitors and Inductors.

Introduction to Capacitors in Parallel and Series; Capacitor Current and Voltage, Inductors in Parallel and Series; Inductors Current and Voltage [6 hrs]

Learning and Teaching Strategies

Strategies

The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussion, while at the same time refining and expanding their critical thinking skills. This will be achieved through:

- 1. Active Learning: Encourages students to participate in the learning process through discussions, group projects, practical experiments, and problem-solving exercises.
- 2. Interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.
- 3. Gamification: in order to increase motivation and engagement in the learning process, game elements will be incorporated, such as competition, rewards, and challenges.

Student Workload (SWL)						
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	78	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	5.2			
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	72	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.8			
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150					

	Module Evaluation								
			Weight (Marks)	Week Due	Relevant Learning				
				Week Due	Outcome				
	Quizzes	4	10% (10)	4, 7, 11, 13	LO # 1- 9				
Formative	Assignments	2	10% (10)	7, 15	LO # 5, 6 and 10				
assessment Projects / Lab.		1	10% (10)	Continuous					
	Report	1	10% (10)	13	LO # 5, 8 and 9				
Summative	Midterm Exam	2 hr	10% (10)	8	LO # 1-4				
assessment	Final Exam	3 hr	50% (50)	16	All				
Total assessme	ent		100% (100 Marks)						

	Delivery Plan (Weekly Syllabus)				
	Material Covered				
Week 1	Review the Course MTE 106, Discuss the Syllabus, Introduction to Systems of Units				
Week 2	Circuit Concepts - Passive and Active Elements, Voltage-Current Relations, and Circuit Diagrams				
Week 3	Week 3 Nodes, Branches, Loops, and Ohm's Law in the Direct Current (DC) Network.				
Week 4	Week 4 Kirchhoff's Laws: KVL and KCL				
Week 5	Series and Parallel Resistors with Voltage and Current Division				
Week 6	Veek 6 Nodal Analysis, and Super node				
Week 7	Week 7 Mesh Analysis, and Super mesh				
Week 8	Mid-term Exam + Source Transformations + Independent and Dependent sources				
Week 9	Star (Wye)-Delta Transformations				
Week 10	Linearity and Superposition Theorems				

Week 11	Thévenin's and Norton Theorems
Week 12	Maximum Power Transfer Theorem
Week 13	Capacitors: Capacitors in Parallel and Series; Capacitor Current and Voltage
Week 14	Inductors: Inductors in Parallel and Series; Inductors Current and Voltage
Week 15	Review, Practice
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered				
Week 1	Lab 1: Introduction to Lab instruments, Reports, Safety, and Rules				
Week 2	Lab 2: Electrical Measurements, and use of Breadboards				
Week 3	Lab 3: introduction to MultiSim simulation software				
Week 4	Lab 4: Ohm's law (Hardware)				
Week 5	Veek 5 Lab 5: Ohm's law (Simulation)				
Week 6	ek 6 Lab 6: Kirchhoff's Laws (Simulation)				
Week 7	Lab 7: Kirchhoff's Laws (Hardware)				
Week 8	Mid-term Exam				
Week 9	9 Lab 9: Simple DC Circuits: A Series Circuits				
Week 10	Week 10 Lab 10: Simple DC Circuits: A Parallel Circuits				
Week 11	Lab 11: Superposition Theorem				
Week 12	Lab 12: Thevenin's Theorem (Simulation)				
Week 13	Lab 13: Thevenin's Theorem (Hardware)				
Week 14	Lab 14: Maximum Power Transfer (Simulation)				
Week 15	Lab 15: Maximum Power Transfer (Hardware)				

Learning and Teaching Resources						
	Text	Available in the Library?				
Required Texts	Fundamentals of Electric Circuits, C.K. Alexander and M.N.O Sadiku, McGraw-Hill Education	Yes				
Recommended Texts	DC Electrical Circuit Analysis: A Practical Approach Copyright Year: 2020, dissidents.	No				

Websites	https://www.coursera.org/browse/physical-science-and-engineering/electrical-	
Websites		engineering

Grading Scheme							
Group	Grade	التقدير	Marks (%)	Definition			
	A - Excellent	امتياز	90 - 100	Outstanding Performance			
Success Current	B - Very Good	جيد جدا	80 - 89	Above average with some errors			
Success Group (50 - 100)	C - Good D - Satisfactory	جيد	70 - 79	Sound work with notable errors			
(30 - 100)		متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded			
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required			

Module Information							
Module Title	Demo	ocracy and Human Rig	ghts	Module Delivery			
Module Type		Support			☑ Theory		
Module Code		MTE 107		☐ Lecture☐ Lab			
ECTS Credits		2			☐ Tutorial		
SWL (hr/sem)			☐ Practical☐ Seminar				
Module Level		UGII	Semester o	emester of Delivery th		three	
Administering Dep	partment	MTE	College	COE			
Module Leader	Rashad Adhed	Alsaigh	e-mail	rashad.alsaigh@uomosul.edu.iq		ıl.edu.iq	
Module Leader's A	Acad. Title	Assistant lecturer	Module Lea	lodule Leader's Qualification MSc		MSc	
Module Tutor	dule Tutor		e-mail				
Peer Reviewer Name		Zainab abd alellah abd alkareem	e-mail	-mail lawyerzainabaa@uomosul.edu.io		sul.edu.iq	
Scientific Committee Approval Date		2024-2025	Version Number 1.0				

Relation with other Modules					
Prerequisite module	None	Semester	None		
Co-requisites module	None	Semester	None		

Module Aims, Learning Outcomes and Indicative Contents	
Module Aims	The aim of studying the democracy and human rights topics is to:
أهداف المادة الدراسية	 Understand the concept of human rights and explore their sources, including international, regional, national, and religious sources.
	 Define administrative corruption, explore its types, and understand its detrimental effects on society. Study methods to combat administrative corruption and promote transparency, accountability, and good governance.

3. Trace the historical development and evolution of human rights, examining key milestones and movements that have shaped the modern understanding of human rights. 4. Differentiate between different categories of human rights, including civil and political rights, economic and social rights, and environmental, cultural, and developmental rights. 5. Explore legal, institutional, and societal guarantees to prevent human rights violations, including guarantees of human rights in Islam, national-level protections, and international safeguards. 6. Comprehend the concept of democracy, including its principles, values, and various forms of democratic governance such as direct, semi-direct, indirect, and digital democracy. Overall, studying these topics aims to develop a comprehensive understanding of human rights, democracy, and combating corruption, empowering individuals to actively promote and protect human rights and democratic values in society. After these module aims, students should be able to: 1. Demonstrate a comprehensive understanding of the concept of human rights and their sources, including international, regional, national, and religious sources. 2. Identify and explain the fundamental characteristics of human rights, such as universality, indivisibility, interdependence, and inalienability. 3. Analyze the historical emergence and evolution of human rights, including key milestones and movements that have shaped their development. 4. Differentiate between different categories of human rights, including civil and political rights, economic and social rights, and environmental, cultural, and developmental rights. **Module Learning** 5. Evaluate and apply legal, institutional, and societal guarantees to prevent **Outcomes** human rights violations, considering guarantees in Islam, at the national level, and within the international framework. 6. Understand and discuss the concept of democracy, including its principles, values, and different forms of democratic governance. مخرجات التعلم للمادة 7. Evaluate the Islamic stance on democracy and engage in critical analysis of the strengths and weaknesses of the democratic system. الدراسية 8. Recognize and assess the impact of administrative corruption on society and propose methods to combat and prevent corruption in administrative systems. 9. Demonstrate critical thinking skills by analyzing and evaluating different perspectives on human rights, democracy, and corruption. 10. Apply acquired knowledge and skills to promote and protect human rights, democracy, and good governance in personal, professional, and civic contexts. Overall, students should have a solid understanding of democracy and human rights, democracy, and corruption issues, and be able to apply this knowledge to contribute to the advancement of human rights and democratic values in society. The indicative content includes: **Indicative Contents** 1. Definition and sources of democracy and human rights (international, regional, المحتويات الإرشادية national, religious). [3h]

- 2. Characteristics of democracy and human rights: universality, indivisibility, interdependence, inalienability. [3h]
- 3. Emergence and evolution of human rights: historical development, key milestones, influential movements. [3h]
- 4. Types of human rights: civil and political, economic and social, environmental, cultural, and developmental. [3h]
- 5. Guarantees to prevent human rights violations: legal, institutional, societal safeguards, Islamic guarantees, national and international levels. [3h]
- 6. Concept of democracy: principles, values, forms of governance (direct, semi-direct, indirect). [3h]
- 7. Islamic stance on democracy: compatibility, strengths, weaknesses. [3h]
- 8. Critique of the democratic system: analysis of strengths and weaknesses. [3h]
- 9. Administrative corruption: definition, types, societal impact. [3h]
- 10. Methods to combat administrative corruption. [3h]

Learning and Teaching Strategies

When it comes to learning and teaching strategies for a human rights module, there are several approaches can be taken to enhance understanding and engagement. Here are some effective strategies:

- 1. Interactive Discussions: Encourage students to actively participate in discussions, debates, and group activities. This promotes critical thinking, allows for different perspectives to be shared, and fosters a deeper understanding of human rights issues.
- Case Studies: Present real-life case studies that highlight human rights violations or achievements. Analyzing these cases helps students apply theoretical concepts to practical situations and develops their problem-solving skills.
- 3. Research Projects: Assign research projects on specific human rights topics or issues. This encourages independent learning, critical analysis, and the development of research skills.
- 4. Collaborative Learning: Foster collaboration among students through group projects or assignments. This encourages teamwork, peer learning, and the exchange of diverse perspectives.
- 5. Assessment Variety: Use a variety of assessment methods, including essays, presentations, debates, and quizzes, to assess students' understanding of human rights concepts and their ability to apply them to real-world situations.

Strategies

Student Workload (SWL)

Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	33	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	2.2
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	17	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	1.13
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	50		

Module Evaluation						
Time,			Weight (Marks)	Week Due	Relevant Learning	
		mber			Outcome	
	Quizzes	2	10% (10)	5, 10	LO #2, 4, 6 and 8	
Formative	Assignments	2	10% (10)	3, 5, 8, 11, 13	LO # 1, 3, 7, 6, 9 and 10	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 2,4,5,7,9and 10	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	3 hr	50% (50)	16	All	
Total assessment			100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)					
	Material Covered					
Week 1	Definition of human rights and sources of rights (international sources / regional sources / national sources / religious sources).					
Week 2	Characteristics of human rights.					
Week 3	The emergence and evolution of human rights.					
Week 4	Types of human rights / civil and political rights. Economic and social rights. Environmental, cultural, and developmental rights.					
Week 5	Guarantees to prevent human rights violations / guarantees of human rights in Islam.					
Week 6	Guarantees for the protection of human rights at the national level.					
Week 7	Guarantees of human rights at the international level.					
Week 8	The concept of democracy.					
Week 9	Characteristics of a democratic system.					
Week 10	Forms of democratic governance (direct democracy / semi-direct democracy / indirect democracy).					
Week 11	Digital democracy / definition and advantages and disadvantages of digital democracy / manifestations of digital democracy.					

Week 12	The Islamic stance on democracy.
Week 13	Critique of the democratic system.
Week 14	Administrative corruption / definition and types.
Week 15	Methods to combat administrative corruption.
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered				
Week 1					
Week 2					
Week 3					
Week 4					
Week 5					
Week 6					
Week 7					

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	ضمانات حقوق الانسان وحمايتها وفقا للقانون الدولي والتشريع الوطني / نبيل عبد الرحمن ناصر الدين	No			
Recommended Texts	الديمقراطية وحقوق الانسان / د. امير عبد العزيز	No			
Websites					

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Croun	B - Very Good	جید جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	

Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Module Information							
Module Title			Modu	ıle Delivery			
Module Type		support			☑ Theory		
Module Code		MTE 108			☐ Lecture ☐ Lab		
ECTS Credits		2			☐ Tutorial		
SWL (hr/sem)			☐ Practical☐ Seminar				
Module Level		UGI	Semester of	rer of Delivery Two		Two	
Administering Dep	partment	MTE	College	COE			
Module Leader			e-mail				
Module Leader's	Acad. Title		Module Lea	der's Qu	alification		
Module Tutor			e-mail				
Peer Reviewer Na	ame		e-mail				
Scientific Committee Date	nmittee Approval 2024-2025		Version Nur	nber	1.0		

Module Information						
Module Title		Mathematics II			ıle Delivery	
Module Type		Basic			☑ Theory	
Module Code		MTE 108			☑ Lecture □ Lab	
ECTS Credits		6			☐ Tutorial	
SWL (hr/sem)		150			☐ Practical ☐ Seminar	
Module Level	UGI		Semester o	of Delivery two		two
Administering Dep	partment	MTE	College COE			
Module Leader	Dr. Abbas AN\	WER	e-mail	abbas.oghor@uomosul.edu.iq		l.edu.iq
Module Leader's A	Acad. Title	Lecturer	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Dr. Abbas Anwer		e-mail	abbas.oghor@uomosul.edu.iq		l.edu.iq
Peer Reviewer Na	Pr. Loay Aldabbagh		e-mail	loayaldabbagh@uomosul.edu.iq		sul.edu.iq
Scientific Committee Approval Date 2024-2025		Version Nu	mber	1.0		

	Relation with other Modules		
Prerequisite module	None	Semester	None
Co-requisites module	MTE 203 - Applied Mathematics I	Semester	Three

Module Aims, Learning Outcomes and Indicative Contents

Module Aims أهداف المادة الدراسية	 The aims of the module are to Evaluate the definite integral by using the Fundamental Theorem of Calculus. Recognize the integration by parts and substitution rule. Evaluate the indefinite integrals. Recognize the methods of numerical integration and define the hyperbolic and inverse hyperbolic functions. Provide the evaluation of integrals by using integral techniques. Work with transcendental functions and evaluate integrals using techniques of integration. Apply integration to compute areas, arclength, volumes of a solid of revolution, moments and centers of mass, areas of surfaces of revolution,
	evaluate the areas and lengths in polar coordinates. 8. Recognize the convergences of sequence, series and power series.
Module Learning Outcomes	 On completion of the course students should be able to: provide an accessible review of the advanced calculus from the text book to long after the class and to provide the concepts integration and the applications of integration. It presents a source for undergraduate students at their first year. Calculus is taught in a traditional lecture format or in laboratories with individual and group learning focusing on numerical and graphical
مخرجات التعلم للمادة الدراسية	 experimentations. 4. Give an ability to apply knowledge of mathematics on engineering problems. Provide the evaluation of integrals by using integral techniques. 5. Give the basic concepts of analytic geometry. 6. Give a broad knowledge and basic understanding of sequences and series. 7. Provide the limit, continuity and integral of vector-valued functions in application.
Indicative Contents المحتويات الإرشادية	 Indicative content includes the following: Concept of area, estimating with finite sums, sigma notation and limits of finite sums definite integral, The Fundamental Theorems of Calculus and Integral [8 hrs]. integration by parts, substitution rule, indefinite integrals, numerical integration [8 hrs]. hyperbolic and inverse hyperbolic functions [8 hrs]. techniques of integration, area, lengths of plane curves, volumes of a solid of revolution, areas of surfaces of revolution, moments and centers of mass, moments of inertia, Pappus theorems, areas and lengths in polar coordinates. [8 hrs] improper integrals, sequences, infinite series, tests of convergence for arithmetic, geometric, harmonic, alternating series. [8 hrs] absolutely convergent, conditionally convergent, derivation and internal of power series, convergence of power series. [8 hrs] Taylor and Maclaurin Series, Fourier Series, vectors, dot Product, cross product [8 hrs]

8.	lines and planes in space, cylinders and quadric surfaces, vector-valued
	functions, limits and continuity and integrals of vector-valued functions.
9.	[4 hrs]

Learning and Teaching Strategies					
Strategies	1- Lectures - aim to deliver fundamental knowledge in relation to calculus and theories to practical examples. 2- Assignments – is arranged to provide the opportunity for students to search for information, analyze economic theories with knowledge obtained, and present the completed tasks. 3- Quizzes - is arranged to provide to test the students level on the materials that studied.				

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	78	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	5.2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	72	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.8	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

Module Evaluation							
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
		mber			Outcome		
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 3,4, and 6		
Formative	Assignments	2	10% (10)	2, 12	LO #1, 2, 3,4,5,6, and 7		
assessment	Projects / Lab.	1	10% (10)	Continuous	LO # 1, and 7		
	Report	1	10% (10)	5	LO # 1,2,3, and 4		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1,2,3, and 4		
assessment	Final Exam	3 hr	50% (50)	16	All		
Total assessment			100% (100 Marks)				

	Delivery Plan (Weekly Syllabus)				
	Material Covered				
Week 1	Concept of area, estimating with finite sums, sigma notation and limits of finite sums, definite integral, the fundamental theorems of calculus				
Week 2	Evaluation of Limit using the definite integral, indefinite integral and its properties				
Week 3	Integration by parts, substitution rule, integral formulas				
Week 4	Numerical integration metods, hyperbolic and inverse hyperbolic functions)				
Week 5	Techniques of integration				
Week 6	Techniques of integration				
Week 7	Area, lengths of plane curves, volumes of a solid of revolution, areas of surfaces of revolution				
Week 8	Moments and centers of mass, moments of inertia, Pappus theorems				
Week 9	Midterm exam				
Week 10	Sequences, infinite series, tests of convergence for arithmetic, geometric, harmonic, alternating series				
Week 11	Absolute convergent, conditional convergent, convergence of power series				
Week 12	Absolute convergent, conditional convergent, convergence of power series				
Week 13	Derivation and integral of power series, Taylor and Maclaurin Series, Fourier Series				
Week 14	Root locus Technique -2				
Week 15	Vectors, dot product, cross product, lines and planes in space, cylinders and quadric surfaces				
Week 16	Preparatory week before the final Exam				

	Delivery Plan (Weekly Lab. Syllabus)			
	Material Covered			
Week 1				
Week 2				
Week 3				
Week 4				
Week 5				
Week 6				
Week 7				

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	Thomas' Calculus 14th Edition by Thomas' Calculus 14th Edition (Author),	Yes			
Recommended Texts	Thomas' Calculus 14th Edition by Thomas' Calculus 14th Edition (Author),	Yes			
Websites https://drive.google.com/drive/u/2/folders/15AlyAcd4bVUUICaKFnM-qifdAedeJJUI		CaKFnM-qifdAedeJJUD			

Grading Scheme						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Suggest Croup	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Module Information							
Module Title	Engin	eering Mechanics-Star	tic I	Modu	le Delivery		
Module Type		Basic			☑ Theory		
Module Code		MTE 110			☑ Lecture □ Lab		
ECTS Credits		5			□ Tutorial □ Tutorial		
SWL (hr/sem)		125			☐ Practical☐ Seminar		
Module Level		UGI	Semester o	Semester of Delivery two		two	
Administering Dep	partment	MTE	College	COE			
Module Leader	Islam Abdullah	n Aziz	e-mail	e-mail <u>islamabd@uomosul.edu.iq</u>		ı.iq	
Module Leader's A	Acad. Title	Assistant Lecturer	Module Leader's Qualification Msc.		Msc.		
Module Tutor	Noor Jamal		e-mail	noor.jamal@uomosul.edu.iq		du.iq	
Peer Reviewer Name		Dr. Loay Younes Aldabbagh	e-mail	loayaldabbagh@uomosul.edu.iq		ul.edu.iq	
Scientific Committee Approval Date		2024-2025	Version Number 1.0				

Relation with other Modules			
Prerequisite module	None	Semester	None
Co-requisites module	None	Semester	None

Module Aims, Learning Outcomes and Indicative Contents				
	The aims of the module are to			
Module Aims	1. Recognize various types of Forces, their components, and the function			
7 () ti 7 () ti 2 () 1	of each component.			
أهداف المادة الدراسية	2. Identify the types of moments and the methods used to calculate			
	them.			
	Distinguish between different types of frictional forces.			
	4. Familiarity with the position of equilibrium and the equations used in			

	the subject.
	5. Identify the methods used to find the center of geometric shapes.
Module Learning Outcomes مخرجات التعلم للمادة	 On completion of the course, students should be able to: an ability to identify, evaluate and solve engineering problems utilizing the acquired principal knowledge of engineering, science, and mathematics. an ability to design an integrated system and its various components and processes to produce solutions that fulfill the need of society. an ability to communicate effectively using oral, written, and graphic forms with different levels of audiences. solve systems an ability to acquire new engineering knowledge and skills in the mechatronics engineering fields.
	an ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits.
Indicative Contents المحتويات الإرشادية	Indicative content includes the following. Unit – I: Introduction - Basic concepts of force calculations, component analysis, and resultant calculation for the main and inclined axes [15 hrs] UNIT- II: Applications of moments in engineering works and methods of solving problems subject to moments of forces [15 hrs] UNIT- III: An introduction to couple moment and its practical uses and methods of solving problems related to couple moments [15 hrs] UNIT – IV: An introduction to the balance of forces and its engineering applications and the method of using equilibrium equations to solve problems related to the topic. [15 hrs] UNIT – V: Surface friction and methods of finding the internal forces of friction for flat and inclined surfaces [15 hrs]

Learning and Teaching Strategies					
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1- Lectures - aims to introduce the basic concepts and knowledge regarding forces analysis and the application of its methods to purely mathematical examples. 2- Tutorials - These are posted to illustrate the application of basic knowledge of equilibrium theory used to solve various practical engineering problems. 3- Assignments - are arranged to provide the opportunity for students to search for information, analyze problems and discrete data, model their equations, with knowledge obtained, and present the completed tasks.				

4-Computer courses - to develop actual computer codes to solve real problems, therefore the use of computer programs for force analysis and component calculation is an important part of the subject.

Student Workload (SWL)					
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	78	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	5		
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	47	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.13		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125				

Module Evaluation						
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning	
		mber	weight (wanks)	Outcome		
	Quizzes	2	10% (10)	5, 10	LO #2, 3, and 4	
Formative	Assignments	2	10% (10)	3, and 13	LO # 1, 2, 3, and 5	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 3, 4 and 5	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-4	
assessment	assessment Final Exam 3 hr 50% (50) 16 All					
Total assessme	ent		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)					
	Material Covered				
Week 1	Introduction - Concepts for the Analysis method in engineering mechanic				
Week 2	Forces system				
Week 3	Resultant for forces				
Week 4	Introduction for moment				
Week 5	Moment of forces				
Week 6	Week 6 Couple moment				
Week 7	Mid-term Exam				

Week 8	Interpolation - Equilibrum of forces
Week 9	Equilibrum of forces
Week 10	Interpolation -Friction
Week 11	Friction of forces
Week 12	Friction of forces
Week 13	Interpolation – of centroid
Week 14	Centroid of area
Week 15	Centroid of area
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Engineering Mechanics, STATICS, Bedford A. and Fowler W., PEARSON, Prentice Hall, 5th Edition, 2008. 3. Vector Mechanics for Engineers, STATICS, Beer F. P., Johnston E. R., Mazurek D. F.,	Yes		
Recommended Texts	Vector Mechanics for Engineers, STATICS, Beer F. P., Johnston E. R., Mazurek D. F., Cornwell P. J. and Eisenberg E. R., McGraw-Hill, 9th Edition, 2010.	Yes		
Websites	https://www.coursera.org/learn/ engineering mechanic			

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
	C - Good	جيد	70 - 79	Sound work with notable errors	
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Module Information						
Module Title	Co	Computer Programming			le Delivery	
Module Type		Basic			☑ Theory	
Module Code		MTE 105			□ Lecture 図 Lab	
ECTS Credits		4			☐ Tutorial	
SWL (hr/sem)				☐ Practical☐ Seminar		
Module Level		UGI	Semester of Delivery Two		Two	
Administering Dep	partment	MTE	College COE			
Module Leader	Raghad Raied	Mahmood	e-mail	raghad.mahmood@uomosul.edu.iq		osul.edu.iq
Module Leader's	Acad. Title	Assistant lecturer	Module Le	eader's Qualification		
Module Tutor			e-mail		·	
Peer Reviewer Na	r Reviewer Name Mohammed Falah		e-mail	mohamn	mohammed.falah kanna@uomosul.edu.i	
Scientific Committee Approval Date		2024-2025	Version No	umber	1.0	

Relation with other Modules					
Prerequisite module	None	Semester	None		
Co-requisites module	None	Semester	None		

Module Aims, Learning Outcomes and Indicative Contents					
	The aims of the module are to 1. Understanding algorithms & flowcharts: Introduce students to the concept of				
Module Aims	algorithms and how to represent them using flowcharts. They should be able to design and analyze algorithms for problem-solving.				
أهداف المادة الدراسية	 Familiarizing with basic data types in C++: Teach students the fundamental data types in C++ such as integers, floating-point numbers, characters, and 				
	booleans. They should understand how to declare variables of these types and perform basic operations on them.				

- 3. Exploring the numbering system: Provide students with an understanding of different numbering systems, including binary, octal, and hexadecimal. They should be able to convert numbers between different bases and work with them in C++.
- 4. Implementing if-else statements: Teach students how to use if-else statements for making decisions in their programs. They should be able to write conditional statements based on specific conditions.
- 5. Utilizing for loops for repetition: Introduce the concept of for loops for executing a block of code repeatedly. Students should learn how to use for loops effectively for iteration and repetition tasks.
- Understanding control structures: Explore additional control structures in C++
 such as switch-case statements and nested if-else constructs. Students should
 understand how to control the flow of program execution based on various
 conditions.
- 7. Implementing functions: Teach students how to define and use functions in C++. They should learn how to write modular code by encapsulating reusable blocks of code into functions.
- 8. Exploring recursive functions: Introduce the concept of recursion, where a function calls itself. Students should understand how to design and implement recursive functions to solve problems that can be solved recursively.
- Working with two- and multidimensional arrays: Teach students how to declare, initialize, and manipulate two- and multidimensional arrays in C++. They should understand how to access array elements and perform operations on them.
- 10. Passing arrays as parameters to functions: Introduce the concept of passing arrays as parameters to functions. Students should learn how to write functions that accept arrays as arguments and modify them within the function.
- 11. Understanding records (structs): Introduce the concept of structures or records in C++. Students should understand how to define and work with user-defined types that contain multiple variables of different data types.

Module Learning Outcomes

On completion of the course, students should be able to:

مخرجات التعلم للمادة الدراسية

- 1. Understand and apply algorithms and flowcharts to solve problems in C++ programming.
- 2. Demonstrate proficiency in using basic data types in C++, including integers, floating-point numbers, characters, and booleans.
- 3. Work with different numbering systems, such as binary, octal, and hexadecimal, and perform conversions between them.

4. Implement if-else statements effectively to make decisions based on specific conditions in their programs. 5. Utilize for loops for efficient iteration and repetition of code blocks. 6. Demonstrate mastery over control structures in C++, including switch-case statements and nested if-else constructs. 7. Design and implement functions to write modular and reusable code in C++ programs. 8. Apply recursive functions to solve problems that can be addressed using recursive approaches. 9. Manipulate and work with two- and multidimensional arrays in C++, including accessing elements and performing operations on them. 10. Pass arrays as parameters to functions, allowing for more flexible and efficient code organization and manipulation. 11. Understand and work with records (structs) in C++, defining user-defined types that can contain multiple variables of different data types. Indicative content includes the following. 1. Algorithms & Flowcharts: Introducing the concept of algorithms and how to represent them using flowcharts. Students learn how to design step-by-step instructions to solve problems. [4 hrs.] 2. BASIC DATA TYPES IN C++: Covering the fundamental data types in C++, such as integers, floating-point numbers, characters, and booleans. Students learn how to declare and use variables of these data types. [4 hrs.] 3. Numbering System: Explaining different numbering systems like binary, octal, and hexadecimal, and their conversion to and from decimal. Students understand how to work with numbers in different bases. [4 hrs.] **Indicative Contents** 4. if-else statements: Introducing conditional statements in C++ using if-else المحتويات الإرشادية constructs. Students learn how to make decisions based on certain conditions. [6 hrs.] 5. for Looping (Repetition) Structure: Teaching the concept of loops in C++, specifically the for loop. Students learn how to execute a block of code repeatedly based on a given condition. [6 hrs.] 6. CONTROL STRUCTURES: Exploring additional control structures like switchcase statements and nested if-else constructs. Students understand how to control the flow of execution based on various conditions. [6 hrs.] 7. Functions: Introducing functions as reusable blocks of code that perform specific tasks. Students learn how to declare and define functions, pass arguments, and return values. [6 hrs.]

- 8. Recursive Functions: Exploring the concept of recursion, where a function calls itself. Students learn how to design and implement recursive functions to solve specific problems. [6 hrs.]
- 9. Two- and Multidimensional Arrays: Introducing arrays as data structures to store multiple values. Students learn about one-dimensional arrays as well as two-dimensional arrays for representing matrices or grids. [6 hrs.]
- 10. Arrays as Parameters to Functions: Teaching how to pass arrays as parameters to functions. Students understand how to manipulate arrays within functions and return modified arrays. [6 hrs.]
- 11. Records (structs): Introducing the concept of structures or records in C++. Students learn how to define and work with user-defined types that contain multiple variables of different data types. [6 hrs.]

Learning and Teaching Strategies

The main strategy that will be adopted in delivering this module is to encourage students' active participation in discussions and promote the development of their critical thinking skills. This will be achieved through various approaches, including:

- 1. Interactive lectures: Engaging students through interactive lectures that involve discussions, demonstrations, and real-life examples related to the topics covered in the course.
- Hands-on programming exercises: Providing students with practical programming exercises to apply their knowledge and reinforce their understanding of the concepts. These exercises can involve implementing algorithms, working with different data types, and solving problems using control structures and functions.
- Group discussions and problem-solving activities: Encouraging students to collaborate in groups to discuss programming challenges, analyze algorithms, and find solutions. This promotes teamwork, communication, and critical thinking skills.
- 4. Code review and feedback: Providing constructive feedback on students' code to enhance their coding practices and improve their understanding of programming concepts. This feedback can be provided during individual or group code review sessions.
- 5. Case studies and real-world examples: Integrating case studies and real-world examples relevant to Mechatronic Engineering to demonstrate the practical application of programming concepts. This helps students connect theory with real-world scenarios and motivates their learning.
- 6. Assignments and projects: Assigning programming assignments and projects that require students to apply their knowledge and skills to solve specific

Strategies

- problems related to Mechatronic Engineering. This allows students to practice and demonstrate their understanding of the covered topics.
- 7. Assessment and evaluation: Conducting regular assessments, such as quizzes and tests, to gauge students' understanding of the material. The assessments can include both theoretical questions and programming tasks to evaluate their knowledge and problem-solving abilities.

Student Workload (SWL)					
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	63	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4.3		
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	37	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2.3		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	100				

Module Evaluation						
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning	
			weight (iviarks)	Week Due	Outcome	
	Quizzes	2	10% (10)	5, 10	LO #2, 4, 7 and 8	
Formative	Assignments	5	10% (10)	3, 5, 8, 11, 13	LO # 1, 2, 3, 5, 6, 9 and	
assessment					10	
assessifient	Projects / Lab.	1	10% (10)	Continuous		
	Report		10% (10)	13	LO # 9, and 11	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	3 hr	50% (50)	16	All	
Total assessme	Total assessment 100% (100 Marks)					

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Algorithms & Flowcharts: Understanding the concept of algorithms and how to represent them using flowcharts to solve problems step by step.			
Week 2	Basic Data Types in C++: Familiarizing with fundamental data types in C++ such as integers, floating-point numbers, characters, and booleans. Learning how to declare and use variables of these data types.			

Week 3	Numbering System: Exploring different numbering systems like binary, octal, and hexadecimal, and their conversions to and from decimal. Applying the knowledge of numbering systems in C++ programming.
Week 4	if-else Statements: Implementing conditional statements using if-else constructs to make decisions based on specific conditions.
Week 5	Control Structures: Extending the knowledge of control structures beyond if-else statements.
Week 6	Control Structures: Extending the knowledge of control structures using switch-case.
Week 7	Mid-term Exam
Week 8	For Looping (Repetition) Structure: Understanding the for-loop structure to execute a block of code repeatedly for a specified number of iterations.
Week 9	While/ do while Looping (Repetition) Structure: Understanding the while and do while loop structure to execute a block of code repeatedly for a specified number of iterations.
Week 10	Functions: Learning how to define and use functions in C++ to organize and reuse code.
Week 11	Functions: Understanding function declaration, definition, parameter passing, and return values.
Week 12	One dimensional Array: Working with arrays in C++, including one-dimensional arrays Learning how to declare, initialize, access, and manipulate array elements.
Week 13	Multidimensional arrays: Working with arrays in C++, two- and multidimensional arrays. Learning how to declare, initialize, access, and manipulate array elements.
Week 14	Arrays as Parameters to Functions: Passing arrays as arguments to functions, allowing for efficient manipulation and processing of array data within functions.
Week 15	Records (Structs): Introducing structures or records in C++, defining user-defined types that can hold multiple variables of different data types.
Week 16	Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered			
Week 1	Lab 1 - Algorithms & Flowcharts: Understanding the concept of algorithms and how to represent them using flowcharts to solve problems step by step.			
Week 2	Lab 2 - Basic Data Types in C++: Familiarizing with fundamental data types in C++ such as integers, floating-point numbers, characters, and booleans. Learning how to declare and use variables of these data types.			
Week 3	Lab 3 - Numbering System: Exploring different numbering systems like binary, octal, and hexadecimal, and their conversions to and from decimal. Applying the knowledge of numbering systems in C++ programming.			
Week 4	Lab 4 - if-else Statements: Implementing conditional statements using if-else constructs to make decisions based on specific conditions.			
Week 5	Lab 5 - Control Structures: Extending the knowledge of control structures beyond if-else statements.			

Week 6	Lab 6 - Control Structures: Extending the knowledge of control structures using switch-case.
Week 7	Mid-term Exam
Week 8	Lab 8 - For Looping (Repetition) Structure: Understanding the for loop structure to execute a block of code repeatedly for a specified number of iterations.
Week 9	Lab 9 - While/ do while Looping (Repetition) Structure: Understanding the while and do while loop structure to execute a block of code repeatedly for a specified number of iterations.
Week 10	Lab 10 - Functions: Learning how to define and use functions in C++ to organize and reuse code.
Week 11	Lab 11 - Functions: Understanding function declaration, definition, parameter passing, and return values.
Week 12	Lab 12 - One dimensional Array: Working with arrays in C++, including one-dimensional arrays Learning how to declare, initialize, access, and manipulate array elements.
Week 13	Lab 13 - Multidimensional arrays: Working with arrays in C++, two- and multidimensional arrays. Learning how to declare, initialize, access, and manipulate array elements.
Week 14	Lab 14 - Arrays as Parameters to Functions: Passing arrays as arguments to functions, allowing for efficient manipulation and processing of array data within functions.
Week 15	Lab 15 - Records (Structs): Introducing structures or records in C++, defining user-defined types that can hold multiple variables of different data types.
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources					
	Available in the Library?				
Required Texts	C++ Programming from Problem Analysis to Program Design [5th Edition] book	Yes			
Recommended Texts		No			
Websites					

Grading Scheme						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Croup	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		

(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Module Information							
Module Title	Engineering	Engineering Materials and Manufacturing Processes			le Delivery		
Module Type		Core			☑ Theory		
Module Code		MTE 111			☐ Lecture ☐ Lab ☐ Tutorial		
ECTS Credits		5					
SWL (hr/sem)			☐ Practical☐ Seminar				
Module Level		UGI	Semester of Delivery Tv		Two		
Administering Dep	partment	MTE	College	COE			
Module Leader	Ahmad Wadol	lah Saleh Al-Sabawi	e-mail	ahmadalsabawi@uomosul.edu.iq		sul.edu.iq	
Module Leader's	Acad. Title	Lecturer	Module Lea	Module Leader's Qualification MSc		MSc	
Module Tutor			e-mail				
Peer Reviewer Name		Dr. Loay Younes Aldabbagh	e-mail loayaldabbagh@uomosul.edu.iq		ul.edu.ig		
Scientific Committee Approval Date		2024-2025	Version Nur	mber	1.0		

Relation with other Modules						
Prerequisite module	None	Semester	None			
Co-requisites module	None	Semester	None			

Module Aims, Learning Outcomes and Indicative Contents						
Module Aims	This module aims to enable the students to:					
أهداف المادة الدراسية	 Know the available engineering materials and their most important properties those are related to manufacturing subject. 					
	Have a basic knowledge about the economy of manufacturing processes such the cycle time, batch time,etc.					

	3. Understand the basic testing methods those used to identify the material
	under test such tensile test, hardness test,etc.
	4. Have a general information about all of the manufacturing processes used in
	industry such as casting, forging,etc.
	5. Deal with traditional workshop items and the safety issues.
	6. Have a fundamental knowledge about the measurements and measuring
	tools such as rulers, Verniers, etc.
	7. Be subjected to the comparison tools and equipment such gauge blocks and dial gauge indicator.
	8. Understand the basics of the turning machines and its fundamental
	operations such as longitudinal turning, facing, tapering ,etc.
	9. Understand the basics of milling machines and milling operations such slab
	milling, slotting, straddle milling, gear machining,etc.
	10. Understand the basics of drilling and drill bits.
	11. Know the general features of CNC machining and its industrial gcode
	language.
	At the end of the course students should be able to:
	Be familiar with the terminology associated with engineering materials and
	manufacturing processes and economy of the subject.
Module Learning	2. Know basic mechanical properties of the materials such as yield stress,
Outcomes	ultimate stress, ductility, hardnessetc.
	3. Deal with measuring devices, such as verniers, micrometers, etc. And
	gauge blocks and their applications.
# 1 (t 1 mt)	4. Basically, deal with machining operations and its related calculations such as
مخرجات التعلم للمادة الدراسية	the spindle speed, feed rate, machining time, material removal rate,etc.
الدراسية	5. Deal with milling machines, both vertical and horizontal.
	6. Work fairly on the index head, one of the important parts of the milling
	machines, and its related operations such as simple indexing, differential
	indexing, helical gear milling, etc.7. Interact the society of manufacturing, in general.
	Indicative content includes the following.
	Part 1 Engineering Materials
	Metals, ceramics, polymers, composites, ferrous metals, non – ferrous metals, tensile
	test, compression test, shear test, hardness test, impact test [10 hrs].
	Part 2 Manufacturing Processes
	Processing operations, solidification processing, particulate processing, deformation
	processing, hot forging, cold forging, rolling, heat treatment, coating and
	dispositioning, assembly operations, welding, brazing and soldering, adhesive bonding,
Indicative Contents	
المحتويات الإرشادية	threaded fasteners [10 hrs]
المعتويات الإرسادية	Part 3 Dimensions, Measurements and Tolerances
	Dimensions, tolerances representation, geometric attributes, angularity, circularity,
	concentricity, cylindricity, flatness, parallelism, alignment and misalignment, linear
	misalignment, angular misalignment, measuring instruments and gages, accuracy,
	precision, gauging, precision gages blocks, dial Indicators, applications of the dial
	indicator, straightness, flatness, parallelism, roundness, run – out, depth of cut,
	comparative tools, surface Plate, graduated measuring devices, vernier, micrometer,
	sine bar. [20 hrs]

Part 4 Traditional Machining

Material removal processes, machining, roughing and finishing, machining operations, turning, facing, tapering, longitudinal machining, thread machining, machining time, material removal rate, boring, drilling, milling, index head, differential indexing, helical milling, shaping and planning, broaching, engraving, laser cutting, grinding, sanding and polishing, cnc machining, 2.5 axis milling, gcode. [20 hrs]

Part 5 Non – Traditional Machining

Chemical machining, electrical discharge machining (edm), water jet and abrasive water jet machining, 3d printing. [5 hrs]

Learning and Teaching Strategies In addition to the following strategies, students are encouraged to share and interact on and off – class in order to enhance their knowledge and skill. However, those strategies are: 1- Lectures: the main teaching technique that include the subjects and its related elements such applications, problems and example. 2- Assignments: is directly given after each subject and received through class or online afterward. 3- Lab work: some of the given topics are also covered experimentally through the mechanical workshop and the material testing lab.

Student Workload (SWL)						
Structured SWL (h/sem) 78 Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب أسبوعيا 5.2						
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	47	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.1			
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125					

Module Evaluation					
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
Formative	Quizzes	2	10% (10)	4, 11	LO #2, 4, and 6
assessment	Assignments	4	10% (10)	3, 6, 8, 13	LO # 3, 5, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	

	Report	1	10% (10)	Continuous	LO # 1, 6 and 7
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-5
assessment	Final Exam	3 hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)		
	Material Covered		
Week 1	Basic concepts and definitions		
Week 2	Mechanical properties of materials: Fundamental tests I (Tensile Test)		
Week 3	Fundamental tests II (Compression Test and Impact Test)		
Week 4	Fundamental tests III (Hardness Test)		
Week 5	Dimensions, measurements and measuring devices and Tolerances		
Week 6	Engineering materials Part I		
Week 7	Engineering materials Part II		
Week 8	Cutting theory		
Week 9	Mid-Term Examination		
Week 10	Material removal processes (Lathe and its related operations)		
Week 11	Material removal processes (Boring and drilling)		
Week 12	Material removal processes (Milling) 1		
Week 13	Material removal processes (Milling) 2		
Week 14	Introduction to non – traditional machining		
Week 15	CNC machining and gcode programming, an introduction.		
Week 16	Preparatory week before the final Exam		

	Delivery Plan (Weekly Lab. Syllabus)		
	Material Covered		
Week 1	Tensile test		
Week 2	Compression test		
Week 3	Hardness test		
Week 4	Week 4 Impact test		
Week 5	Workshop technology (lathe machine) I		

Week 6	Workshop technology (lathe machine) II
Week 7	Workshop technology (milling machine) I
Week 8	Workshop technology (milling machine) II
Week 9	Workshop technology (drilling machine) I
Week 10	Workshop technology (drilling machine) II
Week 11	Workshop technology (shaping machine)
Week 12	Workshop technology (casting)
Week 13	Workshop technology (welding)
Week 14	Workshop technology (grinding) I
Week 15	Workshop technology (grinding) II

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Mikell P. Groover, Fundamentals of Modern Manufacturing, seventh edition, John Wiley & Sons, Inc., 2020	No		
Recommended Texts		No		
Websites https://www.classcentral.com/course/swayam-fluid-mechanics-and-its-applications		cs-and-its-applications-		

Grading Scheme					
Group Grade		التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Suggest Croup	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Module Information							
Module Title	Elect	Electrical Circuits Analysis II			le Delivery		
Module Type		Core			☑ Theory		
Module Code		MTE 113			□ Lecture 図 Lab		
ECTS Credits		5					
SWL (hr/sem)				☐ Practical☐ Seminar			
Module Level	UGI		Semester o	f Deliver	Delivery Two		
Administering Dep	partment	MTE	College		COE		
Module Leader	Sayf A. Majeed	1	e-mail	sayf@u	omosul.edu.iq		
Module Leader's	Acad. Title	Lecturer	Module Lea	der's Qualification Ph.D.		Ph.D.	
Module Tutor	Shahad Waleed Ahmed		e-mail	shahad.	shahad.ahmed@uomosul.edu.iq		
Peer Reviewer Name		Sa'ad Ahmed Salih	e-mail	e-mail <u>kazzazs60@uomosul.edu.iq</u>		u.iq	
Scientific Committee Approval Date		2024-2025	Version Nu	Version Number 1.0			

Relation with other Modules				
Prerequisite module	MTE 106 - Electrical Circuits Analysis I	Semester	One	
Co-requisites module	MTE 204 - Electronic Principles and Devices MTE 205 - Electrical Machines	Semester	Three	

Module Aims, Learning Outcomes and Indicative Contents				
Module Aims أهداف المادة الدراسية	The aims of the module are to 1. Understanding Fundamental Concepts: This course aims to provide students with an understanding of the fundamental principles of AC circuits and their application in Mechatronics engineering.			

	 Analysis Methodologies: By learning numerous methods of analysis, students will have a comprehensive understanding of AC circuits. They will become proficient in using complex impedance, and phasor techniques to address complex AC circuit problems.
	3. Circuit Simplification: Students will learn how to simplify complex AC circuits and determine their equivalent circuits using advanced analysis theorems, such as Thevenin's and Norton's theorems.
	 Skills in Design and Problem Solving: The course aims to develop design and problem-solving skills through hands-on activities and problem-solving exercises.
	 Preparation for Advanced Courses: Prepare students for more advanced courses. A solid understanding of this course is essential in electronics, Electrical Machines, and other specialized areas.
	 Laboratory Experience: The course aims to provide hands-on laboratory experiences where students can apply theoretical knowledge to practical scenarios.
	Overall, the Electrical Circuits Analysis II course aims to provide Mechatronics Engineering students with a solid foundation in AC circuit analysis, enabling them to understand, analyze, and design electrical circuits relevant to their field of study.
	Upon completion of this course, the student will be able to:
	1. Understand the main concept of the AC circuits.
	2. Solve different types of AC circuits in the phasor domain.
	3. Analyze series and parallel combinations of impedances and admittances in AC circuits.
	4. Apply nodal and mesh analysis techniques to solve AC circuits.
Module Learning	5. Simplify and analyze complex AC circuits, use the superposition theorem, Thevenin's theorem, and Norton's theorem.
Outcomes	6. Apply the maximum power transfer theorem to determine the optimal load
	impedance for power transfer in AC circuits.7. Understand and analyze the instantaneous, average, RMS, and apparent
مخرجات التعلم للمادة	power, as well as power factor.
مخرجات التعلم للمادة الدراسية	8. Understand and calculate complex power in AC circuits.
	9. Analyze the frequency response of AC circuits.
	10. Design and analyze passive filters in AC circuits
	11. Understand the concept of resonance and calculate the quality factor in AC circuits.
	12. Analyze and calculate resonance in series-parallel AC circuits, considering the impact of frequency and impedance values.
Indicative Contents	Indicative content includes the following.
a.tatira contonta	

المحتوبات الإرشادية

Part A - Introduction to AC Circuit Concepts

Introduction to complex numbers, complex arithmetic, and their representation in polar and rectangular forms. Understanding the relationship between complex numbers and AC circuit analysis.

Waveforms and their properties: sinusoidal waveforms, peak value, peak-to-peak value, average value, root mean square (RMS) value.

Introduction to phasor: Phasor diagrams, definition of complex impedance, Series and Parallel Combinations of Impedances and Admittances. [15 hrs]

Revision problem classes. [7 hrs]

Part B - Introduction to Methods of Analysis.

Nodal and Mesh Analysis Techniques for AC Circuits: Application of nodal analysis and mesh analysis methods for solving AC circuits. Understanding the systematic approach to analyzing complex circuits using these techniques.

Superposition Theorem: Introduction to the superposition theorem for AC circuits. Analysis and calculations using superposition to determine the response of circuits with multiple sources.

Thevenin's and Norton's Theorems for AC Circuits: Understanding Thevenin's and Norton's theorems and their application in simplifying complex AC circuits. Calculation of equivalent circuits using these theorems.

Maximum Power Transfer Theorem: Introduction to the maximum power transfer theorem and its application in AC circuits. Understanding the conditions for maximum power transfer and calculation of load impedance for maximum power transfer.

[15 hrs]

Part C - AC Power Analysis

Introduction to power in AC circuits, Instantaneous, Average, RMS, and Apparent Power. Definition of power factor and Power Triangle in AC circuits, calculation methods for power factor in resistive, inductive, and capacitive loads.

Complex Power: Introduction to complex power, calculation methods for complex power in AC circuits, understanding the relationship between real power, reactive power, and apparent power. [18 hrs]

Part D - Frequency Response

Introduction to transfer function, its significance in AC circuits, and representation in terms of complex numbers. The Decibel Scale and its application in measuring gains and losses in AC circuits.

Bode Plots: the illustration of the frequency response of AC circuits in terms of magnitude and phase.

Passive Filters: Analysis of passive filters, such as low-pass, high-pass, band-pass, and band-stop filters, their frequency response characteristics, and design considerations.

RL, RC and RLC circuits - Frequency response of RLC circuits, simple filter and band-pass circuits, resonance and Q-factor. [20 hrs]

Learning and Teaching Strategies				
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussion, while at the same time refining and expanding their critical thinking skills. This will be achieved through: 4. Active Learning: Encourages students to participate in the learning process through discussions, group projects, practical experiments, and problem-solving exercises. 5. Interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students. 6. Gamification: in order to increase motivation and engagement in the learning process, game elements will be incorporated, such as competition, rewards, and challenges.			

Student Workload (SWL)					
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	78	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	5.2		
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	47	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.1		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125				

	Module Evaluation						
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
		mber			Outcome		
	Quizzes	4	10% (10)	3, 5, 11, and	LO #1-5 and 8 and 12		
Formative	,		,	13			
assessment	Assignments	2	10% (10)	7, 13	LO # 1-6 and 11		
assessment	Projects / Lab.	1	10% (10)	Continuous			
	Report	1	10% (10)	13	LO # 1-12		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7		
assessment	Final Exam	3 hr	50% (50)	16	All		

Total assessment	100% (100 Marks)	
	· ·	

	Delivery Plan (Weekly Syllabus)		
	Material Covered		
Week 1	Review the Course MTE 112, Discuss the Syllabus, Introduction to Alternating Current (AC) Circuits		
Week 2	Review the Complex Number and Waveforms and A.C. Values		
Week 3	Phasors, Phasor Diagrams, and Complex Impedance		
Week 4	Impedance and Admittance, Series and parallel combinations of impedances and admittance		
Week 5	Nodal and Mesh Analysis Techniques for AC Circuits		
Week 6	Superposition Theorem, Thevenin's and Norton's Theorems for AC Circuits		
Week 7	Maximum Power Transfer Theorem		
Week 8	Mid-term Exam		
Week 9	AC Power Analysis: Instantaneous, Average, RMS and Apparent Power and Power Factor		
Week 10	AC Power Analysis: Complex Power		
Week 11	Frequency Response: Transfer Function, The Decibel Scale and Bode Plots		
Week 12	Frequency Response: Passive Filters I.		
Week 13	Frequency Response: Passive Filters II.		
Week 14	Resonance and Quality Factor		
Week 15	Resonance in series-parallel circuits		
Week 16	Preparatory week before the final Exam		

	Delivery Plan (Weekly Lab. Syllabus)		
	Material Covered		
Week 1	Lab 1: Introduction to Lab Instruments, Safety, and Equipment Familiarization		
Week 2	Lab 2: Basic Measurements in AC Circuits: Basic RL and RC circuits		
Week 3	Lab 3: Phasors and Phasor Diagrams: Measurement and Analysis of AC Phasors		
Week 4	Lab 4: Total impedance, Current and voltage division		
Week 5	Lab 5: Impedance and Admittance: Measurement of Impedance and Admittance		
Week 6	Lab 6: Nodal and Mesh Analysis in AC Circuits		
Week 7	Lab 7: Superposition Theorem in AC Circuits		

Week 8	Mid-term Exam
Week 9	Lab 9: Thevenin's Theorem in AC Circuits
Week 10	Lab 10: Maximum Power Transfer in AC Circuits
Week 11	Lab 11: AC Power Analysis: Measurement of Instantaneous, Average, RMS, and Apparent Power.
Week 12	Lab 12: Frequency Response: Passive Filters.
Week 13	Lab 13: Series RLC Circuits: Resonance
Week 14	Lab 14: Parallel RLC Circuits: Resonance
Week 15	Lab 15: AC Circuit Simulation and Troubleshooting
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Fundamentals of Electric Circuits, C.K. Alexander and M.N.O Sadiku, McGraw-Hill Education	Yes		
Recommended Texts	Introductory circuit analysis / Robert L. Boylestad, 11th ed.	No		
Websites	https://www.coursera.org/browse/physical-science-and-enginengineering	eering/electrical-		

Grading Scheme						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Charles	B - Very Good	جید جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Module Information						
Module Title	Physics			Modu	le Delivery	
Module Type		Basic			☑ Theory	
Module Code		MTE 114			☐ Lecture ☐ Lab	
ECTS Credits		4			□ Tutorial □ Tutorial	
SWL (hr/sem)	100				□ Practical□ Seminar	
Module Level	UGI		Semester of Delivery		one	
Administering Dep	partment	MTE	College	COE		
Module Leader	Myasar Salim Y	ounus	e-mail	myasara	alattar@uomosu	l.edu.iq
Module Leader's	Acad. Title	Lecturer	Module Leader's Qualification PhD		PhD	
Module Tutor	Teba Hani Fathi		e-mail	teba96r	mecha@gmail.co	<u>ım</u>
Peer Reviewer Name		Dr. Loay Younes Aldabbagh	e-mail <u>loayaldabbagh@uomosul.edu.i</u>		ul.edu.iq	
Scientific Committee Approval Date		2024-2025	Version Nu	mber	1.0	

Relation with other Modules				
Prerequisite module		Semester		
Co-requisites module		Semester		

Module Aims, Learning Outcomes and Indicative Contents				
Module Aims	The aims of the module are to			
	 Understand the Fundamental of units and systems 			
أهداف المادة الدراسية	2. Present the type of capacitors and capacitance and how their stored energy			
	3. Present the type of inductors and inductance and how their stored energy			
	4. Understand the magnetism and electromagnetic induction and its application			
	5. Understanding the lows deals with electromagnetic phenomena			

	6. Knowing the resonance phenomena			
	7. Introduce the smart materials			
	8. Illustrate the semiconductors device and their characteristics			
Madula Lagraina	Presenting the photonic phenomena and its application			
Module Learning	On completion of the course students should be able to:			
Outcomes	Has the ability to recognize the different types materials			
	Use his knowledge to understand the phenomena of storing energy			
	resonance ,and photonic			
مخرجات التعلم للمادة	3. Has the ability to analyze the characteristic of materials			
مخرجات التعلم للمادة الدراسية	4. be able to select the type of material in selected circuit and application			
	Indicative content includes the following.			
	Part A – introduction			
	Units and systems CAPACITANCE, types of capacitors, construction of capacitor.			
	[6 hrs]			
	Capacitors connection (series, parallel, complex) , energy stored in capacitors,			
	capacitors and dielectric Inductance types of Inductance , construction of Inductance.			
	Inductance connection (series, parallel, complex), energy stored in Inductance,			
	solenoid [6 hrs]			
	Faraday law , lenz law, motional emf ,induced electric field ,eddy current Resonance in			
	an electric Circuit , example and application [7 hrs]			
	Part B – nano and smart materials			
	Nanomaterials: Introduction – Synthesis of Nano materials – Top down and Bottom-			
Indicative Contents	up approach- Ball milling- PVD method- Applications Smart materials: Shape memory			
المحتوبات الإرشادية	alloys-Biomaterials (properties and applications) [8hrs]			
" Jž - "J	Part C – semiconductor device			
	SEMICONDUCTOR DEVICES Introduction to P-N junction Diode and V-I characteristics,			
	Zener diode and its characteristics, Introduction to BJT, its input-output and transfer			
	characteristics SCR characteristics, FET, MOSFET and CMOS characteristics. [8 hrs]			
	Part D – photonics			
	PHOTONICS: Einstein's theory of matter radiation interaction and A and B coefficients;			
	Properties of laser spontaneous and stimulated emissiongas lasers (CO2), applications			
	-IR Thermography. Optical fibre- principle [TIR]-types-material, mode, refractive			
	index-Fibre loss-Expression for acceptance angle and numerical aperture. Application-			
	Communication amplification of light by population inversion, different types of			
	lasers: solid-state laser (Neodymium) [10 hrs]			

Learning and Teaching Strategies

Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1- Lectures - aim to deliver fundamental knowledge in relation to engineering physics science and the application of the theories to practical examples. 2- Assignments - are arranged to provide the opportunity for students to search for
	·

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	48	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	3.2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	52	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.46	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	100			

Module Evaluation							
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
		mber			Outcome		
	Quizzes	3	10% (10)	4,6,8	1,2,3,4		
Formative	Assignments	1	10% (10)	7	1,2,3,4		
assessment	Projects / Lab.	1	10% (10)	Continuous	1,2,3,4		
	Report	1	10% (10)	13	1,2,3,4		
Summative	Midterm Exam	2 hr	10% (10)	10	All		
assessment	Final Exam	3 hr	50% (50)	16	All		
Total assessme	ent		100% (100 Marks)				

Delivery Plan (Weekly Syllabus)				
Material Covered				
Week 1	Units and systems			
Week 2	Week 2 CAPACITANCE, types of capacitors, construction of capacitor,			
Week 3	Capacitors connection (series, parallel, complex), energy stored in capacitors, capacitors and			
	dielectric			

Week 4Inductance types of Inductances, construction of InductanceWeek 5Inductance connection (series, parallel, complex), energy stored in Inductance, solenoidWeek 6Magnetism and electromagnetic induction, applicationWeek 7Faraday law, lenz law, motional emf, induced electric field, eddy currentWeek 8Resonance in an electric CircuitWeek 9Nanomaterials: Introduction – Synthesis of nano materials – Top down and Bottom up approach- Ball milling- PVD method- ApplicationsWeek 10Smart materials: Shape memory alloys-Biomaterials (properties and applications)Week 11SEMICONDUCTOR DEVICES Introduction to P-N junction Diode and V-I characteristics, Zener diode and its characteristics, Introduction to BJT, its input-output and transfer characteristicsWeek 12SCR characteristics, FET, MOSFET and CMOS characteristics. Basic logic gates - NAND, NORWeek 13PHOTONICS: Einstein's theory of matter radiation interaction and A and B coefficients; Properties of laser spontaneous and stimulated emissionWeek 14amplification of light by population inversion, different types of lasers: solid-state laser(Neodymium)gas lasers (CO2), applications –IR Thermography. Optical fibre- principle [TIR]-types-material, mode, refractive index-Fibre loss-Expression for acceptance angle and numerical aperture. Application-CommunicationWeek 16Preparatory week before the final Exam		
Week 6Magnetism and electromagnetic induction, applicationWeek 7Faraday law, lenz law, motional emf, induced electric field, eddy currentWeek 8Resonance in an electric CircuitWeek 9Nanomaterials: Introduction – Synthesis of nano materials – Top down and Bottom up approach- Ball milling- PVD method- ApplicationsWeek 10Smart materials: Shape memory alloys-Biomaterials (properties and applications)Week 11SEMICONDUCTOR DEVICES Introduction to P-N junction Diode and V-I characteristics, Zener diode and its characteristics, Introduction to BJT, its input-output and transfer characteristicsWeek 12SCR characteristics, FET, MOSFET and CMOS characteristics. Basic logic gates - NAND, NORWeek 13PHOTONICS: Einstein's theory of matter radiation interaction and A and B coefficients; Properties of laser spontaneous and stimulated emissionWeek 14amplification of light by population inversion, different types of lasers: solid-state laser(Neodymium)gas lasers (CO2), applications –IR Thermography. Optical fibre- principle [TIR]-typesmaterial, mode, refractive index-Fibre loss-Expression for acceptance angle and numerical aperture. Application-Communication	Week 4	Inductance types of Inductances, construction of Inductance
Week 8 Resonance in an electric Circuit Week 9 Nanomaterials: Introduction – Synthesis of nano materials – Top down and Bottom up approach- Ball milling- PVD method- Applications Week 10 Smart materials: Shape memory alloys-Biomaterials (properties and applications) SEMICONDUCTOR DEVICES Introduction to P-N junction Diode and V-I characteristics, Introduction to BJT, its input-output and transfer characteristics Week 12 SCR characteristics, FET, MOSFET and CMOS characteristics. Basic logic gates - NAND, NOR PHOTONICS: Einstein's theory of matter radiation interaction and A and B coefficients; Properties of laser spontaneous and stimulated emission Week 14 Week 14 Week 15 Week 15 Week 15 Week 15 Week 16 Week 17 Week 18 Week 19	Week 5	Inductance connection (series, parallel, complex), energy stored in Inductance, solenoid
Week 8 Resonance in an electric Circuit Week 9 Nanomaterials: Introduction – Synthesis of nano materials – Top down and Bottom up approach- Ball milling- PVD method- Applications Week 10 Smart materials: Shape memory alloys-Biomaterials (properties and applications) Week 11 SEMICONDUCTOR DEVICES Introduction to P-N junction Diode and V-I characteristics, Introduction to BJT, its input-output and transfer characteristics Week 12 SCR characteristics, FET, MOSFET and CMOS characteristics. Basic logic gates - NAND, NOR Week 13 PHOTONICS: Einstein's theory of matter radiation interaction and A and B coefficients; Properties of laser spontaneous and stimulated emission Week 14 amplification of light by population inversion, different types of lasers: solid-state laser(Neodymium) Week 15 gas lasers (CO2), applications –IR Thermography. Optical fibre- principle [TIR]-typesmaterial, mode, refractive index-Fibre loss-Expression for acceptance angle and numerical aperture. Application-Communication	Week 6	Magnetism and electromagnetic induction, application
Week 9Nanomaterials: Introduction – Synthesis of nano materials – Top down and Bottom up approach- Ball milling- PVD method- ApplicationsWeek 10Smart materials: Shape memory alloys-Biomaterials (properties and applications)Week 11SEMICONDUCTOR DEVICES Introduction to P-N junction Diode and V-I characteristics, Introduction to BJT, its input-output and transfer characteristicsWeek 12SCR characteristics, FET, MOSFET and CMOS characteristics. Basic logic gates - NAND, NORWeek 13PHOTONICS: Einstein's theory of matter radiation interaction and A and B coefficients; Properties of laser spontaneous and stimulated emissionWeek 14amplification of light by population inversion, different types of lasers: solid-state laser(Neodymium)gas lasers (CO2), applications –IR Thermography. Optical fibre- principle [TIR]-types-material, mode, refractive index-Fibre loss-Expression for acceptance angle and numerical aperture. Application-Communication	Week 7	Faraday law, lenz law, motional emf, induced electric field, eddy current
week 10 Smart materials: Shape memory alloys-Biomaterials (properties and applications) SEMICONDUCTOR DEVICES Introduction to P-N junction Diode and V-I characteristics, Zener diode and its characteristics, Introduction to BJT, its input-output and transfer characteristics Week 12 SCR characteristics, FET, MOSFET and CMOS characteristics. Basic logic gates - NAND, NOR Week 13 PHOTONICS: Einstein's theory of matter radiation interaction and A and B coefficients; Properties of laser spontaneous and stimulated emission week 14 amplification of light by population inversion, different types of lasers: solid-state laser(Neodymium) gas lasers (CO2), applications –IR Thermography. Optical fibre- principle [TIR]-types-material, mode, refractive index-Fibre loss-Expression for acceptance angle and numerical aperture. Application-Communication	Week 8	Resonance in an electric Circuit
Week 11 Week 12 Week 13 Week 14 Week 14 Week 15 Week 15 SEMICONDUCTOR DEVICES Introduction to P-N junction Diode and V-I characteristics, Zener diode and its characteristics, Introduction to BJT, its input-output and transfer characteristics SCR characteristics, FET, MOSFET and CMOS characteristics. Basic logic gates - NAND, NOR PHOTONICS: Einstein's theory of matter radiation interaction and A and B coefficients; Properties of laser spontaneous and stimulated emission amplification of light by population inversion, different types of lasers: solid-state laser(Neodymium) gas lasers (CO2), applications –IR Thermography. Optical fibre- principle [TIR]-typesmaterial, mode, refractive index-Fibre loss-Expression for acceptance angle and numerical aperture. Application-Communication	Week 9	· · · · · · · · · · · · · · · · · · ·
 Week 11 diode and its characteristics, Introduction to BJT, its input-output and transfer characteristics Week 12 SCR characteristics, FET, MOSFET and CMOS characteristics. Basic logic gates - NAND, NOR Week 13 PHOTONICS: Einstein's theory of matter radiation interaction and A and B coefficients; Properties of laser spontaneous and stimulated emission Week 14 amplification of light by population inversion, different types of lasers: solid-state laser(Neodymium) gas lasers (CO2), applications –IR Thermography. Optical fibre- principle [TIR]-typesmaterial, mode, refractive index-Fibre loss-Expression for acceptance angle and numerical aperture. Application-Communication 	Week 10	Smart materials: Shape memory alloys-Biomaterials (properties and applications)
Week 12 Week 13 PHOTONICS: Einstein's theory of matter radiation interaction and A and B coefficients; Properties of laser spontaneous and stimulated emission Week 14 Meek 14 Baser (Neodymium) gas lasers (CO2), applications –IR Thermography. Optical fibre- principle [TIR]-types-material, mode, refractive index-Fibre loss-Expression for acceptance angle and numerical aperture. Application-Communication	Week 11	diode and its characteristics,
Properties of laser spontaneous and stimulated emission Week 14 amplification of light by population inversion, different types of lasers: solid-state laser(Neodymium) gas lasers (CO2), applications –IR Thermography. Optical fibre- principle [TIR]-types-material, mode, refractive index-Fibre loss-Expression for acceptance angle and numerical aperture. Application-Communication	Week 12	
laser(Neodymium) gas lasers (CO2), applications –IR Thermography. Optical fibre- principle [TIR]-types- material, mode, refractive index-Fibre loss-Expression for acceptance angle and numerical aperture. Application-Communication	Week 13	·
Week 15 material, mode, refractive index-Fibre loss-Expression for acceptance angle and numerical aperture. Application-Communication	Week 14	
Week 16 Preparatory week before the final Exam	Week 15	material, mode, refractive index-Fibre loss-Expression for acceptance angle and numerical
	Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered				
Week 1					
Week 2					
Week 3					
Week 4					
Week 5					
Week 6					
Week 7					

Learning and Teaching Resources				
	Text	Available in the Library?		

Required Texts	University Physics Volume 2.SAMUEL J. LING, JEFF SANNY, 2016	no
Recommended Texts	Concepts of Modern Physics by Arthur Beisser, McGraw Hill, 7th edition	no
Websites https://www.classcentral.com/report/physics-free-online-courses/		rses/

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Module Information						
Module Title	Baath regime crimes in Ira		ıq	Modu	ule Delivery	
Module Type		Support			☑ Theory	
Module Code		MTE 201			□ Lecture □ Lab	
ECTS Credits		2			☐ Tutorial	
SWL (hr/sem)	50			☐ Practical ☐ Seminar		
Module Level		UG II	Semester of Delivery		Three	
Administering Dep	partment	MTE	College	COE		
Module Leader			e-mail			
Module Leader's	Module Leader's Acad. Title		Module Lea	ıder's Qı	ualification	
Module Tutor			e-mail			
Peer Reviewer Name			e-mail			
Scientific Committee Approval Date			Version Nu	mber	1.0	

Relation with other Modules				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

	Module Information					
Module Title	Enginee	ering Mechanics-Dyna	amics	Modu	le Delivery	
Module Type		Core			☑ Theory	
Module Code		MTE 202			⊠ Lecture □Lab	
ECTS Credits		5			☑ Tutorial	
SWL (hr/sem)	125			☐ Practical☐ Seminar		
Module Level		UGII	Semester of Delivery Three		Three	
Administering Dep	partment	MTE	College	COE		
Module Leader	Saad Zaghlul S	aeed	e-mail	saeeds 7	70@uomosul.edu	ı.iq
Module Leader's A	Acad. Title	Assistant Professor	Module Leader's Qualification Ph.D		Ph.D.	
Module Tutor	Ahmed Abdulk	careem Muhammad	e-mail Ahmedmechatronics93@gmail.com		@gmail.com	
Peer Reviewer Name		Dr. Hassan M. Saeed	e-mail	saeedh81@uomosul.edu.iq		<u>.edu.iq</u>
Scientific Committe Date	Scientific Committee Approval Date		Version Nu	mber	1.0	

Relation with other Modules				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents					
Module Aims	The aims of the module are to				
أهداف المادة الدراسية	 learn fundamental concepts and principles of particle and rigid body motion kinematics 				
	2. Resolve the motion of single particles in multiple coordinate systems.				
	3. Obtain an understanding of Newton's Laws of Motion.				

	 Apply analytical techniques to the solution of important engineering dynamics problems.
	 Apply the basic concepts of force, mass and acceleration; of work and energy; and of impulse and momentum for particles and rigid bodies.
	6. Obtain an understanding of mass moment of inertia.
	7. Obtain basic knowledge on mechanical vibration.
	8. Obtain the equation of motion for single degree of freedom system.
	Control unwanted vibration so that its adverse effects are kept within acceptable limits.
	On completion of the course students should be able to:
	 Understand the basic kinematics concepts: displacement, velocity, and acceleration (and their angular counterparts).
	Define basic kinematic quantities of rectilinear and curvilinear motion of particle such as: position, displacement, velocity and acceleration.
	3. Understand how objects move and interact with one another.
	4. Understand and apply Newton's laws of motion.
Module Learning Outcomes	Understand and be able to apply work and kinetic energy, gravitational and elastic potential energy.
	6. Understand and be able to apply impulse and momentum.
مخرجات التعلم للمادة الدراسية	Apply appropriate mathematical techniques to translational motion and rotational motion for rigid bodies.
. 3 (.3	Determines how much torque an object needs to reach a specific angular acceleration.
	Understand mechanical vibration and be familiar with basic terminology associated with it.
	10. Model and analyze one degree of freedom mass-spring-damper systems.
	 Apply the theory of classically damped vibrating systems to problems of one degree of freedom.
	Indicative content includes the following.
	Part A - kinematics of particle
Indicative Contents المحتويات الإرشادية	Introduction: definition, fundamental units, International System of Units, Newton's laws of motion and law of gravitation. Rectilinear motion and basic kinematic quantities: position, displacement, velocity and acceleration. Special cases of rectilinear motion of particle: motion with constant velocity and motion with constant acceleration. Dependent rectilinear motions. Curvilinear motion of particle: position vector, velocity and acceleration. Free flight of a projectile. Tangential and normal components of velocity and acceleration. Cylindrical (r-0) coordinates components of velocity and acceleration. Relative motion. [25 hrs]
	Part B - kinetics of particle Force and acceleration. Newton's second law, Definition of work, kinetic energy and power. Work of a gravitational force. Work of a spring force. Principle of work and energy. Potential energy: gravitational and elastic. Principle of impulse and momentum. Angular impulse and angular momentum. [15 hrs]

Plane kinematics of rigid bodies. Types of plane motion of rigid bodies: translation, rotation, general plane motion. Relative Velocity and acceleration. Mass moment of inertia. [15 hrs]

Part D – Mechanical vibration

Introduction to vibration: types, mass, spring, damper. Free un-damped vibration, vibration isolation. [10 hrs]

Free damped vibration, Forced damped vibration. [10 hrs]

Learning and Teaching Strategies The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1- Lectures - aim to deliver fundamental knowledge in relation to dynamic analysis and the application to practical examples. 2- Tutorial sessions - are deployed to illustrate the application of fundamental knowledge of dynamic analysis to different practical exercises. 3- Assignments - are arranged to provide the opportunity for students to search for information, analyze machines with knowledge obtained, and present the completed tasks.

Student Workload (SWL)					
Structured SWL (h/sem) 78 Structured SWL (h/w) 5 الحمل الدر اسي المنتظم للطالب أسبو عيا الحمل الدر اسي المنتظم للطالب أسبو عيا 5					
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	47	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.13		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125				

Module Evaluation								
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning			
		mber			Outcome			
	Quizzes	2	10% (10)	5, 10	LO #2, 4, 9 and 10			
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 5, 6 and 11			
assessment	Projects / Lab.	1	10% (10)	Continuous				
	Report	1	10% (10)	13	LO # 1, 7 and 8			
Summative	Midterm Exam	2 hr	10% (10)	8	LO # 1-6			
assessment	assessment Final Exam 3 hr 50% (50) 16 All							
Total assessme	Total assessment 100% (100 Marks)							

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Introduction: definition, fundamental units, international system of units. Rectilinear motion and basic kinematic quantities: position, displacement, velocity and acceleration.			
Week 2	Kinematics: Curvilinear motion of particle: position vector, velocity and acceleration. Free flight of a projectile.			
Week 3	Tangential and normal components of velocity and acceleration (n-t).			
Week 4	Cylindrical (r-θ) coordinates components of velocity and acceleration.			
Week 5	Relative motion			
Week 6	Kinetics: direct application of Newton's second law (force, mass, acceleration)			
Week 7	Work and Energy: Definition of work, kinetic energy and power. Work of a gravitational force. Work of a spring force. Principle of work and energy. Potential energy: gravitational and elastic.			
Week 8	Impulse and momentum: Principle of impulse and momentum. Angular impulse and angular momentum.			
Week 9	Rigid body motion: Plane kinematics of rigid bodies. Types of plane motion of rigid bodies: translation, rotation, general plane motion.			
Week 10	Relative Velocity			
Week 11	Relative acceleration. Mass moment of inertia.			
Week 12	Introduction to vibration: types, mass, spring, damper.			
Week 13	Free un-damped vibration, vibration isolation			
Week 14	Free damped vibration			
Week 15	Forced damped vibration			

Week 16

	Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered				
Week 1					
Week 2					
Week 3					
Week 4					
Week 5					
Week 6					
Week 7					

Learning and Teaching Resources						
	Text	Available in the Library?				
Required Texts	Engineering Mechanics: Dynamics 5th edition by Meriam, J. L., Kraige, L. G. (2003)	yes				
Recommended Texts	Engineering Mechanics 'Dynamics" R. C. Hibbeler, 2016	yes				
Websites	https://www.classcentral.com/classroom/youtube-engineerindynamics-54539	g-mechanics-				

Grading Scheme

Group	Grade	التقدير	Marks (%)	Definition
	A – Excellent	امتياز	90 - 100	Outstanding Performance
Success Croup	B - Very Good	جيد جدا	80 - 89	Above average with some errors
Success Group (50 - 100)	C – Good	ختر	70 - 79	Sound work with notable errors
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E – Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	ر اسب	(0-44)	Considerable amount of work required
			•	

Module Information						
Module Title	Applied Mathematics I			Modu	le Delivery	
Module Type		Basic		☑ Theory		
Module Code		MTE 203		☑ Lecture☐ Lab		
ECTS Credits		6			☐ Tutorial	
SWL (hr/sem)		150			☐ Practical☐ Seminar	
Module Level		UGII	Semester o	f Delivery Three		Three
Administering Dep	partment	MTE	College	COE		
Module Leader	Hassan Mudha	afar Saeed	e-mail	Saeedh81@uomosul.edu.iq		u.iq
Module Leader's	Acad. Title	Lecturer	Module Lea	ader's Qualification Ph.D.		Ph.D.
Module Tutor	Ali Ayad Albabe	eli	e-mail	alibabily9000@gmail.com		<u>m</u>
Peer Reviewer Name Laith Mohammed Jasim		e-mail	Jasiml68@uomosul.edu.iq		.iq	
Scientific Committee Approval Date		2024-2025	Version Nu	mber	1.0	

Relation with other Modules						
Prerequisite module MTE108 – Mathematics II Semester Two						
Co-requisites module None Semester						

Module Aims, Learning Outcomes and Indicative Contents					
Module Aims The aims of the module are to 1) Student will study multivariable functions and their partial derivative.					
أهداف المادة الدراسية	2) Student should understand the critical points of a multivariable function.				

	2) Charles will shad a complex and be a significant and the complex and the co
	3) Student will study complex number, variable, various functions. Student will study how to transform complex function representation from Cartesian form to polar or exponential form or vice versa.
	4) Student should understand continuous and analytic and harmonic complex functions.
	5) Student will study even, odd, and periodic functions.
	6) Student will study representation of periodic functions using trigonometric and complex Fourier Series representation.
	7) Student will study the Fourier Transforms of various engineering functions.
	8) Student will study, vector quantities, their algebraic operations.
	On completion of the course students should be able to: 1) Student will be able to identify multivariable functions and find any partial derivative of such function.
	2) Student can search and find multivariable functions critical points.
Module Learning	3) Student can recognize complex number, variable, and various functions. Student should understand the transform of complex function representation from Cartesian to polar or exponential forms.
Outcomes	4) Student will be able to identify continuous and analytic functions, and test if they are harmonic.
مخرجات التعلم للمادة	5) Student will be able to identify even, odd, and periodic functions.
مخرجات التعلم للمادة الدراسية	6) Student will be able to represent periodic functions using trigonometric and complex Fourier Series representation. Also, will be able to represents aperiodic functions using Half range Fourier Series representation.
	7) Student will be able to use Fourier Transforms of various engineering functions.
	8) Student can recognize, understand, and implement vector quantities and algebraic operations.
	Indicative content includes the following. Part A – Multivariable functions
	Multivariable functions, partial derivative, geometrical meaning of these derivatives, critical points (maxima, minima, and saddle points). [15 hrs.]
Indicative Contents	Part B – Complex Analysis
المحتويات الإرشادية	Definition of complex number/variable, complex plane, equality, negative of and conjugate complex numbers, variable, various functions, Cartesian form, polar form, exponential form, complex roots, power of a complex variable, continuous and analytic functions, harmonic functions. [15 hrs.]
	Part C – Fourier Analysis

Even, odd, and periodic functions, trigonometric and complex Fourier Series representation, represents aperiodic functions using Half range Fourier Series, Fourier Transforms of various engineering functions. [15 hrs.]

Part D – Introduction to Vector

Scalar quantity vs vector quantity, vector notation, components of a vector, null vectors, free vector property, length of vector, parallel vectors, negative of a vector, equality, unit vector, algebraic operations on vector quantities, addition and subtraction, scalar, dot, and cross products with applications, projection of a vector, triple products. [15 hrs.]

The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1. Lectures: aim to deliver fundamental mathematical knowledge in relation to engineering and real-life topics. 3. Assignments: are arranged to provide the opportunity for students to search for methods of solving engineering related problems, implement the methods, and present the solutions. 4. Seminars: devoted to introduce students to various mathematical terminologies in relation to covered topics under study. How these terminologies affect the solution methodology and physical system behavior. 5. Computer: the student will be asked to use state of the art available mathematical

software those support the topics covered in this course

Student Workload (SWL)					
Structured USWL (h/sem) 78 Structured SWL (h/w) 5.2					
Unstructured SSWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	72	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.8		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150				

Module Evaluation

		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	4	10% (10)	4, 8, 13, 15	LO # 1, 3, and 6
Formative	Assignments	8	10% (10)	2,3,5,7,10,12,1 4,15	LO # 1
assessment	Projects / Lab.	1	10% (10)	All except 5, 7, 12, 15	LO # 1, 3, and 6
	Report	1	10% (10)	9	LO # 1, 3, and 6
Summative	Midterm Exam	2 hr	10% (10)	9	LO # 1, and 3
assessment	Final Exam	3hr	50% (50)	16	All
Total assessment			100% (100 Marks)		

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Multivariable functions: Limits and continuity, Partial derivatives (definitions, functions of more than two variables), second and higher order partial derivatives.			
Week 2	Multivariable functions: Chain rule for functions of two or three variables, Maxima and minima and saddle points.			
Week 3	Multivariable functions: review and special cases of partial derivatives.			
	Complex analysis: Definitions and basic concepts, Cartesian form, polar form, exponential			
Week 4	form, representations of a complex variable. Complex variables algebra, Roots of a complex			
	number.			
	Complex analysis: complex functions, limits, derivatives and continuity of complex functions.			
Week 5	Analytic functions, Cauchy-Riemann equations, derivatives of analytic functions. Laplace			
	equation, Harmonic and conjugate harmonic functions.			
Week 6	Complex analysis: Rational functions, Logarithmic functions, Exponential functions.			
Week 7	Complex analysis: Trigonometric and hyperbolic functions, General power of complex variables.			
Week 8	Fourier Series: even and odd function, Half Wave Symmetry, periodic functions, definition			
II COM C	of Fourier series (Trigonometric form)			
Week 9	Mid-term Exam + Report + Lab Exam			
W1-40	Fourier Series: Line Spectrum (harmonic) the Fourier Series, Half wave symmetry, sum and			
Week 10	shift of functions, Complex Exponential form of the Fourier Series			
Week 11	Fourier Transforms: Fourier Integrals and introduction to Fourier Transforms			
Week 12	Fourier Transforms			
Week 13	Introduction to Vector Analysis: definition, notation, properties, Vector algebra: addition, subtraction, multiplications			

Week 14	Introduction to Vector Analysis: vector algebra (continue) with applications
Week 15	Introduction to Vector Analysis: practices
Week 16	Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)					
	Material Covered				
Week 1					
Week 2					
Week 3					
Week 4					
Week 5					
Week 6					
Week 7					

Learning and Teaching Resources						
	Text	Available in				
	Text	the Library?				
	1. E. Kreyszig, et al, "Advanced Engineering Mathematics," 10 th					
	ed., McGraw Hill, 2011.	.,				
Required Texts	2. George B. Thomas, Jr., "Thomas' Calculus Early	Yes				
	Transcendentals," 13th Ed, 2014.					
Recommended Texts	D.G. Zill, "Advanced Engineering Mathematics," 6th Ed, 2018.	Yes				
Websites	https://uomosul.edu.iq/engineering/%d9%85%d9%81%d8%b1%d8%d8%aa-%d8%a7%d9%84%d9%85%d9%88%d8%a7%d8%af- %d8%a7%d9%84%d8%af%d8%b1%d8%a7%d8%b3%d9%8a%d8%					
	https://eqworld.ipmnet.ru/ https://math.libretexts.org/ https://www.youtube.com/c/3blue1brown/featured					

Grading Scheme						
Group Grade		Marks (%) Definition		Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
S	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Module Information							
Module Title	Electroni	evices	Modu	le Delivery			
Module Type		Core			☑ Theory		
Module Code		MTE 204			□ Lecture 図 Lab		
ECTS Credits		7			☐ Tutorial		
SWL (hr/sem)				☐ Practical ☐ Seminar			
Module Level		UGII	Semester of Delivery Three		Three		
Administering Dep	partment	MTE	College	COE			
Module Leader	Omar Saadalla	h Hamid	e-mail	omar.abdulwahid@uomosul.edu.iq		osul.edu.iq	
Module Leader's A	Acad. Title	Lecturer	Module Leader's Qualification Ph.D.		Ph.D.		
Module Tutor			e-mail				
Peer Reviewer Name		Sa'ad Ahmed Salih	e-mail Kazzazs60@uomosul.edu.iq		u.iq		
Scientific Committee Approval Date		2024-2025	Version Number 1.0				

Relation with other Modules						
Prerequisite module	MTE 113- Electrical Circuits Analysis II	Semester	Two			
Co-requisites module	None	Semester				

Module Aims, Learning Outcomes and Indicative Contents						
Module Aims	The aims of the module are to 1. Introduce the students to the history and development of electronic devices					
أهداف المادة الدراسية	and circuits and their uses in real life applications 2. Understand the fundamental of two-terminal semiconductor devices such as P-N junction and Zener diode and their applications in electronic circuits including rectifier, clamper, clipper, and voltage regulator.					

	 Introduce the students to the basic operation and configuration of Bipolar Junction Transistor (BJT). As well as introduce the DC analysis of BJT devices while helping the students to determine the DC load line, and be aware of the saturation and cut-off conditions of different configurations including fixed bias, emitter-bias, voltage divider, and collector feedback configurations. Understand the AC analysis of BJT and learn how to extract the equivalent circuit model including re-model and how to find the most important ac parameters of amplifier. This is followed by designing multi-stage transistors , cascade systems, and transistor as switch. Introduce the operation and types of Field Effect Transistor (FET) and the structure of Metal Oxide Semiconductor Field Effect Transistor (MOSFET). Furthermore, to understand the operation and characteristics of the Depletion-type and Enhancement-type MOSFETs Understand the biasing conditions of the FET configurations including fixed-bias, self-bias, voltage-divider, and common gate configurations. Introduce the biasing of Depletion-type and Enhancement-type MOSFETs and the concept of combination circuits. Introduce the Operational-Amplifier and its applications in various circuits such as Inverting Amplifier, Non-inverting Amplifier, Unity Follower, Integrator, Differentiator, Comparator, Voltage Subtraction, Voltage Summing, Multiple-Stage Gains, Constant-gain Multiplier)
	On completion of the course students should be able to:
Module Learning Outcomes مخرجات التعلم للمادة	 Know the types of semiconductor diodes and their uses in real life applications. As well as predict the output of clipper, clamper, and rectifier circuits. Explain the basic operation of Bipolar Junction Transistor (BJT) devices, apply the DC biasing, draw the dc-load line of different configurations. Design BJT amplifier and calculate the most important figure of merits including currents, voltages, current and voltage gains. Design and derive the equations of multi stage transistors, and determine the difference between using BJT device as an amplifier and switch. Discuss the operation of Field Effect Transistor (FET) and MOSFET devices Determine and draw the output characteristics of Depletion-type and Enhancement-type MOSFET devices.
againguri	 7. Use the MOSFET devices as an amplifier with applying the appropriate DC biasing, as well as derive the equation of combination circuits that contains two devices for high gain operation. 8. Explain the basics of Operational-Amplifier (Op-Amp), and derive the overall gain, and effectively determine the suitable Op-Amp depending on the desired application.
	Indicative content includes the following. Part A – Semiconductor Diodes This part deals with diodes and the electrical and physical characteristics of three important materials Si, Ge, and GaAs. More importantly, it illustrates the n-type and p-
Indicative Contents	type materials used in the construction of P-N junctions. In addition, this part explain
المحتويات الإرشادية	the biasing of such devices in three conditions: No-bias, forward bias, and reverse bias.
•	It also contains the extraction of diode equivalent circuit under AC biasing. The special
	type of diode named (Zener diode) and the breakdown voltage is explained in this part.
	[8 hrs]
	Diode Applications

This part explains the use of diodes in practical applications, as well as, the series and parallel connection of diodes. This part also contains the half-wave and full-wave rectifiers, clamper, clipper. More importantly, it explains the utilize of Zener diode as a voltage regulator. [10 hrs]

Part B – DC of BJT transistor.

This part delas with the following contents.: Introduction, Transistor construction, Transistor operation, common base configuration, common emitter configuration, common collector configuration, transistor development, operating point, load line analysis, fixed bias configuration, emitter bias configuration, voltage divider configuration, collector feedback configuration, emitter follower configuration, multiple BJT networks, transistor switching networks, and BJT stability. [20 hrs]

Part C – AC analysis of BJT transistor

This part delas with the following contents: BJT modelling, the re transistor model (common emitter configuration, common base configuration, common collector configuration), common emitter fixed bias configuration, voltage divider configuration, CE emitter bias configuration (unbypassed and bypassed connections), emitter follower configuration, phase relation, effect of output resistance, collector DC feedback configuration, effect of RL and RS, voltage and current gains of cascaded systems, RC coupled amplifier, and capcode connection. [20 hrs]

Part D – Field Effect Transistor (FET)

This part delas with the following contents: Introduction, construction and characteristics of JFET, effect of gate source voltage, derivation of JFET characteristics, JFET and BJT relationship, basic operation and characteristics of Depletion-type MOSFET and Enhancement-type MOSFET, p-channel Depletion-type MOSFET, p-channel Enhancement-type MOSFET, Fixed bias of FET, self-bias configuration, common gate configuration. [16 hrs]

Part E – Operational Amplifier (Op-Amp)

This part delas with the following contents: Introduction of Op-Amp, single ended input Op-Amp, double ended input Op-Amp, double ended output Op-Amp, practical Op-Amp circuits including inverting amplifier, non-inverting amplifier, unity follower, integrator, differentiator, Comparator, Voltage Subtraction, Voltage Summing, Multiple-Stage Gains, Constant-gain Multiplier.

[16 hrs]

Learning and Teaching Strategies					
Strategies	The basic strategy that will be employed in providing this module is to increase student engagement in the discussions while also enhancing and expanding their critical thinking abilities. This will be achieved through;				

- 1- Class lectures This strategy is to explain the fundamentals of semiconductor electronic devices, including diodes and transistors, as well as the key applications that rely on these devices.
- 2- Laboratory sessions The main aims of the laboratory are to allow students gain practical experience, practice conducting and carrying out laboratory experiments, connect, study, and evaluate electrical and electronic circuits, as well as collect the data they need to write an experiment report.
- 3- Assignments and reports are arranged to provide the opportunity for students to search for information, analyze electronic circuits, use of devices in various applications, perform modelling and simulation of electronic circuits.

Student Workload (SWL)					
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	93	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	6		
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	82	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	6		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	175				

Module Evaluation								
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning			
		mber			Outcome			
Formative assessment	Quizzes	3	10% (10)	3, 6, 13	LO #1, 2,3, 4, 5, 6 , and 7			
	Assignments	3	10% (10)	2, 7, and 13	LO #1-7			
	Projects / Lab.	15	10% (10)	Continuous				
	Report	1	10% (10)	9	LO # 2, 3 and 4			
Summative	Midterm Exam	2 hr	10% (10)	10	LO # 1-4			
assessment	Final Exam	3 hr	50% (50)	16	All			
Total assessment 100% (100 Marks)								

Delivery Plan (Weekly Syllabus)
Material Covered

Week 1	Introduction (Semiconductor Diodes, pn junction diode, Diode Applications, Rectifier circuits, clipper, clamper)				
Week 2	Zener diode and its application (voltage regulator)				
Week 3	Introduction to Bipolar junction transistors (BJT) and it is configurations				
Week 4	DC analysis of BJT equivalent circuits(Introduction, operating point, Fixed-bias Configuration, Emitter-bias Configuration, Voltage-divider Bias Configuration, Collector Feedback Configuration, Emitter-follower Configuration (common collector).				
Week 5	AC analysis of BJT equivalent circuits part 1, introduction, equivalent model, re-model Fixed bias configuration, re-model Voltage-divider bias configuration.				
Week 6	AC analysis of BJT equivalent circuits part 2 (re-model CE Emitter-Bias configuration, 1) Un-bypassed situation. 2) bypassed configuration. re-model of Emitter-Follower Configuration, re model of common Base configuration, Re-model Collector Feedback C				
Week 7	Effect of RL And RS, Design example of the C.E amplifier circuit				
Week 8	Multi stages transistor, Cascaded Systems				
Week 9	Transistor as switch				
Week 10	Mid-term exam+ Field-Effect Transistor FET (Introduction and types)				
Week 11	Metal—Oxide—Semiconductor Field-Effect Transistor types of MOSFETs and Basic Construction and Basic Operation and Characteristics of: 1. Depletion-type MOSFET (DMOSFET).				
Week 12	2. Enhancement-type MOSFET (EMOSFET). Field-Effect Transistor Biasing part 1 Introduction. Fixed-Bias Configuration. Self-Bias Configuration. Voltage-Divider Biasing. Common-Gate Configuration.				
Week 13	Field-Effect Transistor Biasing part 2 • Depletion-Type MOSFETs. • Enhancement-Type MOSFETs. • Combination Networks. • Design.				
Week 14	Introduction to the operational amplifier, Practical OP-AMP Circuits, Applications of operational amplifier part1 (Inverting Amplifier, Non-inverting Amplifier, Unity Follower, Integrator, and differentiator				
Week 15	Applications of operational amplifier part2 (Comparator, Voltage Subtraction, Voltage Summing, Multiple-Stage Gains, and constant-gain Multiplier)				
Week 16	Preparatory week before the final Exam				

Delivery Plan (Weekly Lab. Syllabus)		
	Material Covered	
Week 1	Diode Test and Characteristics	

Week 2	Diode Application (1): Clipping circuits
Week 3	Diode Application (2): Clamper circuits
Week 4	Diode Application (3): Half-wave rectifier
Week 5	Diode Application (4): Full-wave rectifier
Week 6	Characteristics of Bipolar Junction Transistor (BJT)
Week 7	Transistor Amplifying Circuit (1): fixed biasing, self-emitter biasing
Week 8	Transistor Amplifying Circuit (2): voltage divider biasing
Week 9	Transistor Amplifying Circuit (3): common base and common collector
Week 10	Transistor Amplifying Circuit (4): Transistor As Switch and Multistage Transistor
Week 11	FET – Characteristics
Week 12	FET – amplifiers
Week 13	Op-Amp characteristics
Week 14	Op-Amp applications 1
Week 15	Op-Amp applications 2

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	R. L. Boylestad, Electronic Devices and Circuit Theory,10th Edition, Prentice Hall, 2009.	No		
Recommended Texts	Thomas L. Floyd , Electronic Devices , 7th Addition, Pearson Prentice Hall, 2005	No		
Websites	https://www.coursera.org/search?query=diode https://www.coursera.org/search?query=bjt%20transistor https://www.khanacademy.org/search?referer=%2Flogin&page_nd+transistor	_search_query=diode+a		

Grading Scheme						
Group Grade		التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Croup	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

	Module Information						
Module Title			Modu	ıle Delivery			
Module Type		Core			☑ Theory		
Module Code		MTE 205			□ Lecture☑ Lab		
ECTS Credits	5				☑ Tutorial ☐ Practical ☐ Seminar		
SWL (hr/sem)	125						
Module Level		UGII	Semester of Delivery		Three		
Administering Dep	partment	MTE	College COE				
Module Leader	Myasar Salim Yo	ounus	e-mail	myasaralattar@uomosul.edu.iq		l.edu.iq	
Module Leader's	Acad. Title	lecturer	Module Leader's Qualification		Ph.D.		
Module Tutor	Shahad Waleed Ahmed		e-mail	shahad.ahmed@uomosul.edu.iq		ul.edu.iq	
Peer Reviewer Name			e-mail				
Scientific Committee Approval Date		2024-2025	Version Number 1.		1.0		

Relation with other Modules					
Prerequisite module MTE 113 Electrical Circuits Analysis II Semester Two					
Co-requisites module	None	Semester	None		

Module Aims, Learning Outcomes and Indicative Contents					
Module Aims أهداف المادة الدراسية	 The aims of the module are to Understand the Fundamental of energy conversion (electrical to mechanical and vice versa) Present the type of electrical machine ac, dc type .and special purpose type of machine Understanding the operation principle of machine, voltage building, and torque generation. Understand the equivalent circuit of electrical machine Understanding the way used for starting electrical machine Introducing the way used for controlling the speed and direction of machine 				

	 Knowing the losses generated in electrical machine and computing the efficiency.
	7. Introduce the characteristics of electrical machine.
	8. Introduced some types of special purpose machine.
Module Learning	
Outcomes	On completion of the course students should be able to: 1. Has the ability to recognize the types of different machines
	2. Use his knowledge to choose a proper machine for the application
	3. Has the ability to analyze the characteristic of machine
مخرحات التعلم للمادة	4. Understanding the principle of designing an electric system containing
مخرجات التعلم للمادة الدراسية	machine
-92007	5. Be able to understand an electrical drive system
	Indicative content includes the following.
	Part A – energy conversion
	Introduction to principle of energy conversion and electrical machine and. Types of
	electrical machine. [5 hrs]
	Construction of dc machine, principal operation of dc motor, torque equation, voltage
	equation and equivalent circuit. [8 hrs]
	Part B – principle of operations and equations
	General equation of dc motors (voltage and torque equation) , losses (cupper losses,
	hysteresis losses, iron losses) , efficiency, Characteristics of dc motors for shunt
	,series and compound type (armature current-torque),(speed-torque)(armature
	current-speed) [16 hrs]
	Part C – controlling of machine
Indicative Contents	Starting of motors Speed control of dc motors shunt type Speed control of dc motors
المحتويات الإرشادية	series type (flux control method, armature control method, voltage variation method)
, " -	[14 hrs]
	Part D – permanent magnet motor
	Dc permanent magnet motor, construction, principle of operation, speed (PWm
	method),(resistor method) control . [8 hrs]
	Part E – stepper motor
	Stepper motor, driving mode, Stepper motor, driving mode Stepper motor,
	construction, types, control circuit. [8 hrs]
	Part F – single phase transformer
	Single phase transformers, construction, types, principle of operation, Single phase
	transformers, equivalent circuit, losses and efficiency, test, connections [16]

Learning and Teaching Strategies				
	The main strategy that will be adopted in delivering this module is to encourage			
	students' participation in the discussions, while at the same time refining and			
	expanding their critical thinking skills.			
	This will be achieved through;			
	1- Lectures - aim to deliver fundamental knowledge in relation to electrical machine			
Strategies	and the application of the theories to practical examples.			
	2- Tutorial sessions - are deployed to illustrate the application of fundamental			
	knowledge of electrical machine to different practical exercises.			
	3- Assignments - are arranged to provide the opportunity for students to search for			
	information, analyze fluid systems with knowledge obtained, and present the			
	completed tasks.			

Student Workload (SWL)					
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	63	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4.2		
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	62	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.13		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125				

Module Evaluation							
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
		mber		week Due	Outcome		
	Quizzes	4	10% (10)	3,5,7,9,	1-5		
Formative	Assignments	1	10% (10)	8	4,5		
assessment Projects / Lab.		1	10% (10)	Continuous	2,3		
	Report	1	10% (10)	13	3,4		
Summative	Midterm Exam	2 hr	10% (10)	10	All		
assessment	Final Exam	3 hr	50% (50)	16	All		
Total assessm	Total assessment 100% (100 Marks)						

Delivery Plan (Weekly Syllabus)

	Material Covered
Week 1	Introduction to principle of energy conversion and electrical machine and. Types of electrical machine
Week 2	Construction of dc machine, principal operation of dc motor, torque equation, voltage equation and equivalent circuit
Week 3	General equation of dc motors, losses, efficiency
Week 4	Characteristics of dc motors for shunt, series and compound type
Week 5	Starting of motors
Week 6	Speed control of dc motors shunt type
Week 7	Speed control of dc motors series type
Week 8	Characteristics of dc motor shunt types
Week 9	Characteristics of dc motor series and compound types
Week 10	Dc permanent magnet motor, construction, principle of operation, speed control
Week 11	Stepper motor, construction, and types.
Week 12	Stepper motor, driving mode.
Week 13	Stepper motor, construction, types, and control circuit.
Week 14	Single phase transformers, construction, types, principle of operation
Week 15	Single phase transformers, equivalent circuit, losses and efficiency, test, connections
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)			
	Material Covered			
Week 1	Introduction to lab instrument and measurements			
Week 2	Speed control of dc shunt motor , flux method			
Week 3	Speed control of dc shunt motor , armature method			
Week 4	Speed control of dc shunt motor , voltage variation method			
Week 5	Dc shunt motor (speed – armature current)characteristic			
Week 6	Dc shunt motor (speed – torque)characteristic			
Week 7	Speed control of dc series motor (voltage variation)			
Week 8	Speed control of dc series motor (resistance method)			
Week 9	Dc series motor (speed – armature current)characteristic			
Week 10	Dc series motor (speed – torque) characteristic			

Week 11	Speed control of dc permanent magnet motor
Week 12	Stepper motor operation principle
Week 13	Single phase transformer no load test
Week 14	Single phase transformer load test (resistive load)
Week 15	Single phase transformer load test (inductive load)

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	PRINCIPLES OF ELECTRIC MACHINES AND POWER ELECTRONICS, THIRD EDITION DR. P. C. SEN, John 2014, John Wiley & Sons,	no			
Recommended Texts	Electrical Machines S. K. Sahdev 2018	no			
Websites	https://onlinecourses.nptel.ac.in/noc21_ee71/preview				

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

	Module Information						
Module Title	<u>-</u>		Modu	ıle Delivery			
Module Type		Core			⊠ Theory		
Module Code		MTE 206			Lecture □ Lab		
ECTS Credits		4			☐ Tutorial		
SWL (hr/sem)		100		─ □ Practical□ Seminar			
Module Level		UGII	Semester of Delivery Three		Three		
Administering Dep	partment	MTE	College		COE		
Module Leader			e-mail				
Module Leader's A	Acad. Title		Module Leader's Qualification				
Module Tutor			e-mail				
Peer Reviewer Name			e-mail				
Scientific Committee Approval Date		2024-2025	Version Nu	mber	1.0		

Module Information						
Module Title	Experimen	ngineers	Modu	le Delivery		
Module Type		Core			☑ Theory	
Module Code		MTE 207			☐ Lecture ☐ Lab	
ECTS Credits		2			☐ Tutorial ☐ Practical	
SWL (hr/sem)		50			☐ Seminar	
Module Level		UGII	UGII Semester of D		у	Three
Administering Dep	partment	MTE	College COE			
Module Leader	Dr. Loay Young	es Aldabbagh	e-mail	loayalda	abbagh@uomosi	ıl.edu.iq
Module Leader's A	Acad. Title		Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Ahmed Abdulk	kareem Muhammad	e-mail	Ahmedi	mechatronics93@	gmail.com
Peer Reviewer Name		Laith Mohammed Jasim	e-mail Jasiml68@uomosul.edu.i		iq	
Scientific Committee Approval Date		2024-2025	Version Nu	mber	1.0	

Relation with other Modules					
Prerequisite module	None	Semester	Three		
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents		
Moduile Aims	The aims of the module are to	

أهداف المادة الدر اسبة 1. Understand the basic concepts (Definition of Terms, Calibration, Standards, Dimensions and Units, The Generalized Measurement System, Basic concepts in **Dvnamics Measurements.** 2. To provide the student how to make analysis of the experimental data. 3. Understand the basic electrical measurements and sensing devices 4. Provide fundamental concepts and knowledge about displacement and area measurements. 5. Understand the concept of pressure measurements 6. Know about the flow measurements. 7. T understand the concept of the temperature measurements On completion of the course students should be able to: Be familiar with the methods associated with analyzing the experimental data and finding the best curve fits and the standard deviation of the data used. 2. To discuss the method s of calibration for any device before used. **Module Learning** 3. To find the best measurements device used for any experiments (mechanical **Outcomes** or electrical one). 4. Discuss the principles theories, concepts of the flow measurement device. 5. Understand and have ability to design any type of flow measurement. 6. Understand how to calibrate any measurement device before using it. مخرجات التعلم للمادة الدر اسية 7. Deal with Displacement and Area Measurements. 8. To choose the best pressure device before taking the data. 9. Understand the principle of temperature measurement. Indicative content includes the following. Part A - Introduction and Basic Concepts Definition of Terms, Calibration, Standards, Dimensions and Units, The Generalized Measurement System, Basic Concepts in Dynamic Measurements, System Response, Distortion, Impedance Matching, Fourier Analysis, Experiment Planning. [5 hrs] Analysis of Experimental Data- Causes and Types of Experimental Errors, Error, Analysis on a Commonsense Basis, Uncertainty Analysis and Propagation of Uncertainty, Evaluation of Uncertainties for Complicated Data Reduction, Statistical Analysis of Experimental Data, Probability Distributions, The Gaussian or Normal Error **Indicative Contents** Distribution, Comparison of Data with Normal Distribution, The Chi-Square Test of Goodness المحتويات الإرشادية of Fit, Method of Least Squares, The Correlation Coefficient, Multivariable Regression, Standard Deviation of the Mean, Student's t-Distribution, Graphical Analysis and Curve Fitting, Choice of Graph Formats, Causation, Correlations, and Curve-fits, General Considerations in Data Analysis. [6 hrs] Part B - Basic Electrical Measurements and Sensing Devices Forces of Electromagnetic Origin, Waveform Measures, Basic Analog Meters, Basic Digital Meters, Basic Input Circuit Amplifiers, Differential Amplifiers, Operational Amplifiers, Transformers, Power Supplies, Signal Conditioning, The Electronic Voltmeter, Digital

Voltmeters, The Oscilloscope, Oscilloscope Selection, Output Recorders. [4 hrs]

Displacement and Area Measurements-Dimensional Measurements, Gage Blocks, Optical Methods, Pneumatic Displacement Gage, Area Measurements, The Planimeter, a Device of Historical Interest, Graphical and Numerical Methods for Area Measurement. [4 hrs]

Part C - Pressure Measurement

Dynamic Response Considerations, Mechanical Pressure-Measurement Devices, Dead-Weight Tester, Bourdon-Tube Pressure Gage, Diaphragm and Bellows Gages, The Bridgman Gage, Low-Pressure Measurement, The McLeod Gage, Pirani Thermal-Conductivity Gage, The Knudsen Gage, The Ionization Gage, The Alphatron. [4 hrs]

Part D - Flow Measurement

Positive-Displacement Methods, Flow-Obstruction Methods, Practical Considerations for Obstruction Meters, The Sonic Nozzle, Flow Measurement by Drag Effects, Hot-Wire and Hot-Film Anemometers, Magnetic Flowmeters, Flow-Visualization Methods, The Shadowgraph, The Schlieren, The Interferometer, The Laser Doppler Anemometer (LDA), Smoke Methods, Pressure Probes. [4 hrs]

Part E - The Measurement of Temperature

Definition of Terms, Temperature Scales, The Ideal-Gas Thermometer, Temperature Measurement by Mechanical Effects, Temperature Measurement by Electrical Effects, Temperature Measurement by Radiation, Effect of Heat Transfer on Temperature Measurement, Transient Response of Thermal Systems Thermocouple Compensation, Temperature Measurements in High-Speed Flow). [3 hrs]

Learning and Teaching Strategies				
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1- Lectures - aim to deliver fundamental knowledge in relation to experimental data and the application of the theories to practical examples. 2- Tutorial sessions - are deployed to illustrate the application of fundamental knowledge of measurement device to different practical exercises. 3- Assignments - are arranged to provide the opportunity for students to search for information, analyze and design the flow measurement with knowledge obtained, and present the completed tasks.			

Student Workload (SWL)						
Structured SWL (h/sem) Structured SWL (h/w) الحمل الدر اسي المنتظم للطالب أسبو عيا الحمل الدر اسي المنتظم للطالب خلال الفصل						
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	17	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	1.34			
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	50					

Module Evaluation							
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
		mber	weight (wanks)	Week Due	Outcome		
	Quizzes	6	10% (10)	5, 10	LO #2, 4, 7 and 8		
Formative	Assignments	1	5% (5)	2, 12	LO # 3, 5, 6 and 10		
assessment	Projects / Lab.	1	10% (10)	Continuous			
	Report	1	10% (10)	13	LO # 1, 6 and 9		
Summative	Midterm Exam	2 hr	15% (15)	7	LO # 1-7		
assessment	Final Exam	2hr	50% (50)	16	All		
Total assessme	ent		100% (100 Marks)				

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Introduction and Basic Concepts - Definition of Terms, Calibration, Standards, Dimensions and Units, The Generalized Measurement System, Basic Concepts in Dynamic Measurements, System Response, Distortion, Impedance Matching, Fourier Analysis, Experiment Planning			
Week 2	Introduction and Basic Concepts -Definition of Terms, Calibration, Standards, Dimensions and Units, The Generalized Measurement System, Basic Concepts in Dynamic Measurements, System Response, Distortion, Impedance Matching, Fourier Analysis, Experiment Planning			
Week 3	Analysis of Experimental Data			
Week 4	Analysis of Experimental Data			
Week 5	Analysis of Experimental Data			
Week 6	Measurements and Sensing Devices			
Week 7	Measurements and Sensing Devices			
Week 8	Mid-term Exam			
Week 9	Displacement and Area Measurements			

Week 10	Displacement and Area Measurements
Week 11	Pressure Measurement
Week 12	Pressure Measurement
Week 13	Flow Measurement
Week 14	Flow Measurement
Week 15	The Measurement of Temperature
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered				
Week 1					
Week 2					
Week 3					
Week 4					
Week 5					
Week 6					
Week 7					

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	J. P. Holman, Experimental Methods for Engineers, 8 th ed., The McGraw-Hill Companies, New York, © 2011.	Yes			
Recommended Texts					
Websites					

Grading Scheme				
Group	Grade	التقدير	Marks (%)	Definition
Success Group	A - Excellent	امتياز	90 - 100	Outstanding Performance

(50 - 100)	B - Very Good	جيد جدا	80 - 89	Above average with some errors
	C - Good	ختخ	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

	Module Information						
Module Title	Арр	II	Modu	le Delivery			
Module Type				☑ Theory			
Module Code		MTE 208			Lecture □ Lab		
ECTS Credits		6			☐ Tutorial		
SWL (hr/sem)	150				☐ Practical ☐ Seminar		
Module Level		UGII	Semester of Delivery Four		Four		
Administering Dep	Administering Department		College	COE			
Module Leader	Hassan Mudha	ıfar Saeed	e-mail	Saeedh81@uomosul.edu.iq		u.iq	
Module Leader's A	Acad. Title	Lecturer	Module Leader's Qualification Ph.D.		Ph.D.		
Module Tutor	Ali Ayad Albabeli		e-mail	alibabily9000@gmail.com			
Peer Reviewer Name		Laith Mohammed Jasim	e-mail	-mail Jasiml68@uomosul.edu.iq		.iq	
Scientific Committee Approval Date		2024-2025	Version Number 1.0		1.0		

Relation with other Modules					
Prerequisite module	None	Semester	None		
Co-requisites module	None	Semester	None		

Module Aims, Learning Outcomes and Indicative Contents				
	The aims of the module are to			
Module Aims	1. This course gives the students the ability to understand and classify DEs			
Wiodale Alliis	2. Student will investigate solving the ordinary DEs using different methods, most			
أهداف المادة الدراسية				
	non- linear).			
	3. Student will study the LT method to solve the ordinary DEs			
	4. Student will study the solution of system of linear equations including the			
	eigenvalue-eigenvector problems. solution procedure and applications.			

5. Student will study the vectors and geometry, equation of line, plane, curve parameterization. Student will study vector functions and vector field, derivative of vector function and it applications, space curve and its field, curvature, Student will study the gradient of a vector, Laplacian, divergence, and curl On completion of the course students should be able to: 1. Student is able to recognize the underling rule of DEs in real world problems, 2. Student is able to classify the DEs mathematically, and the types of physical problems (IVP, BVP). Student is able to solve 1st order, homogeneous and non-homogeneous, linear and nonlinear, ordinary DEs, **Module Learning** 4. Student is able to solve 2nd order, homogeneous and non-homogeneous, linear ordinary DEs, using Undetermined coefficients and variation of parameters **Outcomes** methods. Student is able to make LTs of various kinds of functions. 6. Student is able to use LTs to solve any order, homogeneous and non-homogeneous, مخرجات التعلم للمادة linear ordinary DEs. Student is able to understand and solve systems of linear equations with various الدراسية conditions, recognize and analyze the eigenvalue problems and their underlying 8. Student will be able to recognize and deal with the equation of line, plane, curve and parameterization. 9. Student will be able to recognize and deal with the Derivative of vector function and it applications, space curve and its field, Curvature, gradient of a vector, Laplacian, divergence, and curl. Indicative content includes the following. Part A – Differential Equations Types of problems involving DEs, notation of differentiation, mathematical calssification of DEs, Physical problems classifications (IVPs, BVPs), solution of 1st order linear homogenuous and nonhomogenuous ODE using intigrating factor method, solution of specific forms of 1st order nonlinear ODE using separation of variables, Exact, and substitution methods, Introduction to higher order DEs, exactness and uniqueness, BVPs, solution of homogenuous equations with constant coefficients, Solution of 2nd order, Ordinary, Linear, Non-homogeneous DE using method of variation of parameters and undetermined coefficients, stability consideration of systems goverened by this type of Des, [15 hrs.] **Indicative Contents** Part B – Laplace Transforms المحتوبات الإرشادية Fields of applications, definition of LT, Linearity of LT, inverse LT, partial fraction, long division, LT of derivatives, solving linear ODEs using LT, 1st shifting theorem, derivatives of Transforms theorem, unit step function and its LT, 2nd shifting theorem, LT of integrals theorem, LT of integrals of transforms theorem, convolution theorem, special cases of LT. [15 hrs.] Part C – Linear Algebra Quick review to matrices, eigenvalue and eigenvector. Solution procedure and orthogonal applications, and symmetric matrices, eigenvalue problem, nonhomogeneous problem. [15 hrs.] Part D – Vector Analysis

Vectors and Geometry, equation of line, plane, curve parameterization with geometric applications, derivative of vector function and it applications, space curve and its field, curvature, gradient of a vector, Laplacian, divergence, and curl. [15 hrs.]

	Learning and Teaching Strategies
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1. Lectures: aim to deliver fundamental mathematical knowledge in relation to engineering and real-life topics. Power point presentations are used through data show. 3. Assignments: are arranged to provide the opportunity for students to search for methods of solving engineering related problems, implement the methods, and present the solutions. 4. Seminars: devoted to introduce students to various mathematical terminologies in relation to covered topics under study. How these terminologies affects the solution methodology and physical system behavior. 5. Computer: the student will be asked to use state of the art available mathematical software those support the topics covered in this course

Student Workload (SWL)				
Structured USWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	78	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	5.2	
Unstructured SSWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	72	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.8	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

	Module Evaluation				
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	4	10% (10)	5, 9, 13, 15	LO # 1, and 2
Formative assessment	Assignments	8	10% (10)	2 to 6, 9, 12, 15	LO # 1, and 2
assessment	Projects / Lab.	1	10% (10)	1, 3, 4, 6, 9, 11 to 14	LO # 1, 2, and 6

	Report	1	10% (10)	10	LO # 1, 2 and 6
Summative	Midterm Exam	2 hr	10% (10)	10	LO # 1, 2 and 6
assessment	Final Exam	3 hr	50% (50)	16	All
Total assessme	nt		100% (100 Marks)		

	Delivery Plan (Weekly Syllabus)
	Material Covered
Week 1	 DE: Definition and Classification of DE (ordinary and partial, order, degree, Linear and non-linear, homogeneous and non-homogeneous). Solutions of 1st order linear ordinary DEs, homogeneous and non-homogeneous. General and particular solutions.
Week 2	DE: Solutions of 1st order nonlinear ordinary DEs, homogeneous and non-homogeneous, using the method of Separation of Variables and Exact and modified exact equations method.
Week 3	 DE: Solution of 2nd order, homogeneous, linear ordinary DEs with constant coefficients. Possible solutions of boundary value problems. also, introduce the stability criteria of solution (its physical meaning in engineering systems). The dependence of stability and system behavior on the characteristic roots.
Week 4	DE: Solution of 2 nd order, nonhomogeneous, linear ordinary DEs with constant coefficients by the methods of Undetermined coefficients and Variation of parameters.
Week 5	Laplace Transform: definition, versatility and application, Laplace Inverse Transform, using tables and partial fractions. Application of LT definition on various Geometric functions.
Week 6	Laplace Transform: LT of derivatives, solution of linear ordinary DEs using LTs, 1st-shifting theorem (Translation in S-domain), , LTs of derivatives.
Week 7	Laplace Transform: Unit step function and its LT. 2nd shifting theorem (Translation in t-domain), LT of impulse function, LT of periodic functions.
Week 8	Laplace Transform: LTs of integrals (t-function integral and S-function integral), Convolution Theorem.
Week 9	Laplace Transform: Practices of applying Laplace inverse transform on various special functions.
Week 10	Mid-term Exam + Report + Lab Exam
Week 11	Linear Algebra (Eigen value problem): Quick review to matrices, eigenvalue and eigenvector. Solution procedure and applications.
Week 12	Linear Algebra (Eigen value problem): Orthogonal and symmetric matrices, eigenvalue problem, nonhomogeneous problem.
Week 13	Vector field: Vectors and Geometry, equation of line, plane, curve parameterization with geometric applications.
Week 14	Vector functions and vector field: Derivative of vector function and it applications, space curve and its field, Curvature.
Week 15	Vector Calculus: Gradient of a vector, Laplacian, Divergence, and Curl.
Week 16	Preparatory week before the final Exam

	Learning and Teaching Resources				
	Text	Available in the Library?			
Required Texts	3. E. Kreyszig, et al, "Advanced Engineering Mathematics," 10 th ed., McGraw Hill, 2011.	Yes			
Recommended Texts	D.G. Zill, "Advanced Engineering Mathematics," 6th Ed, 2018.	No			
Websites	https://uomosul.edu.iq/engineering/%d9%85%d9%81%d8%b1%d8%af%d8%a7%d9%84%d9%85%d9%88%d8%a7%d8%af- %d8%a7%d9%84%d8%af%d8%b1%d8%a7%d8%b3%d9%8a%d8%a9/ https://eqworld.ipmnet.ru/ https://math.libretexts.org/ https://www.youtube.com/c/3blue1brown/featured	18%aa-			

Grading Scheme				
Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Module Information						
Module Title		Fluid Mechanics			le Delivery	
Module Type		Core			☑ Theory	
Module Code		MTE 209			Lecture □ Lab	
ECTS Credits		6			□ Tutorial □ Tutorial	
SWL (hr/sem)		150			□ Practical□ Seminar	
Module Level		UGII	Semester o	f Delivery Four		Four
Administering Dep	partment	MTE	College	COE		
Module Leader	Laith Mohamn	ned Jasim	e-mail	Jasiml68@uomosul.edu.iq		.iq
Module Leader's A	Acad. Title	Assistant Professor	Module Leader's Qualification Ph.I		Ph.D.	
Module Tutor	Zahraa reyad Mahmood		e-mail	Zahraa.	reyad@uomosul	<u>.edu.iq</u>
Peer Reviewer Na	me Dr. Loay Younes Aldabbagh		e-mail	loayalda	abbagh@uomos	ul.edu.iq
Scientific Committee Date	tee Approval 2024-2025		Version Nu	mber	1.0	

Relation with other Modules			
Prerequisite module	None	Semester	None
Co-requisites module	None	Semester	None

Module Aims, Learning Outcomes and Indicative Contents		
	The aims of the module are to	
Module Aims	 Understand the Fundamental fluid properties and their significance in Engineering and methods of fluid pressure measurement and calculation of 	
أهداف المادة الدراسية	forces on different surfaces.	
	 Introduce the student to the terminology, principles, and methods used in engineering fluid mechanics. 	
	11. Provide the student with the background necessary to understand static and dynamic fluid principles so that they are able to formulate and solve flow	

	problems by applying knowledge of fluid mechanics and be given the tools to
	design fluid systems.
	12. Understand the laws of conservation of mass, energy and momentum applied to fluid flow
	 Know about the working of different types of devices used for the measurement of fluid flow
	14. provide fundamental concepts and knowledge of inviscid and viscous flows,
	low-Reynolds number and high-Reynolds number flows, incompressible and
	compressible flows, and their applications in mechanical engineering.
	15. Apply the concepts of modeling and similitude to develop prediction equations.
	16. Understand various characteristics of the flow in pipes and discuss the main
	properties of laminar and turbulent pipe flow and calculate losses in straight
	portions of pipes as well as those in various pipe system components.
	17. Search for updated technology in fluid mechanics in completing assignments related to fluid systems.
	On completion of the course students should be able to:
	6. Be familiar with the terminology associated with fluid mechanics.
	7. Use fluid properties correctly to solve problems.
	8. Discuss the principal theories, concepts, and principles of fluid static and
	dynamics.
	9. Explain the significance of pressure gradients and solve basic hydrostatics
Madula Lagraina	problems involving manometers and submerged surfaces.
Module Learning	10. Demonstrate knowledge of Ideal potential (inviscid and incompressible) fluid flow, Compressible fluid flow, Viscous fluid flow, and boundary layer.
Outcomes	11. Derive basic governing equations of fluid flow based on the conservation laws
	for mass, momentum and energy in fluid flow.
# ()	12. Explain the physical basis of Bernoulli's equation, and apply it to flow
مخرجات التعلم للمادة الدراسية	measurement.
الدراسية	13. Understand the principals of flow rates and velocity measurement.
	14. Appreciate the importance of Dimensional Analysis techniques and dimensionless parameters in fluid mechanics; Reynolds number; Mach
	number. And how to apply the concepts of modeling and similitude to
	develop prediction equations.
	15. discuss basic problems involving pressure losses through pipes and pipe
	bends and fittings.
	16. Be able to determine pressure drops for pipe systems and choose appropriate pumps and turbines depending on the application.
	Indicative content includes the following.
	Part A - Fluid Properties
	Introduction - Fluid mechanics applications in science and mechatronics engineering,
Indicative Contents	Matter, Solid and Fluid (liquid and Gas), Dimensions, Dimensional Homogeneity, and
المحتويات الإرشادية	Units, Shear and normal stress, pressure, Definition of Fluid static and dynamic,
25-57 - 595-001	Approaches to study fluid mechanics, Analytical method, Experiments, and
	Computation (Computation Fluid Dynamic, CFD), Definition of Hydrodynamics,
	Hydraulics, Gas dynamics and Aerodynamics. [5 hrs]

Fluid Properties - Mass Density, Specific Volume, Specific Weight, Specific Gravity, Idea Gas Law, Dynamic and Kinematic Viscosity, shear stress and velocity gradient, Newtonian and Non-Newtonian Fluids; Compressibility, Process (Isothermal and Isentropic). [5 hrs]

Part B - Fluid Static (Hydrostatics)

Pressure definition - Pressure at a Point, Pressure Force on a Fluid Element, Equilibrium force of a Fluid Element, Body and Viscous force, Pressure variation in a Fluid at Rest for Incompressible and compressible Fluid, Standard Atmosphere, Variation of Temperature, Pressure and Density of air with the Elevation, Absolute Pressure, Gage Pressure and Vacuum Pressure. Pressure Measurements - Barometer (Mercury and Aneroid Barometer), Piezometer Tube, U-Tube Manometer, Differential U-tube manometer, Inclined-tube manometer, Bourdon gage, Pressure transducers. [10 hrs] Hydrostatic Force - Pressure distribution on flat surface, Hydrostatic Force on an Inclined Plane Surface of Arbitrary shape; resultant force and location of center of pressure, centroid and parallel axis theorem, Hydrostatic Force on Submerged Curve Surface. [10 hrs]

Part C - Fluid Dynamics

Physical Quantities of Flow and Classification of Fluid Flow - Velocity, Pressure, Density, Temperature and Acceleration, Lagrangian and Eulerian Systems, Control volume method. Uniform and Non-uniform Flow, Steady and Unsteady flow, one, two and three dimensional flows, Viscous and Inviscid Flow, Internal and External Flow, Laminar and Turbulent Flow, boundary layer, Compressible and Incompressible. [5 hrs]

Elementary Equation of Motion - Differential and Control Volume Approach,

Continuity Equation (Conservation of Mass) derivation, Volume and Mass Flow Rate, Momentum Flux, Applications on Conservation of Mass. Bernoulli Equation - limitations and the assumptions, Pressure head, Velocity head, Elevation head, Piezometric head, Total head, Hydraulic and Energy Grade lines. Application of the Bernoulli equation; Pitot Tube, Pitot-Static Tube (stagnation point), Free Jet; Flowrate Measurement. [10 hrs]

linear momentum equation – Derivation, Application of the Linear Momentum Equation, Change in Flow Direction, Weight, Pressure, and Change in Speed. Pressure and Change in Flow Direction, Pressure, Change in Speed, and Friction, Weight, Pressure, Friction, and Nonuniform Velocity Profile; Thrust; Nonuniform Pressure, Moving Control Volume. Derivation of the Moment-of-Momentum Equation, Application, Torque and Power. [10 hrs]

Part D - Dimensional Analysis

Buckingham Pi Theorem - Determination of Pi Terms, Application, Dimensionless Groups in Fluid Mechanics, Dimensionless Correlation of Experimental Data. Modeling and Similitude - Theory of Models, Model Scales, Practical Aspects of Using Models, Typical Model Studies. [10 hrs]

Part E - Viscous Flow in Pipe

Characteristics of Pipe Flow - laminar and turbulent pipe flow, Energy Considerations, Dimensional Analysis of Pipe Flow, Major Losses, Moody chart, Comparison of Laminar or Turbulent, Minor Losses; loss coefficient of valve, entrance and exit, pipe components. Pipe flow topics - Single pipes, Pressure drop, Head loss, Flowrate, Determine diameter, Multiple Pipe System, Series and parallel pipe systems. [10 hrs]

	Learning and Teaching Strategies
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1- Lectures - aim to deliver fundamental knowledge in relation to fluid mechanics and the application of the theories to practical examples. 2- Tutorial sessions - are deployed to illustrate the application of fundamental knowledge of fluid mechanics to different practical exercises. 3- Assignments - are arranged to provide the opportunity for students to search for information, analyze fluid systems with knowledge obtained, and present the completed tasks.

Student Workload (SWL)					
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	93 Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	57	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.8		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150				

Module Evaluation					
	Time/Nu Weight (Marks) Week Due Outcome				
Formative	Quizzes	2	10% (10)	5, 10	LO #2, 4, 7 and 8
assessment	Assignments	2	10% (10)	2, 12	LO # 3, 5, 6 and 10

	Projects / Lab.	1	10% (10)	Continuous	
	Report	1	10% (10)	13	LO # 1, 6 and 9
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment Final Exam 3 hr		50% (50)	16	All	
Total assessment		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)
	Material Covered
Week 1	Introduction - Fluid mechanics applications, Matter, Solid and Fluid (liquid and Gas), Dimensions, Definition of Fluid static and dynamic.
Week 2	Fluid Properties, Idea Gas Law, shear stress, Newtonian and Non-Newtonian Fluids, Compressibility, Process.
Week 3	Fluid Static - Pressure at a Point, Pressure variation in a Fluid, Standard Atmosphere, Absolute and Gage Pressure.
Week 4	Pressure Measurements.
Week 5	Hydrostatic Force - Pressure distribution on Plane Surface of Arbitrary shape; center of pressure.
Week 6	Centroid and parallel axis theorem, Hydrostatic Force on Submerged Curve Surface.
Week 7	Mid-term Exam + Fluid Dynamics - Classification of Fluid Flow, Internal and External Flow, boundary layer.
Week 8	Elementary Equation of Motion - Conservation of Mass, Control volume method, Applications.
Week 9	Bernoulli Equation - limitations and the assumptions, Hydraulic and Energy Grade lines, Application.
Week 10	linear momentum equation – Derivation and Application, Moving Control Volume.
Week 11	Moment-of-Momentum Equation - Derivation and Application, Torque and Power.
Week 12	Dimensional Analysis - Buckingham Pi Theorem, Dimensionless Groups, Dimensionless Correlation of Experimental Data. Modeling and Similitude - Theory of Models, Model Scales.
Week 13	Practical Aspects of Using Models, Typical Model Studies. Viscous Flow in Pipe - laminar and turbulent pipe flow.
Week 14	Major Losses, Moody chart, Comparison of Laminar or Turbulent, Minor Losses, loss coefficients.
Week 15	Pipe flow topics - Single pipes, Multiple Pipe System, Series and parallel pipe systems.
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Available in the			
		Library?		
	B.R. Munson, D.F. Young and T.H. Okiishi, Fundamentals of			
Required Texts	Fluid Mechanics, seventh edition, John Wiley & Sons, Inc.,	Yes		
	2013			

Recommended Texts	Frank M. White, Fluid Mechanics, seventh edition, McGraw-	Yes	
Recommended Texts	Hill, 2011	res	
Websites	https://www.coursera.org/browse/physical-science-and-engir	neering/electrical-	
websites	engineering		

	Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Charles	B - Very Good	جید جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

	Module Information					
Module Title	M	Mechanics of Materials			le Delivery	
Module Type		Basic			☑ Theory	
Module Code		MTE 210			⊠ Lecture □ Lab	
ECTS Credits		6				
SWL (hr/sem)		150			☐ Practical☐ Seminar	
Module Level		UGII	Semester o	f Delivery Four		Four
Administering Dep	partment	MTE	College	COE		
Module Leader	Islam Abdullah	n Aziz	e-mail	islamabd@uomosul.edu.iq		ı.iq
Module Leader's A	Acad. Title	Assistant Lecturer	Module Leader's Qualification MSc		MSc	
Module Tutor	Amena Fawzy		e-mail	enaminafawzy@gmail.com		<u>om</u>
Peer Reviewer Name Dr. Omar Waleed Maaroof		e-mail	omarmaaroof@uomosul.edu.iq		l.edu.iq	
Scientific Committee Approval Date		2024-2025	Version Nu	mber	1.0	

Relation with other Modules					
Prerequisite module	None	Semester	None		
Co-requisites module	None	Semester	None		

Module Aims, Learning Outcomes and Indicative Contents					
1. To give students the main tools for the mechanical properties of material finding the effect of internal loads on a member and analyzing related					
Module Aims أهداف المادة الدراسية	stresses and strains, to find the state of stresses. 2. To make students discover the types of stresses that happen in machines under different loads.				
	3. To provide students with a thorough and pure presentation of the philosophy and application of the fundamentals of mechanics of materials.				
	 Provide analysis and design problems to engage students in thinking through real-life problems. 				

Module Learning 1.	Idents who successfully fulfill the course requirements will:
Outcomes 2. 3. 4. مخرجات التعلم للمادة	Understand the basics of material properties
Part A A review used to Equilib Introduction Part B This pastate of normal Average alloward	ive content includes the following. - Introduction w of some of the important principles of statics and to show how they are of determine the internal resultant loadings in a body. Cover topics such as rium of deformable body, support Reactions, and coplanar loadings. ucing the different categories of stresses and the general state of stress.[3 hrs.] - Stress: Introduces normal stresses (tensile stress, compressive stress) the general for stress, average normal stresses in an axially loaded bar, maximum average stress, and normal force diagram. Followed by. Shear stress which includes: the shear stress, shear stress equilibrium, maximum average shear stress, ble stress, and design of simple connections. [3 hrs.] - Strain nation- can be represented by the concept of normal and shear strain. In this the will be able to define these quantities and show how they can be sinted. The general state of strain is defined in this part. [3 hrs.] - Mechanical Properties of Materials part, the stress-strain relationship depending on the experimental method will sented. The behavior of some materials will be discussed on a stress-strain musuch as Ductile materials, and brittle materials. Mechanical properties will be used as Hooke's law, the Modulus of resilience, the Modulus of toughness, no's ratio, and Shear modulus of rigidity. Tests related to the mechanics of als, tension and compression test, Failure of Creep, and Fatigue, will be used. [6 hrs.] - Deformation in materials and - Elastic deformation of an axially loaded member, Superposition, statically reminate axially loaded member, Thermal stress, stress concentrations, inelastic nations, and residual stress will also be discussed. In - torsional formula to relate the external torque to the shear stress uted on the cross-section of a circular shaft or tube, angle of twist (how to

circular shaft, power transmission, and statically indeterminate torque-loaded members will be discussed. [12 hrs.]

Part F – Bending on beams and shafts and Transverse shear

Bending in shafts and beams will be studied. Shear and moment diagrams for beams and shafts due to bending will be presented. The Flexure Formula relates the stress distribution in a beam to the internal resultant bending moment acting on the beam's cross-section will be produced. The shear formula for transverse force [9 hrs.]

Part G – Combined loads and the deflection of beams and shafts

Combined especially in Thin-walled pressure vessels, and cylindrical/spherical vessels. Deflection in shafts and beams will be studied. [9 hrs.]

Learning and Teaching Strategies The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1- Lectures - aim to deliver fundamental knowledge in relation to the mechanics of materials and the application of the theories to practical examples used in engineering design. 2- Tutorial sessions - are deployed to illustrate the application of fundamental knowledge of the mechanics of materials to different practical exercises. 3- Assignments - are arranged to provide the opportunity for students to search for information, analyze problems with knowledge obtained, and present the completed tasks.

Student Workload (SWL)					
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	63	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4		
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	87	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	5.8		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150				

Module Evaluation							
	Time/Nu Weight (Marks) Week Due Outcome						
	Quizzes	2	10% (10)	5, 10	LO #2, 3, and 4		
Formative	Assignments	2	10% (10)	2, 12	LO # 1, 2, and 3		
assessment	Projects / Lab.	1	10% (10)	15	All		
	Report	1	10% (10)	13	LO # 4 and 5		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 2-4		
assessment	Final Exam	3 hr	50% (50)	16	All		
Total assessm	ent		100% (100 Marks)				

	Delivery Plan (Weekly Syllabus)
	Material Covered
Week 1	Principles of statics: External loads, support reactions, equations of equilibrium, internal resultant loadings
Week 2	Stress: Normal stress (tensile stress, compressive stress), shear stress, general state of stress, average normal stress in an axially loaded bar, average shear stress, allowable stress.
Week 3	Strain: Deformation, normal strain, shear strain, general state of strain.
Week 4	Mechanical properties of materials: The tension and compression test, Conventional stress-strain diagram, true stress-strain diagram.
Week 5	Mechanical properties of materials: ductile materials, brittle materials, Hooke's law, Poisson's ratio, Shear stress-strain diagram, shear modulus of rigidity.
Week 6	Axial load: Elastic deformation of an axially loaded member, superposition.
Week 7	Mid-term Exam Axial load: Statically indeterminate axially loaded member, Thermal stress.
Week 8	Torsion: Torsional deformation of a circular shaft, torsion formula, power transmission.
Week 9	Torsion: Angle of twist, statically indeterminate torque-loaded members.
Week 10	Bending: Shear and moment diagrams.
Week 11	Bending: The graphical method.
Week 12	Transverse shear: Shear formula for transverse force.
Week 13	Combined loads: Thin-walled pressure vessels, cylindrical vessels, combined loads.
Week 14	Deflection of beams and shafts: The elastic curve, slope and displacement by integration.
Week 15	Deflection of beams and shafts: The elastic curve, slope and displacement by integration.
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	Hibbeler, R. C. Mechanics of Materials, 8th Edition, Prentice Hall (2011).	Yes			
Recommended Texts	Ferdinand P. Beer, E Russell Johnston Jr., John T. DeWolf; Mechanics of Materials, Fourth edition, Mc Graw Hill.	Yes			
Websites	https://www.youtube.com/playlist?list=PLx2F3tH7KEgtcLB1_J	xMk6ilwuJ8fxySI			

Grading Scheme							
Group	Group Grade التقدير Marks (%) Definition						
	A - Excellent	امتياز	90 - 100	Outstanding Performance			
6	B - Very Good	جيد جدا	80 - 89	Above average with some errors			
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors			
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded			
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required			

Module Information						
Module Title	D		Modu	le Delivery		
Module Type		Core			☑ Theory	
Module Code		MTE 211			□ Lecture ☑ Lab	
ECTS Credits		4			☐ Tutorial	
SWL (hr/sem)		100			☐ Practical ☐ Seminar	
Module Level	UGII		Semester of Delivery Four		Four	
Administering Dep	partment	MTE	College COE			
Module Leader	Dr. Muhamad	Azhar Abdilatef	e-mail	muham	ad.azhar@uomo	sul.edu.iq
Module Leader's A	Acad. Title	Lecturer	ecturer Module Lead		alification	Ph.D.
Module Tutor	Rashad Adhed Kamal		e-mail	rashad.alsaigh@uomosul.edu.iq		ul.edu.iq
Peer Reviewer Name		Sa'ad Ahmed Salih	e-mail <u>kazzazs60@uomosul.edu.iq</u>		u.iq	
Scientific Committee Approval Date		2024-2025	Version Nu	mber	1.0	

Relation with other Modules				
Prerequisite module	None	Semester	None	
Co-requisites module	None	Semester	None	

Module Aims, Learning Outcomes and Indicative Contents					
	On completion of the course students should be able to:				
	 Understand the need of Numerical Systems and their general types. 				
Module Aims	2. Understand the conversions methods tin Numerical systems.				
" (.t(" . (t) \$ ()	3. Demonstrate gates' principles.				
أهداف المادة الدراسية	4. Understand the needs for Boolean algebraic.				
	5. Understanding the Karnaugh map.				
	6. Appreciate the needed method of Karnaugh map.				
	7. Designing circuits using Multiplexer, De-Multiplexers, Encoder and decoders.				
	8. Designing Adders Subtractors circuits.				

	O Handaratanding the principals of Latebas and Elia Elenative its
	9. Understanding the principals of Latches and Flip- Flops circuits.
	10. Understanding the principals of Counters.
	On completion of the course students should be able to: 1. Be familiar with Numerical Systems.
	2. Use the conversions methods to convert Numbers from one system to
	another.
	3. Understand the logic gates' working principles.
Module Learning	Demonstrate knowledge of minimizations (Boolean algebraic)
_	5. Study the method of Karnaugh map with their types and methods' steps.
Outcomes	6. Appreciate the needed method of Karnaugh map.
	7. Understanding the principals of Multiplexers Usage and Design with their
	applications.
مخرجات التعلم للمادة	8. Understanding the principals of De-Multiplexers Usage and Design with their
مخرجات التعلم للمادة الدراسية	applications.
	9. Understanding the principals of Encoder-decoder Usage and Design with
	their applications.
	10. Understanding the principals of Adders inside their types, Usage and Design
	with their applications.
	11. The principals of Latches and Flip- Flops Design with their applications.
	12. The principals of Counters Design with their applications.
	Indicative content includes the following.
	Part A Numerical Systems [15 hrs]
	In the realm of digital logic, numerical systems play a fundamental role in representing
	and manipulating information. These systems provide a foundation for encoding data
	in various forms, enabling the construction of complex digital circuits and the execution
	of powerful computational operations. Understanding numerical systems is essential
	for anyone seeking to delve into the fascinating world of digital logic and engineering.
	In this introductory text, we will explore the key concepts and principles behind
	numerical systems. We will begin by examining the binary system, which serves as the
	foundation of all digital systems. From there, we will expand our understanding to
	other important numerical systems such as the decimal, octal, and hexadecimal
Indicative Contents	systems. Along the way, we will uncover the interrelationships between these systems
المحتويات الإرشادية	
	and discover their unique properties and advantages.
	Part B - Logic gates [10 hrs]
	Logic gates are the building blocks of digital circuits and are responsible for performing
	logical operations on one or more binary inputs to produce a binary output. There are
	several types of logic gates, each with its own equation and truth table. Let's explore
	the most common logic gates:
	AND Gate: The AND gate takes two or more input signals and produces a high output
	(1) only if all of its inputs are high (1). Otherwise, it produces a low output (0).
	Equation: Y = A * B (for a two-input AND gate)
	■ FOURTION: V = A ™ K ITON R TWO-INDUIT AND GREAT

OR Gate: The OR gate takes two or more input signals and produces a high output (1) if any of its inputs are high (1). It produces a low output (0) only if all of its inputs are low (0). Equation: Y = A + B (for a two-input OR gate)

NOT Gate (Inverter): The NOT gate, also known as an inverter, takes a single input signal and produces the complement of that input as the output. It negates the input value. Equation: Y = NOT A

XOR Gate: The XOR gate (Exclusive OR gate) takes two input signals and produces a high output (1) if the number of high inputs is odd. It produces a low output (0) if the number of high inputs is even. Equation: Y = A XOR B (for a two-input XOR gate)

These are just a few examples of common logic gates. Other types of gates include NAND (NOT AND), NOR (NOT OR), and XNOR (Exclusive NOR) gates, which combine multiple logic operations. Each gate has its own equation and truth table, defining its behavior and functionality within a digital circuit. It's important to note that in real-world implementations, logic gates are typically realized using electronic components such as transistors. These gates can be combined to create complex digital systems capable of performing a wide range of operations and computations.

Part C - Logic Circuits Minimization [10 hrs]

Logic circuit minimization, also known as logic optimization or Boolean function minimization, is the process of simplifying a given logical expression or circuit to achieve a more efficient and compact representation. The goal of minimization is to reduce the number of logic gates, inputs, and overall complexity of the circuit, leading to benefits such as improved performance, reduced power consumption, and easier circuit design. Logic circuit minimization involves two main techniques: algebraic manipulation and Karnaugh maps.

Algebraic Manipulation: Algebraic manipulation involves applying Boolean algebra rules and theorems to simplify logical expressions. By using identities such as commutative, associative, and distributive laws, as well as De Morgan's theorem and other Boolean rules, the expression can be simplified. The aim is to reduce the number of terms, eliminate redundant or unnecessary gates, and optimize the overall structure of the circuit. For example, the expression A * (B + C) can be simplified using the distributive law to A * B + A * C. This simplification reduces the number of gates needed in the circuit.

Karnaugh Maps: Karnaugh maps, also known as K-maps, provide a graphical method for minimizing logical expressions. They are helpful for simplifying expressions with multiple variables. A Karnaugh map is essentially a truth table representation of the logical function, organized in a grid-like structure. The map allows for visual identification of patterns and simplification opportunities. By grouping adjacent 1s or 0s in the Karnaugh map, logical expressions can be simplified using a technique called "sum-of-products" or "product-of-sums" form. The goal is to identify and eliminate

redundant terms and find the simplest form of the expression. Minimizing logic circuits using Karnaugh maps can often result in a more compact and efficient circuit design compared to algebraic manipulation alone. The process of logic circuit minimization requires careful analysis, application of Boolean algebra rules, and consideration of optimization goals such as circuit speed, area utilization, or power consumption. It is a crucial step in digital circuit design, as it helps improve circuit performance and reduce complexity. By minimizing logic circuits, engineers can achieve circuits that are easier to understand, implement, and maintain. Additionally, optimized circuits often lead to better overall system performance, reduced costs, and improved reliability.

<u>Part D – Multiplexer, De-Multiplexer, Decoder, Encoder</u> [10 hrs]

Multiplexer, de-multiplexer, decoder, and encoder are essential components in digital systems. Let's explore each of them:

Multiplexer (MUX): A multiplexer is a combinational logic circuit that selects one of many input signals and forwards it to a single output line based on a selection input. It is often referred to as a data selector. The number of input lines in a multiplexer is denoted as 2^n, where 'n' represents the number of selection inputs. The operation of a multiplexer can be described by the equation: Y = D0 * S' + D1 * S. In this equation, 'Y' represents the output, 'D0' and 'D1' represent the input signals, and 'S' represents the selection input. Multiplexers are commonly used in data routing, data transmission, and in designing memory units. They enable the selection of a specific input to be transmitted or stored based on the control signal.

De-multiplexer (DEMUX): A de-multiplexer is the inverse of a multiplexer. It takes a single input and selects one of many output lines based on the selection input. A demultiplexer is often referred to as a data distributor. The operation of a de-multiplexer can be described by the equation: YO = D * S' and Y1 = D * S. In this equation, YO' and Y1' represent the output lines, YO' represents the input signal, and YO' represents the selection input. De-multiplexers are used for routing data from a single input line to multiple output lines based on the control signal. They are commonly used in applications such as memory address decoding and digital communication systems.

Decoder: A decoder is a combinational logic circuit that converts an n-bit input code into a set of m outputs, where 2^n = m. It essentially decodes the input and activates a specific output line based on the input combination. Decoders are often used for tasks such as memory address decoding, data selection, and control signal generation. They are widely employed in digital systems, including microprocessors, programmable logic devices (PLDs), and memory units.

Encoder: An encoder is the inverse of a decoder. It converts a set of m input lines into an n-bit output code, where $m = 2^n$. An encoder generates a binary code

corresponding to the active input line. Encoders are frequently used in applications such as data compression, error detection and correction, and multiplexing. They play a crucial role in digital communication systems, data acquisition, and various other areas of digital electronics. Both decoders and encoders are fundamental components in digital systems that enable efficient data representation and manipulation. These components (multiplexers, de-multiplexers, decoders, and encoders) are essential in digital circuit design, data processing, communication systems, and various other applications, enabling efficient and reliable information handling.

Part E – Adders Subtractors Logic Circuits [5 hrs]

In logic design, adders and subtractors are implemented using a combination of logic gates and flip-flops. Here's an overview of how adders and subtractors are designed in logic circuits:

Adders: Adders are used to perform binary addition of two or more binary numbers. The most commonly used adder is the ripple carry adder, which is built by cascading full adders. A full adder takes three input bits: A, B, and a carry-in (Cin), and produces two output bits: a sum (S) and a carry-out (Cout). The sum bit represents the addition of A, B, and Cin, while the carry-out bit represents the carry generated from the addition. To implement a ripple carry adder, connect the Cin of the first full adder to a logic low (0). For subsequent full adders, the Cin is connected to the Cout of the previous full adder. The output sum (S) bits of each full adder form the final sum bits, while the Cout of the last full adder represents the carry-out (Cout).

Subtractors: Subtractors are used to perform binary subtraction of two binary numbers. The most commonly used Subtractors is the ripple borrow Subtractors, which is built using full Subtractors. A full Subtractors takes three input bits: A, B, and a borrow-in (Bin), and produces two output bits: a difference (D) and a borrow-out (Bout). The difference bit represents the subtraction of B from A, taking into account the borrow-in, while the borrow-out bit represents the borrow generated from the subtraction.

To implement a ripple borrow Subtractors, connect the Bin of the first full Subtractor to a logic low (0). For subsequent full Subtractors, the Bin is connected to the Bout of the previous full subtractor. The output difference (D) bits of each full subtractor form the final difference bits, while the Bout of the last full subtractor represents the borrow-out (Bout). It's important to note that for subtraction, the binary representation of the subtrahend is typically inverted (using an inverter) and the borrow-in is set to 1. This is equivalent to performing addition using two's complement representation.

Part F – Latches, Flip-Flops and Counters [10 hrs]

Latches, flip-flops, and counters are important components in digital systems for storing and manipulating binary information. Let's explore each of them:

Latches: are sequential logic circuits that are capable of storing a single bit of information. They are level-sensitive and have two stable states: set (1) and reset (0). Latches are typically constructed using cross-coupled NAND or NOR gates.

There are various types of latches, including SR latch (Set-Reset latch), D latch (Data latch), JK latch, and T latch. Latches are simple memory elements that can hold data as long as the enable signal is active. However, they are prone to timing issues and can exhibit race conditions.

Flip-Flops: are edge-triggered sequential circuits that store one bit of binary data. They are more reliable and widely used than latches. Flip-flops have a clock input that controls the timing of storing and updating data. They can be implemented using various logic gates. The most common types of flip-flops are D flip-flop, JK flip-flop, T flip-flop, and SR flip-flop. Each type has its own characteristics and functionality. Flip-flops provide better timing control and are commonly used for building memory elements, registers, and sequential circuits.

Counters: are sequential circuits that generate a sequence of binary numbers. They are widely used in digital systems for counting events, generating control signals, and implementing various functionalities. Counters can be synchronous or asynchronous. Synchronous counters are controlled by a common clock signal, and their outputs change simultaneously. Asynchronous counters, also known as ripple counters, have outputs that change sequentially based on the propagation of carry signals. Counters can be further categorized as binary counters, decade counters (which count up to 10), and modulus counters (which count up to a specific value). They can be implemented using flip-flops and additional logic gates. Counters play a crucial role in applications such as frequency division, timekeeping, digital clocks, timers, and sequential control systems. In digital systems, latches, flip-flops, and counters are essential for storing, manipulating, and generating binary information. They enable the implementation of memory elements, sequential circuits, and various functionalities required for digital computation and control.

Learning and Teaching Strategies

The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills.

Strategies

This will be achieved through;

- 1- Lectures aim to deliver fundamental knowledge in relation to Digital Logic and the application of the theories to practical examples.
- 2- Tutorial sessions are deployed to illustrate the application of fundamental knowledge of Digital Logic to different practical exercises.

3- Assignments - are arranged to provide the opportunity for students to search for information, analyze Digital Logic and Numerical S systems with knowledge obtained, and present the completed tasks.

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	63	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4.2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	37	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2.47	
Total SWL (h/sem) 100 الحمل الدراسي الكلي للطالب خلال الفصل				

Module Evaluation						
		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	4	10% (10)	3, 5,9, 11	LO #2, 4, 7 and 10	
Formative	Assignments	4	10% (10)	2, 4, 8, 12	LO # 3, 6, 10, AND 12	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 1, 6,9,10, AND 11	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-8	
assessment	Final Exam	3 hr	50% (50)	16	All	
Total assessme	Total assessment					

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Introduction - Numerical System, Binary System, Octal System, Hexadecimal System.			
Week 2	Numerical System Converting Methods, (Binary, Octal, Hexadecimal, Decimal), Mathematical Operations, Binary System Problems			
Week 3	Logic Gates, Gates with their symbols and truth tables, Logical Operations, Timing Diagram for logic gates, Logic gates as switches.			

Week 4	Logic Circuit Design, Logic circuit designing steps, Implementation of Logic circuits using truth tables, Implementation of logic circuits using equations, Converting logic circuit to logic equations
Week 5	Boolean Algebra and Identities, Basic Identification of Boolean algebra, Duals of Expressions, Demorgan's Theories, Truth tables for Demorgan.
Week 6	Boolean Algebra and Identities, Algebraic Manipulation, Simplifying Functions, Fewer Gates, Duality Properties, Complement of Functions
Week 7	Mid-term Exam + Strategies of Minimizations, Terminology and Definitions, Guidelines of Simplifying Functions.
Week 8	K-Map Simplifying SOP Procedures, Three Variable K-Map, Four Variable K-Map, Five Variable K-Map, Karnaugh Map POS Minimization, Three Variable K-Map, Four Variable K-Map, Variable K-Map, Getting between SOP and POS, Don't Care Conditions.
Week 9	Multiplexer (Definitions, Constructions, 2-1-multiplexer, 4-1-multiplexer, 8-1-multiplexer, 16-1-multiplexer, 32-1-multiplexer, Realizing Logic Functions Efficiently, Larger Multiplexer, Cascading Multiplexer Circuits).
Week 10	De-Multiplexer (Definitions, Applications, 1-4-demultiplexer, 1-8-demultiplexer, 1-16-demultiplexer, Timing Diagram, 1-m-demultiplexer, De-multiplexer as Decoder, Characteristics table of Demultiplexer).
Week 11	Decoder (Characteristics of Decoder, Construction of Decoder, Types of Decoders, 2-4-decoder, 3-8-decoder, 4-16 –decoder, Applications of Decoder, Expansions of Decoder).
Week 12	Encoder(Definitions, Types, Applications, Code Convertor, Binary to Gray Code Convertor)
Week 13	Adders and Subtractors Circuits, Half Adder, Full Adder, Binary Adder, Binary Subtractor, Binary Adder Subtractor
Week 14	Sequential Logic Circuits, Latches and Some Definitions, Synchronous and Asynchronous Sequential Circuits, SR-Latches, SR-Latches as Memories, D-Latches
Week 15	Sequential Logic Circuits, JK-latches, T-Laches, Counters
Week 16	Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)		
	Material Covered	
Week 1	Discovering digital design kit	
Week 2	Introduction to logic gates and truth tables	
Week 3	Applying of Logic Algebraic equations	
Week 4	Karnaugh Map	
Week 5	Adders Circuits	

Week 6	Mid Term Practical Exam
Week 7	Decoder Circuits
Week 8	Encoder Circuits
Week 9	Multiplexer Circuits
Week 10	De-multiplexer Circuits
Week 11	Latches and Flip-Flops
Week 12	Counters Circuits
Week 13	Registers Circuits
Week 14	Preparation for the Final Exam
Week 15	Final Practical Exam

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	Digital Logic and Computer Design by M Morris Mano	Yes			
Recommended Texts	Digital Logic Design by Pu-Jen Cheng, Digital Logic Design by Nasser M. Sabah	Yes			
Websites	Error! Hyperlink reference not valid.				

Grading Scheme						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
S	B - Very Good	Good جید جدا		Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Notes: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above. Attendance to lectures and submitting assignments is obligatory according to the Ministry of Higher Education and Scientific Research of Iraq legislations.

Module Information						
Module Title	Engineeri	atistics	Modu	le Delivery		
Module Type		Basic			☑ Theory	
Module Code		MTE 212			□ Lecture □ Lab	
ECTS Credits		5			□ Tutorial □ Tutorial	
SWL (hr/sem)		125		☐ Practical☐ Seminar		
Module Level		UGII	Semester of De		Delivery Four	
Administering Dep	partment	MTE	College COE			
Module Leader	Dr. Abbas Anw	ver	e-mail	abbas.c	ghor@uomosu	l.edu.iq
Module Leader's A	Acad. Title	Lecturer	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Noor Jamal		e-mail	noor.jamal@uomosul.edu.iq		du.iq
Peer Reviewer Name		Dr. Loay Aldabbagh	e-mail loayaldabbagh@uomosul.edu		sul.edu.iq	
Scientific Committee Approval Date		2024-2025	Version Number 1.0			

	Relation with other Modules		
Prerequisite module	None	Semester	None
Co-requisites module	None	Semester	None

Module Aims, Learning Outcomes and Indicative Contents						
	The aims of the module are to					
	18. Describe and determine the effect of financial analysis and its impact on					
	budgeting of projects and their outcomes.					
Module Aims	19. Identify the characteristics of various methods used for the generation of					
	financial management decisions.					
أهداف المادة الدراسية	Develop and analyze information on investment planning and cost controls, and conduct cost/benefit analysis.					
	21. Quantify and include elements of uncertainty and risk into an economic analysis.					
	22. Introduce the student to collecting and presenting statistical data.					
	23. Classify and tabular the engineering information in a manner consistent with					
	the data and the field of academic work.					

	24. Conduct experiments, analyze and interpret data.
	25. Identify and solve engineering problems.
	26. Take the appropriate decision through scientific analysis of information.
	On completion of the course students should be able to:
	11. obtain the ability to use modern and classical engineering methodologies
Module Learning	pertaining to cost analysis, break-even point calculation, engineering economic analysis, cost effectiveness analysis, sensitivity analysis, and
Outcomes	financial planning.
	12. attain the ability to conduct an analysis of different alternatives and make
	appropriate recommendations.
مخرجات التعلم للمادة الدراسية	 acquire the ability to work individually and on multi-disciplinary teams to identify, formulate and analyze financial problems.
الدراسية	14. engage in professional service such as participation in professional societies,
	and to always consider and support professional ethics
	15. have a constant desire for professional development through life-long learning activities, self-confidence, creativity and leadership
	Indicative content includes the following:
	Introduction to Allocation of resources, types of economic resources, efficient use of
	resources, economic development, engineering economics [5 hrs]
	Depreciation, straight line method, interest, economic comparisons of alternatives.
	[5 hrs]
	Economic feasibility, simple rate of return, internal rate of return [5 hrs]
	The time value of money, the present value in fixed installments, the present value in
	variable installments, in the case of equal annual installments, criteria for measuring
	commercial profitability [10 hrs]
Indicative Contents	Costs of production. Economic feasibility Sensitivity analysis. Break-even point
المحتويات الإرشادية	[5 hrs]
	General introduction of Engineering Statistics. Why study statistics? Types of Statistics
	Data classification. Descriptive statistics. Central tendency measurement. Dispersion
	measures. Variance [10 hrs]
	Introduction to probability. Application of probability. Probability calculation steps,
	Probability Tree Diagram, Radar detection, Models based on conditional probability,
	independent events [10 hrs]
	Continuous Probability Distributions, Sampling distribution , Counting Principle,
	Permutation and combination [10 hrs]

Learning and Teaching Strategies				
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through;			

- 1- Lectures aim to deliver fundamental knowledge in relation to economic engineering and theories to practical examples.
- 2- Tutorial sessions are deployed to illustrate the fundamental knowledge of economic engineering.
- 3- Assignments are arranged to provide the opportunity for students to search for information, analyze economic theories with knowledge obtained, and present the completed tasks.

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	63	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4.2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	62	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.1	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125			

Module Evaluation						
Time/Nu Weight (Marks) Week Due Outcome						
	Quizzes	2	10% (10)	5, 13	LO #1- 5	
Formative	Assignments	2	10% (10)	2, 12	LO #1- 4	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	9	LO # 1-4	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-3	
assessment	Final Exam	3 hr	50% (50)	16	All	
Total assessme	ent		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)			
	Material Covered		
Week 1	Introduction, Engineering Economics/Extinction		
Week 2	Engineering Economics/Interest, Engineering Economics/Alternatives		
Week 3	Engineering Economics/Alternatives		

Week 4	Engineering Economics / Economic Feasibility,
Week 5	Engineering Economics / Time Value of Money
Week 6	Engineering economics / production costs
Week 7	Engineering economics / economic feasibility
Week 8	Engineering economics/sensitivity analysis
Week 9	Midterm exam/ Break-Even Point
Week 10	Engineering Economics / Break-Even Point
Week 11	General introduction of Engineering Statistics, Data Presentation: Tabular presentation / Creating Frequency Table. Graphical presentation (Histogram, Frequency Polygon).
Week 12	Measures of central tendency (Arithmetic mean, median and mode, the relation between the central tendency measures for unimodal distributions, Measurement of dispersion and variation, absolute dispersions
Week 13	Probability: Basic Concepts of Probability Theory, Rule of Probability Additional rule Two events, mutually and non-mutually events- Three events, mutually and non-mutually events
Week 14	Multiplication rule, Tow events, (independent and dependent events), The definition of conditional probability and their properties. Bayes' theorem, The definition and classification of random variable (Discrete and Continuous), type of discrete distribution
Week 15	Discrete probability distributions (Binomial and Poisson distribution), Continuous distribution, (normal distribution) Normal distribution.
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	Principles of Economics, Gregory Mankiw, Published by South Western, 2007. Introduction to Probability and Statistics for Engineers, Holický, Milan	Yes			
Recommended Texts	Principles of Economics, Gregory Mankiw, Published by South Western, 2007. مدخل الى الاحصاء , د. خاشع الراوي	Yes			
Websites	https://uomosul.edu.iq/engineering/%d9%85%d9%81%d8%b1%d8%af%d8%a7%d8%a a-%d8%a7%d9%84%d9%85%d9%88%d8%a7%d8%af- %d8%a7%d9%84%d8%af%d8%b1%d8%a7%d8%b3%d9%8a%d8%a9/				

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
Success Group	A - Excellent	امتياز	90 - 100	Outstanding Performance	

(50 - 100)	B - Very Good	جيد جدا	80 - 89	Above average with some errors
	C - Good	جيد	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Module Information							
Module Title		Signals and Systems		Modu	le Delivery		
Module Type		Core			☑ Theory		
Module Code		MTE 213			□ Lecture □ Lab		
ECTS Credits		3			□ Tutorial □ Tutorial		
SWL (hr/sem)		75		☐ Practical☐ Seminar			
Module Level		UGII	Semester of Delivery Fou		Four		
Administering Dep	partment	MTE	College	COE			
Module Leader	Zahraa Tarik M	1ohammad	e-mail	zahraata.eng@uomosul.edu.iq		.edu.iq	
Module Leader's A	Acad. Title	Assistant Lecturer	Module Lea	ader's Qualification Ph.D.		Ph.D.	
Module Tutor	Abdullah Murtadha Alfakhrey		e-mail	Alfakhry.abdullah@gmail.com		il.com	
Peer Reviewer Name		Dr. Aws Hazim Anaz	e-mail	aws.anaz@uomosul.edu.iq		ı.iq	
Scientific Committee Approval Date		2024-2025	Version Nu	Version Number 1.0			

Relation with other Modules				
Prerequisite module	None	Semester	None	
Co-requisites module	None	Semester	None	

Module Aims, Learning Outcomes and Indicative Contents					
Module Aims	The aims of this course are:				
أهداف المادة الدراسية	 Coverage of continuous and discrete-time signals and representations and methods that is necessary for the analysis of continuous and discrete-time signals. 				
	To analyze and modify the properties of signals and systems in the time domain.				

3. To understand the relationships between signals and system types and to know time-domain representation and analysis concepts as they relate to difference equations, impulse response, convolution, etc. 4. To Apply the fundamental theories in continuous signal and convert it to discrete signal, then how to manipulate discrete signals. 5. To understand the behavior of signals in the time domain 6. Understand the characteristics of the LTI system. 7. Comprehend the effects of sampling on a continuous-time signal. 8. To understand the properties of the digital signal, sampling, and quantizing. 9. To obtain Mathematical and computational skills needed in application areas like communication, signal processing, and control. 10. Analyze and basic design signals and simple systems. On completion of the course, students should be able to: 1. Understand and classify signals types, functions, operations, and applications 2. Study and classify systems types, operations, and application 3. Checking systems properties stability, time-variant, causality, linearity, and **Module Learning** memory. 4. Represent both signals and systems in multiple forms. **Outcomes** 5. Understand and analyze systems interconnection and block diagrams to be able to modify or build systems. 6. Apply sampling, and the Nyquist theorem and study their effects, display مخرجات التعلم للمادة aliasing problem and solution. 7. Apply quantizing, coding and understand modern digital signal processing الدراسية and its advantages, disadvantages, and application 8. Represent, classify, and manipulate discrete time signal types in terms of graphical, functional, tabular, and sequential (vector). 9. Understand and apply key operations: convolution, deconvolution, correlation, and modulation with their types and relation. Indicative content includes the following. Introduction: Introduces the fundamental knowledge needed for the signals and systems and their application related to real-life requirements such as medical applications and with other engineering fields such as communication, image and video processing, and others. Report and project ideas clarifying and discussion. [6 hrs] Signals representation and properties: Recognize, sketch, and manipulate basic signals commonly used in engineering applications. Define, use, and cite signal types and some simple properties of these basic signals. Classify signals according to their types and a variety of criteria including energy, power, and duration. Use common signal transformation operations and draw **Indicative Contents** them in block diagram form. Competently manipulate complex-valued signals. [12 hrs] المحتوبات الإرشادية Systems manipulation: Formulate the input-output description of continuous-time (CT) linear systems and discrete systems. Classify system types and display system representation methods. Define, state, and identify system properties of linearity, time (in)variance, causality, memory, and stability. Formulate and solve differential equations describing linear, time-invariant (LTI) systems, including their conditions and responses. Analyze and synthesize systems as a composite of sub-systems through series, parallel, and feedback combinations [9 hrs] Discrete-time signals and systems: Generation of DT signals and their representation, classification of Discrete-time signals, mathematical operations of discrete-time signals, and mathematical equations of the discrete-time system. Study the effect of sampling on signals. Applying the Nyquist theorem and its related states. Principle of CT signal Sampling, its objective and its implications, under and over sampling, ideal Sampling and quantization of signals Spectra of sampled signals, aliasing and its effects and solution, and the relation between continuous and discrete time. Quantization properties and implementation. Coding idea and representation. Introduction to digital signal processing with advantages and disadvantages supporting multiple fields application. [9 hrs] Convolution, correlation, and modulation:

Perform convolution with analysis and deconvolution to reconstruct signals. Study and implement convolution and deconvolution multiple types or methods. Relation between Convolution and Correlation, Cross Correlation and Auto Correlation of Functions, Properties of Correlation Functions with applications. Describe the concept and techniques for performing signal modulation in communication systems. Analyze the performance of Amplitude Modulation (AM), Phase Modulation (PM), and Frequency Modulation (FM) systems, displaying other modulation types and methods of modulation. [9 hrs]

Learning and Teaching Strategies

The main strategy that will be adopted in delivering this course is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through:

- 1- Lectures aim to deliver concepts and fundamental knowledge concerning signals and systems types and applications, and increase the ability of students to distinguish, identify, define, formulate, and solve engineering problems by applying principles of engineering, science, and mathematics
- 2- Tutorial sessions are deployed to practice and illustrate the representation of fundamental knowledge of signals and systems in the time domain and discrete and their methods in different practical engineering fields.
- 3- Assignments are arranged to provide the opportunity for students to search for information, analyze problems and discrete data, model their equations, with knowledge obtained, and present the completed tasks.
- 4- Report To give motivation to students and urge them to search for practical applications affecting life and to reveal the relationship between what has been studied with engineering reality and the needs and requirements of life.
- 5- Project- Helping students start their steps towards practical implementation and simulation of ideas and effective applications and their relationship to other engineering aspects such as communications, control, image and video processing, and others.

Strategies

Student Workload (SWL) Structured SWL (h/sem) 48 Structured SWL (h/w) 3.2 الحمل الدراسي المنتظم للطالب أسبوعيا Unstructured SWL (h/w) 1.8

140

الحمل الدراسي غير المنتظم للطالب خلال الفصل		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	75	

Module Evaluation							
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
		mber		Week bue	Outcome		
	Quizzes	2	10% (10)	5, 10	LO #3, 4, 8 and 9		
Formative	Assignments	2	10% (10)	2, 4, 6, 8, 10	LO # 2, 3, 4, 5, 6 and 7		
assessment	Projects / Lab.	1	10% (10)				
	Report	1	10% (10)	13	LO # 4, 5, 6, 7, 8 and 9		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7		
assessment	Final Exam	3 hr	50% (50)	15	All		
Total assessme	Total assessment 100% (100 Marks)						

	Delivery Plan (Weekly Syllabus)				
	Material Covered				
Week 1	Introduction, the basic definition of signals and their main types with examples (continuous and discrete-time signals)				
Week 2	Introduction to systems and their types and application examples				
Week 3	Classification of signals: (continuous-discrete), (analog-digital), (periodic – aperiodic), and (causal–noncausal)				
Week 4	Classification of signals: (even – odd), (power – energy), (deterministic – random), and (finite - infinite length)				
Week 5	Signal operation: shifting, scaling (time and value), inversion (time and value), and combined operation. Signal useful function: unit step (continuous and discrete), ramp, unit impulse (with properties), triangular and complex exponential (continuous and discrete)				
Week 6	Signal expression and representation: graphical form, functional form, and equation form				
Week 7	Mid-term Exam + Signals construction				
Week 8	Sampling theorem: Nyquist low and aliasing problem with solution				
Week 9	Introduction to Quantization and Coding				
Week 10	Discrete-time signal representation types: graphical, functional, tabular, and sequential (vector), Elementary discrete time signal with classification and manipulation				
Week 11	Description and classification of the system with interconnection & block representation)				

Week 12	Introduction to the linear time-invariant system (LTIS) with conditions and System properties (linearity, time-invariant, causality, stability, and memory)
Week 13	Convolution operation and methods: graphical, table look-up, vector by a matrix, add overlap, and analytical method with image (matrix) convolution.
Week 14	Deconvolution method: iterative, polynomial, and graphical method, Correlation types and application: quantitative correlation, cross-correlation, and auto-correlation
Week 15	Modulation: reason, classification, and types (amplitude, frequency, phase, and spread spectrum), Modern digital signal processing advantages, disadvantages, and applications + Report and project discussion
Week 16	Final Exam

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	"Fundamentals of signals and systems", Benoit Boulet, Charles River Media 2006	No			
Recommended Texts	"Signal Processing First", James H., Ronald W., Mark A. Pearson Education, Inc, Pearson Prentice Hall 2003	Yes			
Websites					

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C – Good	جيد	70 - 79	Sound work with notable errors	
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Module Information						
Module Title	Measur	ation	Modu	ıle Delivery		
Module Type	Core				⊠ Theory ⊠ Lecture ⊠ Lab ⊠ Tutorial	
Module Code	MTE 301					
ECTS Credits	6					
SWL (hr/sem)	□ Practical □ Seminar					
Module Level	UGIII		Semester of Delivery		Five	
Administering Department		MTE	College	COE		
Module Leader	Saad Ahmed S	aleh Al Kazzaz	e-mail	kazzazs60@uomosul.edu.iq		u.iq
Module Leader's Acad. Title Assista		Assistant Professor	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Teba Hani Fathi e-mail teba96mecha@gma		mecha@gmail.co	<u>om</u>		
Peer Reviewer Name		Rafid Ahmed Khalil	e-mail	rafidahı	rafidahmedkhalil@uomosul.edu.iq	
Scientific Committee Approval Date		2024-2025	Version Number 1.0			

Relation with other Modules			
Prerequisite module	None	Semester	None
Co-requisites module	None	Semester	None

Module Aims, Learning Outcomes and Indicative Contents	
Module Aims	The aims of the module are to:
أهداف المادة الدراسية	Learn how to work with different components of modern measurement systems and discuss the concepts instrumentations as parts of control system field. Design a practical project to build a measurement system.
Module Learning	On completion of the course, students should be able to:
Outcomes	 introduce the basic functional elements of measurement systems and the system of units

مخرجات التعام المادة	understand the static and dynamic characteristics of the instrument and to obtain the errors in measurements.
مخرجات التعلم للمادة الدراسية	 understand the fundamentals of electrical and electronic instruments, learn how to calibrate and use different types of instruments.
الدراسية	make comparison between various measurement techniques
	5. make analytical analysis of different parts of measurement systems
	6. deal with various transducers, sensors and the data acquisition systems
	7. design a full measurement system.
	Indicative content includes the following.
	UNIT – I:
	Measurement system, Characteristics of instruments,
	Methods of measurement, Errors in Measurement & Measurement standards,
	 Review of indicating and integrating instruments: Voltmeter, Ammeter, Three phase Wattmeter, Multimeter and Energy meter.
	[15 hrs]
	UNIT- II:
	Measurement of low, medium and high resistances,
	2. insulation resistance measurement,
	3. AC bridges for inductance and capacitance measurement.
	[15 hrs]
Indicative Contents	UNIT- III
	Current and Potential transformer, ratio and phase angle errors,
المحتويات الإرشادية	design considerations and testing. [20 hrs]
	UNIT – IV:
	Electronic voltmeter, Multimeter, Wattmeter & energy meter,
	2. Time, Frequency and phase angle measurements using CRO;
	3. Spectrum & Wave analyzer. Digital counter,
	4. frequency meter, voltmeter, multimeter and storage oscilloscope.
	[15 hrs]
	UNIT – V: 1. Transducers, classification & selection of transducers, strain gauges,
	2. Thermistors, Thermocouples, LVDT, Inductive & capacitive transducers,
	3. Piezoelectric and Hall-effect transducers,
	4. Measurement of motion, force, pressure,
	5. temperature, flow and liquid level,
	6. basic concepts of smart sensors and application.
	7. Data Acquisition Systems. [25 hrs]
	Learning and Teaching Strategies
	The main strategy that will be adopted in delivering this module is to encourage
	students' participation in the discussions, while at the same time refining and
	expanding their critical thinking skills.
	This will be achieved through;
Strategies	1- Lectures: aim to deliver concepts and fundamental knowledge in
	measurement techniques, instrumentation and their application in different
	systems.
	2- Tutorial sessions: to give the student the skills to solve and discuss numerical
	problems related to the theory given in lectures.

3-	Laboratory: to perform practical implementation under guidance of lab
	instructor. The students perform the experiments in groups.

- 4- Assignments are arranged to provide the opportunity for students to search for information, analyze problems, model their equations, with knowledge obtained, and present the completed tasks.
- 5- Projects: to give the student the opportunity to develop a simple individual measurement project.

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	93	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	6.2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	57	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.8	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

Module Evaluation						
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	2	10% (10)	5, 10	LO #2, 4, and 7	
Formative	Assignments	5	10% (10)	3, 5, 8, 11, 13	LO # 1-7	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	Continuous		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	3 hr	50% (50)	16	All	
Total assessm	ent		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)		
	Material Covered		
Week 1	Introduction - Units and Dimensions, type of instruments		
Week 2	Errors in measurement systems, Sources of measurement noise, Techniques for reducing measurement noise		
Week 3	Electrical analogue and digital meters		

Week 4	Dc & ac Bridge circuits analysis, effect of measuring instrument internal resistance on output	
	errors	
Week 5	Resistance, inductance and capacitance measurement	
Week 6	Current measurement, frequency and phase measurement	
Week 7		
Week 7	Mid-term Exam	
Week 8	Sensors and Transducers, Sensor Categories, Position and displacement Transducer	
Week 9	Strain gauges, Force Sensors. Torque sensors	
Week 10	Rotational motion transducers, Rotational displacement and velocity, Absolute angular	
WCCK 10	displacement and Velocity, Gyroscopes	
Week 11	Capacitive, resistive and magnetic sensors, Hall effect sensor	
Week 12	D's and all de land as an and till an and a land as an analysis	
Week 12	Piezoelectric transducers and Ultrasonic transducers as rangier	
Week 13	Level measurement and Pressure measurement,	
Week 14	Introduction to MEMS and Vibration sensors	
Week 15	Basic concepts of smart sensors and application.	
MAGEN 13	basic concepts of smart sensors and application.	
Week 16	Preparatory week before the final Exam	

	Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered				
Week 1	Make Introduction to the instruments available in the Lab and explain the working principles				
Week 2	Experiment #1 Obtain practically the Errors in different measurements				
Week 3	Experiment #2 Design and achieve DC & AC analogue meter				
Week 4	Experiment #3 Measurement resistance and strain using Dc Bridge circuits and obtain the effect of measuring instrument internal resistance on the output reading.				
Week 5	Experiment #4 Measurement of inductance and capacitance us AC bridge circuit.				
Week 6	Experiment #5 Measurement of displacement using different ways				
Week 7	Mid-term Exam				
Week 8	Experiment #6 Introduction to Arduino microcontroller, how to connect sensors and how to develop the required software				
Week 9	Experiment #7 Measurement of Force and Torque using different types of sensors.				
Week 10	Experiment #8 Measurement of rotational velocity and displacement.				

Week 11	Experiment #9 Measurement of displacement using proximity magnetic sensors and Hall effect sensor.
Week 12	Experiment #10 Measurement of temperature and humidity using different types of sensors.
Week 13	Experiment #11 Measurement range using ultrasonic transducers
Week 14	Experiment #12 Measurement of fluid level and flow rate
Week 1 5	Final Lab Exam

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	"Measurement and Instrumentation Principles" Third edition, by Alan S. Morris Reference book:	Yes			
Recommended Texts	1- "The Measurement Instrumentation and Sensors Hand Book" by John G. Webster2- "Introduction to Instrumentation Measurement", Second Edition by Robert B. Northrop	No			
Websites	https://www.coursera.org/learn/measuerment-Instrumentation	<u>on</u>			

Grading Scheme						
Group Grade		التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
C	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

	Module Information						
Module Title		Control Systems		Modu	le Delivery		
Module Type		Core			☑ Theory		
Module Code		MTE 302					
ECTS Credits		6			☐ Tutorial		
SWL (hr/sem)		150			☐ Practical ☐ Seminar		
Module Level		UGIII	Semester of Delivery Five		Five		
Administering Dep	partment	MTE	College	COE			
Module Leader	Firas Ahmed M	1ajeed	e-mail	dr.firasa	aldurze@uomosi	ul.edu.iq	
Module Leader's A	Acad. Title	Lecture	Module Lea	ıder's Qu	alification	Ph.D.	
Module Tutor			e-mail				
Peer Reviewer Name		Dr. Aws Hazim Saber Anaz	e-mail aws.anaz@uomosul.edu.iq		ı.iq		
Scientific Committee Approval Date		2024-2025	Version Nu	mber	1.0		

Relation with other Modules			
Prerequisite module	None	Semester	None
Co-requisites module	None	Semester	None

Module Aims, Learning Outcomes and Indicative Contents			
Module Aims أهداف المادة الدراسية	The aims of the module are to 1. Define and explain feedback and feed-forward control architecture and discuss the		
	importance of performance, robustness and stability in control design.		

المحتويات الإرشادية system. On completion of the course, students should be able to: 1. an ability to identify, evaluate and solve engineering problems utilithe acquired principal knowledge of engineering, science, and mathematics. 2. an ability to design an integrated system and its various componer and processes to produce solutions that fulfill the need of society. 3. an ability to communicate effectively using oral, written, and graph forms with different levels of audiences. solve systems 4. an ability to acquire new engineering knowledge and skills in the mechatronics engineering fields. 5. an ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits. Indicative content includes the following. Unit1 [20 hrs] Introduction to Control Systems: Open loop and Closed loop control systems, Mathematical modeling of physical systems, Derivation of transfer function, bloc diagram representation & signal flow graph, Reduction Technique, Mason's Gain Formula. Effect of feedback on control systems. Unit2 [25 hrs] Time Domain Analysis: Time domain performance criteria, transient response of second & higher order systems, steady state errors and static error constants, Performance indices. Concept of Stability: Asymptotic stability and conditional stability, Routh – Hurwing the acquired principal stability and conditional stability, Routh – Hurwing the acquired principal knowledge and solve engineering problems utilities the acquired principal knowledge of engineering problems utilities the acquired principal knowledge of engineering problems utilities and solve engineering problems utilities and produce solutions that full the need of society. 1. an ability to design an integrated system and its various component and produces solutions that full the need of society. 2. an ability to design an integrated system and its various component and produces solutions that full the need of society. 3. an ability to design an integrated system and its various component and p		
3. Compute stability of linear systems using the Routh array test and use this to generate control design constraints. 4. Use Evans root locus techniques in control design for real world systems. 5. Compute gain and phase margins from Bode diagrams. 6. Design Lead-Lag compensators based on frequency data for an open-loop linear system. On completion of the course, students should be able to: 1. an ability to identify, evaluate and solve engineering problems utility the acquired principal knowledge of engineering, science, and mathematics. 2. an ability to design an integrated system and its various componer and processes to produce solutions that fulfill the need of society. 3. an ability to communicate effectively using oral, written, and graph forms with different levels of audiences. solve systems 4. an ability to acquire new engineering knowledge and skills in the mechatronics engineering fields. 5. an ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits. Indicative content includes the following. Unit1 [20 hrs] Introduction to Control Systems: Open loop and Closed loop control systems, Mathematical modeling of physical systems, Derivation of transfer function, bloc diagram representation & signal flow graph, Reduction Technique, Mason's Gain Formula. Effect of feedback on control systems. Unit2 [25 hrs] Time Domain Analysis: Time domain performance criteria, transient response of second & higher order systems, steady state errors and static error constants, Performance indices. Concept of Stability: Asymptotic stability and conditional stability, Routh – Hurwing the process of t		
generate control design constraints. 4. Use Evans root locus techniques in control design for real world systems. 5. Compute gain and phase margins from Bode diagrams . 6. Design Lead-Lag compensators based on frequency data for an open-loop lineal system. On completion of the course, students should be able to: 1. an ability to identify, evaluate and solve engineering problems utiling the acquired principal knowledge of engineering, science, and mathematics. 2. an ability to design an integrated system and its various componer and processes to produce solutions that fulfill the need of society. 3. an ability to communicate effectively using oral, written, and graph forms with different levels of audiences, solve systems. 4. an ability to acquire new engineering knowledge and skills in the mechatronics engineering fields. 5. an ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits. Indicative content includes the following. Unit1 [20 hrs] Introduction to Control Systems: Open loop and Closed loop control systems, Mathematical modeling of physical systems, Derivation of transfer function, bloc diagram representation & signal flow graph, Reduction Technique, Mason's Gain Formula. Effect of feedback on control systems. Unit2 [25 hrs] Time Domain Analysis: Time domain performance criteria, transient response of second & higher order systems, steady state errors and static error constants, Performance indices. Concept of Stability: Asymptotic stability and conditional stability, Routh – Hurwing the systems are proposed to the systems of the proposed control systems and the proposed control stability, Routh – Hurwing the proposed control systems are proposed control systems. Concept of Stability: Asymptotic stability and conditional stability, Routh – Hurwing the proposed control systems are proposed control stability.		PID controllers based on empirical tuning rules.
A. Use Evans root locus techniques in control design for real world systems. 5. Compute gain and phase margins from Bode diagrams . 6. Design Lead-Lag compensators based on frequency data for an open-loop lineal system. On completion of the course, students should be able to: 1. an ability to identify, evaluate and solve engineering problems utiling the acquired principal knowledge of engineering, science, and mathematics. 2. an ability to design an integrated system and its various componer and processes to produce solutions that fulfill the need of some and processes to produce solutions that fulfill the need of some solutions with different levels of audiences. solve systems 4. an ability to acquire new engineering knowledge and skills in the mechatronics engineering fields. 5. an ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits. Indicative content includes the following. Unit1 [20 hrs] Introduction to Control Systems: Open loop and Closed loop control systems, Mathematical modeling of physical systems, Derivation of transfer function, blood diagram representation & signal flow graph, Reduction Technique, Mason's Gain Formula. Effect of feedback on control systems. Unit2 [25 hrs] Time Domain Analysis: Time domain performance criteria, transient response of second & higher order systems, steady state errors and static error constants, Performance indices. Concept of Stability: Asymptotic stability and conditional stability, Routh – Hurwing the systems and processes		3. Compute stability of linear systems using the Routh array test and use this to
S. Compute gain and phase margins from Bode diagrams . 6. Design Lead-Lag compensators based on frequency data for an open-loop lineal system. On completion of the course, students should be able to: 1. an ability to identify, evaluate and solve engineering problems utility the acquired principal knowledge of engineering, science, and mathematics. 2. an ability to design an integrated system and its various componer and processes to produce solutions that fulfill the need of society. 3. an ability to communicate effectively using oral, written, and graph forms with different levels of audiences. solve systems 4. an ability to acquire new engineering knowledge and skills in the mechatronics engineering fields. 5. an ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits. Indicative content includes the following. Unit1 [20 hrs] Introduction to Control Systems: Open loop and Closed loop control systems, Mathematical modeling of physical systems, Derivation of transfer function, bloc diagram representation & signal flow graph, Reduction Technique, Mason's Gain Formula. Effect of feedback on control systems. Unit2 [25 hrs] Time Domain Analysis: Time domain performance criteria, transient response of second & higher order systems, steady state errors and static error constants, Performance indices. Concept of Stability: Asymptotic stability and conditional stability, Routh – Hurwing the systems of the properties of the systems of the properties of t		generate control design constraints.
Module Learning Outcomes Dutcomes On completion of the course, students should be able to: 1. an ability to identify, evaluate and solve engineering problems utility the acquired principal knowledge of engineering, science, and mathematics. 2. an ability to design an integrated system and its various componer and processes to produce solutions that fulfill the need of society. 3. an ability to communicate effectively using oral, written, and graph forms with different levels of audiences. solve systems 4. an ability to acquire new engineering knowledge and skills in the mechatronics engineering fields. 5. an ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits. Indicative content includes the following. Unit1 [20 hrs] Introduction to Control Systems: Open loop and Closed loop control systems, Mathematical modeling of physical systems, Derivation of transfer function, bloc diagram representation & signal flow graph, Reduction Technique, Mason's Gain Formula. Effect of feedback on control systems. Unit2 [25 hrs] Time Domain Analysis: Time domain performance criteria, transient response of second & higher order systems, steady state errors and static error constants, Performance indices. Concept of Stability: Asymptotic stability and conditional stability, Routh – Hurwing the systems and static error constants, Performance indices.		4. Use Evans root locus techniques in control design for real world systems.
System. On completion of the course, students should be able to: 1. an ability to identify, evaluate and solve engineering problems utilithe acquired principal knowledge of engineering, science, and mathematics. 2. an ability to design an integrated system and its various componer and processes to produce solutions that fulfill the need of society. 3. an ability to communicate effectively using oral, written, and graph forms with different levels of audiences. solve systems 4. an ability to acquire new engineering knowledge and skills in the mechatronics engineering fields. 5. an ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits. Indicative content includes the following. Unit1 [20 hrs] Introduction to Control Systems: Open loop and Closed loop control systems, Mathematical modeling of physical systems, Derivation of transfer function, bloc diagram representation & signal flow graph, Reduction Technique, Mason's Gain Formula. Effect of feedback on control systems. Unit2 [25 hrs] Time Domain Analysis: Time domain performance criteria, transient response of second & higher order systems, steady state errors and static error constants, Performance indices. Concept of Stability: Asymptotic stability and conditional stability, Routh – Hurwing the acquired principal stability and conditional stability, Routh – Hurwing the acquired principal stability and conditional stability.		5. Compute gain and phase margins from Bode diagrams .
Module Learning Outcomes 1. an ability to identify, evaluate and solve engineering problems utility the acquired principal knowledge of engineering, science, and mathematics. 2. an ability to design an integrated system and its various component and processes to produce solutions that fulfill the need of society. 3. an ability to communicate effectively using oral, written, and graph forms with different levels of audiences. solve systems 4. an ability to acquire new engineering knowledge and skills in the mechatronics engineering fields. 5. an ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits. Indicative content includes the following. Unit1 [20 hrs] Introduction to Control Systems: Open loop and Closed loop control systems, Mathematical modeling of physical systems, Derivation of transfer function, bloc diagram representation & signal flow graph, Reduction Technique, Mason's Gain Formula. Effect of feedback on control systems. Unit2 [25 hrs] Time Domain Analysis: Time domain performance criteria, transient response of second & higher order systems, steady state errors and static error constants, Performance indices. Concept of Stability: Asymptotic stability and conditional stability, Routh – Hurwing the acquired principal knowledge of engineering fields.		6. Design Lead-Lag compensators based on frequency data for an open-loop linear system.
Indicative content includes the following. Unit1 [20 hrs] Introduction to Control Systems: Open loop and Closed loop control systems, Mathematical modeling of physical systems, Derivation of transfer function, bloc diagram representation & signal flow graph, Reduction Technique, Mason's Gain Formula. Effect of feedback on control systems. Unit2 [25 hrs] Time Domain Analysis: Time domain performance criteria, transient response of second & higher order systems, steady state errors and static error constants, Performance indices. Concept of Stability: Asymptotic stability and conditional stability, Routh – Hurwing the second in the second	Outcomes	 an ability to identify, evaluate and solve engineering problems utilizing the acquired principal knowledge of engineering, science, and mathematics. an ability to design an integrated system and its various components and processes to produce solutions that fulfill the need of society. an ability to communicate effectively using oral, written, and graphic forms with different levels of audiences. solve systems an ability to acquire new engineering knowledge and skills in the mechatronics engineering fields.
Introduction to Control Systems: Open loop and Closed loop control systems, Mathematical modeling of physical systems, Derivation of transfer function, bloc diagram representation & signal flow graph, Reduction Technique, Mason's Gain Formula. Effect of feedback on control systems. Unit2 [25 hrs] Time Domain Analysis: Time domain performance criteria, transient response of second & higher order systems, steady state errors and static error constants, Performance indices. Concept of Stability: Asymptotic stability and conditional stability, Routh – Hurwing the second was a second		
and inverse polar plots, frequency domain specifications, Logarithmic plots (Bode		Unit1 [20 hrs] Introduction to Control Systems: Open loop and Closed loop control systems, Mathematical modeling of physical systems, Derivation of transfer function, block diagram representation & signal flow graph, Reduction Technique, Mason's Gain Formula. Effect of feedback on control systems. Unit2 [25 hrs] Time Domain Analysis: Time domain performance criteria, transient response of first, second & higher order systems, steady state errors and static error constants, Performance indices. Concept of Stability: Asymptotic stability and conditional stability, Routh – Hurwitz criterion, relative stability analysis, Root Locus plots and their applications.

State Space Analysis: Definitions of state, state variables, state space, representation
of systems.
Controllers and Compensation Techniques: Response with P, PI and PID Controllers,
Concept of compensation, Lag, Lead and Lag-Lead Compensation

Learning and Teaching Strategies					
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1- Lectures - aim to deliver fundamental knowledge in relation to control systems and the application of the theories to practical examples. 2- Tutorial sessions - are deployed to illustrate the application of fundamental knowledge of control systems to different practical exercises. 3- Assignments - are arranged to provide the opportunity for students to search for information, analyze control systems with knowledge obtained, and present the completed tasks.				

Student Workload (SWL)						
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	93	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	6.2			
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	57	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.8			
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150					

Module Evaluation								
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning			
		mber		WEEK DUE	Outcome			
	Quizzes	2	10% (10)	5, 10	LO #1-5			
Formative	Assignments	2	10% (10)	3, 12	LO #1-5			
assessment	Projects / Lab.	1	10% (10)	Continuous				
	Report	1	10% (10)	Continuous				
	Midterm Exam	2 hr	10% (10)	7	LO # 1-5			

Summative assessment	Final Exam	3 hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)
	Material Covered
Week 1	Introduction to Control, Classification of Dynamic Systems.
Week 2	Closed Loop Control System with Feedback, Mathematical Preliminaries – Complex Variables, Laplace Transform.
Week 3	Standard Inputs, Free and Forced Response, Transfer Function, Poles and Zeros.
Week 4	Response to various Inputs, Effect of Poles, Notion of Bounded Input Bounded Output (BIBO) stability.
Week 5	Effect of Zeros, Closed Loop Transfer Function, Dynamic Performance Specification, First Order Systems.
Week 6	Second Order Systems, Unit Step Response of Underdamped Second Order Systems, Concepts of Rise Time, Peak Time, Maximum Peak Overshoot and Settling Time.
Week 7	Mid-term Exam
Week 8	Controllers – Proportional (P), Integral (I) and Derivative (D) Blocks, Examples of PID controller design.
Week 9	Routh's Stability Criterion, Use in Control Design, Incorporation of Performance Specifications in Controller Design.
Week 10	Analysis of Steady State Errors.
Week 11	Root Locus and its Application in Control Design.
Week 12	Frequency Response, Bode Plots.
Week 13	Nyquist Plots, Nyquist Stability Criterion.
Week 14	Relative Stability – Gain and Phase Margins.
Week 15	Control System Design via Frequency Response – Lead, Lag and Lag-Lead Compensation.
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)			
	Material Covered			
Week 1	MATLAB-The Language of Technical Computing			
Week 2	Transfer Function and Converting Between System Representations			

Week 3	Introduction to Matlab Simulink
Week 4	Time domain for second order system in Matlab
Week 5	DC Motor Position: Simulink Modeling
Week 6	Servo Motor: Simulink Modeling
Week 7	PID controller

Learning and Teaching Resources						
Text Library?						
Required Texts	Benjamin C. Kuo, Automatic Control Systems, Prentice Hall	Yes				
Recommended Texts	J. Nagrath& M. Gopal, Control System Engineering, New Age International	Yes				
Websites	https://www.coursera.org/learn/ engineering					

Grading Scheme						
Group	Group Grade		Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Crown	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Module Information								
Module Title	S	Signal Processing		Modu	ıle Delivery			
Module Type				☑ Theory				
Module Code		MTE 303			☐ Lecture ☐ Lab			
ECTS Credits				☐ Tutorial				
SWL (hr/sem)		100			☐ Practical☐ Seminar			
Module Level		UGIII	Semester of Delivery Five		Five			
Administering Dep	partment	MTE	College	COE				
Module Leader	Aws Anaz		e-mail	aws.anaz@uomosul.edu.iq				
Module Leader's A	Acad. Title	Lecturer	Module Leader's Qualification Ph.D.		Ph.D.			
Module Tutor			e-mail					
Peer Reviewer Name Dr		Dr. Rafid Ahmed	e-mail <u>rafidahmedkhalil@uomosul.</u>		iosul.edu.iq			
Scientific Committee Approval Date		2024-2025	Version Nu	mber	1.0			

Relation with other Modules					
Prerequisite module	None	Semester	None		
Co-requisites module	None	Semester	None		

Modu	Module Aims, Learning Outcomes and Indicative Contents					
The aims of the module are to						
Module Aims	11. Understand the Fundamentals of signal processing and their significance in Engineering applications.					
أهداف المادة الدراسية	 12. Introduce the student to the terminology, principles, and methods used in discrete-time signals 13. Teach student the design fundamental of DSP filters. 14. Provide the student with the background necessary to understand analytical 					
	tools to transform, analyze, and design digital signal processing systems 15. Know about the working of different types of devices used in DSP systems					

On completion of the course students should be able to: 6. Understand mathematical description and representation of continuous and **Module Learning** discrete time signals and systems. 7. Develop input output relationship for linear shift invariant system and **Outcomes** understand the convolution operator for continuous and discrete time system. 8. Understand and resolve the signals in frequency domain using Fourier مخرجات التعلم للمادة transforms. 9. Analyze the discrete time signals and system using different transform الدراسية domain techniques. 10. Design and implement LTI filters for filtering different real-world signals. 11. Develop different signal processing applications using DSP processor. Indicative content includes the following. Part A Introduction - Review of Linear Continuous-Time Signal Processing Fourier methods, Laplace transform, convolution, frequency/time domain processing. [4 hrs] Introduction to Real-Time Computation Data converters (A/D, D/A), machine architecture, Sampling theorem, aliasing, quantization, sampled data systems [4 hrs] Part B **Discrete-Time Signal Processing** The z transform, difference equations, relationship between F(z) and F*(jw), mappings between s-domain and z-domain, inverse z transform. Discrete-time stability. [12 hrs] **Indicative Contents** Discrete Spectral Analysis The DFT and its relationship to the continuous FT, the FFT and implementations المحتويات الإرشادية (decimation in time and frequency). Uses of the DFT: convolution — (overlap and add, select savings), correlation. [8 hrs] Part C Real-Time Simulation Methods Using Difference Equations Impulse-, step-, ramp-invariant simulations. Matched poles/zeros, bilinear transform methods. Error analysis. [12 hrs] Part D Filter Design — Continuous and Discrete Butterworth, elliptic, Chebyshev low-pass filters. Low-pass design methods based on continuous prototypes. Realizations. Conversion to high-pass, band-pass, band-stop filters. Discrete-time filters: IIR and FIR. Linear phase filters. Frequency sampling filters. [20 hrs]

Learning and Teaching Strategies

- 1			
		The main strategy that will be adopted in delivering this module is to encourage	
		students' participation in the discussions, while at the same time refining and	
		expanding their critical thinking skills.	
		This will be achieved through;	
		1- Lectures - aim to deliver fundamental knowledge in relation to signal processing	
	Strategies	and the application of the theories to practical examples.	
		2- Project - is deployed to illustrate the application of fundamental knowledge of DSP	
		to different practical exercises.	
		3- Assignments - are arranged to provide the opportunity for students to search for	
		information, analyze signal processing systems with knowledge obtained, and present	
		the completed tasks.	

Student Workload (SWL)					
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	63	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4.2		
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	37	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2.5		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	100				

Module Evaluation						
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning	
		mber	Weight (Wants)		Outcome	
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 3 and 6	
Formative	Assignments	2	10% (10)	2, 12	LO # 4, 5	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 6	
Summative	Midterm Exam	2hrs	10% (10)	7	LO # 1-4	
assessment	Final Exam	3hrs	50% (50)	16	All	
Total assessme	Total assessment 100% (100 Marks)					

	Delivery Plan (Weekly Syllabus)		
	Material Covered		
Week 1	Week 1 Introduction - Review of Linear Continuous-Time Signal Processing		

	Fourier methods, Laplace transform	
Week 2	Review of Linear Continuous-Time Signal Processing	
	Convolution, frequency/time domain processing	
Week 3	Introduction to Real-Time Computation	
	Data converters (A/D, D/A), machine architecture	
Week 4	Sampling theorem, aliasing, quantization, sampled data systems	
Week 5	Discrete-Time Signal Processing	
Weeks	The z transform, difference equations, relationship between F(z) and F*(jw)	
Week 6	Mappings between s-domain and z-domain, inverse z transform. Discrete—time stability.	
Week 7	Mid-term Exam + Discrete Spectral Analysis: The DFT and its relationship to the continuous FT.	
Week 8	the FFT and implementations (decimation in time and frequency). Uses of the DFT: convolution —	
vveek o	(overlap and add, select savings), correlation	
	Real-Time Simulation Methods Using Difference Equations: Impulse-, step-, ramp-invariant	
Week 9	simulations.	
Week 10	Matched poles/zeros, bilinear transform methods. Error analysis.	
Week 11	Filter Design — Continuous and Discrete: Butterworth, elliptic, Chebyshev low-pass filters.	
Week 12	Filter Design — Continuous and Discrete: Digital Low-pass design methods based on continuous	
W1-42	prototypes.	
Week 13	Filter Design — Continuous and Discrete: Digital Filter Realizations	
Week 14	Filter Design — Continuous and Discrete: Conversion to high-pass, band-pass, band-stop filters.	
Wook 15	Filter Design — Continuous and Discrete: Discrete-time filters: IIR and FIR. Linear phase filters.	
Week 15	Frequency sampling filters.	
Week 16	Preparatory week before the final Exam	

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	Proakis, John G., and Dmitris K. Manolakis. Digital Signal Processing. 4th ed. Upper Saddle River, NJ: Prentice Hall, 2006. ISBN: 9780131873742	No			
Recommended Texts	Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1999. ISBN: 9780137549207.	No			
Websites	https://classroom.google.com/c/NTgzNTA4NDgxODZa?cjc=mv	<u>rqnjt</u>			

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49) F – Fail		راسب	(0-44)	Considerable amount of work required	

Module Information						
Module Title	Microproc	essor and Assembly L	anguage	Modu	ıle Delivery	
Module Type		Core			☑ Theory	
Module Code		MTE 304			Lecture Lab	
ECTS Credits		6			□ Tutorial □ Tutorial	
SWL (hr/sem)		150	☐ Practical ☐ Seminar			
Module Level	ule Level UGIII		Semester o	ester of Delivery Five		Five
Administering Dep	partment	MTE	College	COE		
Module Leader	Dr. Mohamme	d Yaseen	e-mail	moham	med.alnuaimi@	uomosul.edu.iq
Module Leader's A	Acad. Title	Lecturer	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Abdullah Murtadah e-mail Alfakhry.abdullah@gn		y.abdullah@gma	il.com		
Peer Reviewer Name Dr. Rafid Ahmed		e-mail	rafidahmedkhalil@uomosul.edu.iq		mosul.edu.iq	
Scientific Committee Approval Date 2024-2025 Version N		Version Nu	mber	1.0		

Relation with other Module					
Prerequisite module	None	Semester	None		
Co-requisites module	None	Semester	None		

Module Aims, Learning Outcomes and Indicative Contents			
Module Aims أهداف المادة الدراسية	 Develop Understanding: To provide students with a comprehensive understanding of microprocessors, specifically the 8086/8088 microprocessors, and their microarchitectures. Learn Assembly Language: To introduce students to the software model of 8086 microprocessors, focusing on the assembly language, its syntax, semantics, and the assembly process. 		

	 Understand Addressing Modes: To equip students with knowledge of different addressing modes - Register, Immediate, and Memory addressing modes. Master Instructions: To instruct students in various assembly language instructions, including data transfer, arithmetic, logic, and control instructions. Explore Advanced Concepts: To familiarize students with advanced assembly language topics, including shift and rotate statements, formulation of assembly loops, and usage of subroutines and strings in assembly language. Promote Hands-On Experience: To offer students practical experience in assembly language programming through lab sessions and a final project, reinforcing their theoretical knowledge with practical skills. Apply Learning: To encourage students to apply their knowledge in assembly language to design and implement a microprocessor-based project, demonstrating their understanding and competency in the subject.
	On completion of the course students should be able to:
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Understanding Microprocessors: Students will be able to demonstrate a clear understanding of the principles of microprocessors, specifically the architecture and functionality of the 8086/8088 microprocessors. Mastering Assembly Language: Students will be proficient in the assembly language related to the 8086 microprocessors, including its syntax, semantics, and the process of assembly. Applying Addressing Modes: Students will be able to effectively apply different addressing modes - Register, Immediate, and Memory - in assembly language programming. Executing Instructions: Students will understand and effectively use various assembly language instructions including data transfer, arithmetic, logic, and control instructions. Understanding Advanced Concepts: Students will demonstrate competency in advanced assembly language topics, such as shift and rotate statements, the formulation of assembly loops, and the usage of subroutines and strings in assembly language. Practical Application: Students will be able to design and implement a basic assembly language program using 8086 microprocessors, demonstrating their ability to apply their theoretical knowledge practically. Project Development: By the end of the module, students will have developed, presented, and evaluated a project involving the 8086/8088 assembly language, reflecting their overall understanding and competency in the subject.
Indicative Contents	1. Microprocessors and Microcomputers: Introduction to
المحتويات الإرشادية	microprocessors and microcomputers, including the historical
" J ² - "J- 33	development, basic components, and operation of these systems. [10 hrs.]

- 2. **System Numbers:** Review of binary, decimal, hexadecimal number systems and conversions, and arithmetic operations in these systems. [10 hrs.]
- 3. **Microarchitecture of 8086 Microprocessors:** In-depth exploration of the structure, functions, and operations of the 8086 microprocessor. [10 hrs.]
- 4. **Assembly Language Basics:** Introduction to the 8086 assembly language, including its syntax, semantics, and assembly process. [10 hrs.]
- 5. **Addressing Modes:** Discussion of Register, Immediate, and Memory addressing modes, their uses and applications in assembly programming. [10 hrs.]
- 6. **Assembly Language Instructions:** Detailed study of data transfer, arithmetic, logic, and control instructions in the 8086 assembly language. [10 hrs.]
- 7. **Advanced Assembly Topics:** Exploration of shift and rotate statements, formulation of assembly loops, usage of subroutines, and manipulation of strings in the 8086 assembly language. [10 hrs.]
- 8. **Practical Programming:** Hands-on practice in assembly language programming, with coding exercises and labs covering all the key areas of the course. [10 hrs.]
- 9. **Final Project:** Design and implementation of a project involving the 8088/8086 assembly language, demonstrating students' overall understanding and competency in the subject. [10 hrs.]

Each of these indicative contents covers a specific aspect of the module and is directly aligned with the module's learning outcomes. They ensure that students gain a comprehensive understanding of microprocessors, especially the 8086, and assembly language, from basic concepts to advanced topics.

Learning and Teaching Strategies 1. Lectures: Traditional lectures will be the primary method for delivering course content. This approach allows for in-depth coverage of the theory behind microprocessors and assembly language. Multimedia presentations and real-world examples can be used to enhance understanding. 2. **Interactive Discussions:** Engage students in class discussions to clarify concepts and encourage critical thinking. This could be based on the lecture content, assigned readings, or problems from past exams. 3. **Practical Labs:** These provide hands-on experience in programming in **Strategies** assembly language, using the various addressing modes, instructions, and advanced assembly techniques. Labs are instrumental in bridging the gap between theoretical knowledge and practical implementation. 4. **Problem-solving Sessions:** Regular sessions can be organized where students solve problems or execute tasks related to microprocessors and assembly language. This aids in reinforcing classroom learning. 5. **Group Work:** Encourage students to work in small groups for certain lab tasks or problems. This promotes collaborative learning and prepares students for teamwork in professional environments.

- 6. **Project-Based Learning:** The course includes a final project where students apply the knowledge and skills they've acquired throughout the course. This helps in developing a deeper understanding of the subject, as well as practical skills.
- 7. **Self-Learning:** Encourage students to use self-learning resources like online tutorials, programming exercises, and research articles. This fosters independent learning, a critical skill for lifelong learning.
- 8. **Feedback:** Provide regular feedback on students' lab work, problem-solving exercises, and the final project. This helps students understand their strengths and areas needing improvement.
- 9. **Office Hours:** Offer office hours for students to seek help with course content, labs, or the final project. This gives students an opportunity for personalized learning and assistance.

These strategies cater to different learning styles and provide a comprehensive, inclusive, and engaging learning experience. They balance the need for theoretical knowledge with the importance of practical skills.

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	93	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	6.2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	57	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.8	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

Module Evaluation							
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
		mber	weight (wanks)	Week Due	Outcome		
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 3 and 4		
Formative	Assignments	2	10% (10)	2, 12	LO 5, and 6		
assessment Projects / Lab. Report		1	15% (10)	Continuous			
		1	5% (10)	13	LO #1, 2, and 7		
Summative	Midterm Exam	2hr	10% (10)	7	LO #1, 2, 4, 5, 6		
assessment	Final Exam	3hr	50% (50)	16	All		
Total assessme	Total assessment 100% (100 Marks)						

	Delivery Plan (Weekly Syllabus)			
	Material Covered			
Week 1	Introduction to microprocessors and microcomputers: History, evolution and an overview of system numbers.			
Week 2	Detailed exploration of the 8086 microprocessors and their Microarchitectures.			
Week 3	The 8086 microprocessors software model, and basic assembly language concepts.			
Week 4	Register and Immediate addressing mode, including practical exercises.			
Week 5	Memory addressing mode, complemented with coding exercises.			
Week 6	Data transfer instructions, with hands-on coding sessions.			
Week 7	Mid-term Exam + Assembly Arithmetic instructions and application in coding			
Week 8	Assembly logic instructions			
Week 9	Control instructions and their applications in coding.			
Week 10	Shift and rotate statements and instructions			
Week 11	Formulation and creation of assembly loops			
Week 12	Introduction to subroutines and strings in 8088/8086 assembly language.			
Week 13	Review and reinforcement of key concepts, doubt clearing, and feedback.			
Week 15	Student Project Discussion			
Week 16	Preparatory week before the final Exam			
	Delivery Plan (Weekly Lab. Syllabus			
	Material Covered			
Week 1	Introduction - Setup of the assembly language development environment, familiarization with debugging and simulation tools.			
	Addressing Modes - Perform operations using Register and Immediate addressing modes, and			
Week 2	interpret the results.			
Wook 2	Memory Addressing Mode - Write a simple program to understand memory addressing mode and			
Week 3	observe its functioning in real time.			
Week 4	Data Transfer and Arithmetic Instructions - Implement basic programs for data transfer and to			
WEER 4	perform arithmetic operations.			
Week 5	Control Instructions and Logic Instructions - Design basic programs implementing control and logic			
	instructions.			

Week 6	Shift and Rotate Instructions, and Assembly Loops - Use shift and rotate instructions in different scenarios and create assembly loops in a program.
Week 7	Subroutines and Strings - Write programs implementing subroutines and manipulating strings.

Learning and Teaching Resources				
	Available in the Library?			
Required Texts	Walter A. Triebel, Avtar Singh, "The 8088 and 8086 Microprocessors: Programming, Interfacing, Software, Hardware, and Applications", Fourth Edition, Pearson Education Ltd, 2014.	Yes		
Recommended Texts	W. Triebel, A. Singh, "The 8088 and 8086 Microprocessors", Fourth Edition, Pearson Education Ltd, 2018.	Yes		
Websites	https://www.udemy.com/course/microprocessor-and-assemb	oly-language/		

Grading Scheme					
Group	Grade	de التقدير Marks		Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Module Information						
Module Title	Mechanical Engineering Laboratory			Modu	le Delivery	
Module Type		Core			☐ Theory	
Module Code		MTE 305			□ Lecture 図 Lab	
ECTS Credits		2			☐ Tutorial	
SWL (hr/sem)		50			□ Practical□ Seminar	
Module Level		UGIII	Semester o	f Deliver	У	Five
Administering Dep	partment	MTE	College		COE	
Module Leader	Laith Mohammed Jasim		e-mail	Jasiml68@uomosul.edu.iq		<u>.iq</u>
Module Leader's A	Acad. Title	Assistant Professor	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Hassan Mudhafar Saeed Ahmad Wadollah Saleh Islam Abdullah Aziz Zahraa reyad Mahmood Abdullah Murtadha Alfakhrey Ahmed Abdulkareem Muhammad Amena Fawzy Teba Hani Fathi		e-mail	ahmada islamab zahraa.t Alfakhry Ahmedi enamin	81@uomosul.edu Ilsabawi@uomos d@uomosul.edu reyad@uomosul. 7.abdullah@gma mechatronics93@ afawzy@gmail.co	sul.edu.iq .iq .edu.iq il.com @gmail.com
Peer Reviewer Name		Dr. Loay Younes Aldabbagh	e-mail loayaldabbagh@uomosul.edu.id		ul.edu.iq	
Scientific Committee Approval Date 2024-2025 Version Number 1.0		1.0				

Relation with other Modules					
Prerequisite module	None	Semester	None		
Co-requisites module	None	Semester	None		

Modu	le Aims, Learning Outcomes and Indicative Contents
Module Aims أهداف المادة الدراسية	 The aims of the module are to have students perform laboratory experiments in various areas of mechanical engineering to reinforce concepts presented in the Department's core courses. expose students to experimental equipment, data collection, and reporting which would support the theoretical background obtained in these topics. Identify measuring devices and study the mechanism of their work.
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 4. teamwork practice training. On completion of the course, students should be able to: apply general safety rules while carrying out experiments. measure the coefficient of friction. determine the behavior of materials when subjected to torsion and to obtain a Modulus of Rigidity. investigate the relationship between a force and the extension of a spring and obtain a constant of a spring. find experimentally the reactions at the supports of a simply supported beam and compare the results with analytical values. determine the amount of energy absorbed by a material during fracture. determine the constant of proportionality (the thermal conductivity k) for one-dimensional steady flow of heat. demonstrate unsteady heat transfer to a lumped mass. Determine the heat transfer coefficient for a flow around a cylinder under free and forced convection. obtain the performance characteristics of a centrifugal pump. validate Bernoulli's assumptions and theorem by experimentally proving that the sum of the terms in the Bernoulli equation along a streamline always remains a constant. obtain the coefficient of discharge from experimental data by utilizing venturi meter and, also the relationship between Reynolds number and the coefficient of discharge. estimate the head loss that occurs due to the flow of the fluid. investigate the reaction forces produced by the change in momentum of a
Indicative Contents المحتويات الإرشادية	Indicative content includes the following. Part A: Applied mechanics experiments- introduction to the laboratory, Friction on Inclined Plane, Reaction of Beams. [6 hrs] Part B: Materials experiments- Torsion of Bar, Hook's Law, Impact Test. [6 hrs] Mid-term Exam. [2 hrs] Part C: Heat transfer experiments- One Dimensional Heat Conduction, Transient Heat Transfer, Force Convection from a Cylinder in a Cross Flow. [6 hrs] Part D: Fluid mechanics experiments- Centrifugal Pump Performance, Verification of Bernoulli Equation, Venturi Meter Apparatus, Losses in Piping Systems, Impact of a Jet. [10 hrs]

Learning and Teaching Strategies				
	The main strategy that will be adopted in delivering this module is to encourage			
	students' participation in the discussions, while at the same time refining and			
	expanding their critical thinking skills.			
	This will be achieved through;			
	1- Lectures - aim to deliver concepts and fundamental knowledge in relation to the			
Strategies	subject of the experiment.			
	2- Conducting experiments- aims to teach students to make use of laboratory			
	equipment to study mechanical phenomena and provide essential knowledge of basic			
	laboratory measurement techniques and how to collect experimental results.			
	3- Report -Learn how to write technical reports in the form of engineering reports and			
	executive summaries and analyze and interpret the data.			

Student Workload (SWL)						
Structured SWL (h/sem) 33 Structured SWL (h/w) 2						
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	17	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	1.133			
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	50					

Module Evaluation					
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning
		mber	weight (wanks)	Week Due	Outcome
	Quizzes	2	10% (10)	5, 10	LO #1-8
Formative	Assignments	1	5% (10)	9	LO # 7
assessment	Projects / Lab.	1	15% (15)	Continuous	All
	Report	1	10% (10)	Continuous	All
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hr	50% (50)	16	All
Total assessment			100% (100 Marks)		

Delivery Plan (Weekly Lab. Syllabus)
Material Covered

Week 1	An introduction to the laboratory and familiarization with public safety procedures.
Week 2	Experiment 1: Friction on Inclined Plane.
Week 3	Experiment 2: Torsion of Bar.
Week 4	Experiment 3: Hook's Law.
Week 5	Experiment 4: Reaction of Beams.
Week 6	Experiment 5: Impact Test.
Week 7	Experiment 6: One Dimensional Heat Conduction.
Week 8	Mid-term Exam
Week 9	Experiment 7: Transient Heat Transfer.
Week 10	Experiment 8: Force Convection from a Cylinder in a Cross Flow.
Week 11	Experiment 9: Centrifugal Pump Performance.
Week 12	Experiment 10: Verification of Bernoulli Equation.
Week 13	Experiment 11: Venturi Meter Apparatus.
Week 14	Experiment 12: Losses in Piping Systems.
Week 15	Experiment 13: Impact of a Jet.
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	Technical Documents for Laboratory Equipment	Yes			
Recommended Texts	J.P. Holman, Experimental Methods for Engineers, 8 th Edition, McGraw-Hill, 2012.	No			
Websites		•			

Grading Scheme				
Group	Grade	9) Marks التقدير		Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Module Information							
Module Title	,		Modu	le Delivery			
Module Type		Core			☑ Theory		
Module Code		MTE 306			⊠ Lecture □Lab		
ECTS Credits		6			□ Tutorial □		
SWL (hr/sem)		150			☐ Practical☐ Seminar		
Module Level	UGIII		Semester of Delivery		Five		
Administering Dep	partment	MTE	MTE College		COE		
Module Leader	Saad Zaghlul S	aeed	e-mail	saeeds70@uomosul.edu.iq		<u>u.iq</u>	
Module Leader's A	Acad. Title	Assistant Professor Module Lead		der's Qu	alification	Ph.D.	
Module Tutor	Noor Jamal		e-mail	noor.jamal@uomosul.edu.iq		du.iq	
Peer Reviewer Name		Dr. Hassan M. Saeed e-mail		saeedh	saeedh81@uomosul.edu.iq		
Scientific Committee Approval Date		2024-2025 Version Numl		mber	1.0		

Relation with other Modules					
Prerequisite module	MTE 202 Engineering Mechanics-Dynamics	Semester	Three		
Co-requisites module	None	Semester	None		

Module Aims, Learning Outcomes and Indicative Contents						
	The aims of the module are to					
	Understand the fundamentals of the theory of kinematics and dynamics of machines.					
Module Aims	Understand techniques for studying motion of machines and their components.					
أهداف المادة الدراسية	 Develop the ability to analyze and understand the dynamic (position, velocity, acceleration, force and torque) characteristics of mechanisms. 					
	 Develop the ability to systematically design and optimize mechanisms to perform a specified task. 					
	Understand mechanisms for system control – Gyroscope.					
	6. Develop competency in understanding of theory of all types of gears.					

Understand the analysis of gear train. 7. Increase the ability of students to effectively present written, oral, and graphical solutions to design problems. 9. Increase the ability of students to work cooperatively on teams in the development of mechanism designs. On completion of the course students should be able to: 1. Be familiar with the terminology associated with theory of mechanics. 2. Determine the degrees-of-freedom (mobility) of a mechanism. 3. Identify the basic relations between distance, time, velocity, and acceleration. 4. Use graphical and analytic methods to study the motion of a planar mechanism. **Module Learning** 5. Apply the fundamental principles of statics and dynamics to machinery. **Outcomes** 6. Understand balancing of rotary and reciprocating masses. 7. Analyze dynamic force analysis of slider crank mechanism and design of flywheel. مخرجات التعلم للمادة الدر اسية 8. Analyze the gyroscopic couple or effect for stabilization of aero plane and Four-wheeler vehicles. 9. Compute frictional losses, torque transmission of mechanical systems. 10. Understand fundamentals of gear theory which will be the prerequisite for gear design. 11. Analyze speed and torque in epi-cyclic gear trains which will be the prerequisite for gear box design. 12. Choose appropriate drive for given application. Indicative content includes the following. Part A - mechanism kinematics Introduction: definition, fundamental units, International System of Units, Types of Constrained Motions, Kinematic link / element, Kinematic Pair, Kinematic chain. Mechanisms: types, characteristics, and applications, kinematic analysis for different mechanisms. Velocity analysis: velocity of a point on a link by instantaneous centre method, number and types of instantaneous centers in a mechanism, method of locating instantaneous centers in a mechanism. Relative Velocity Method: velocity of a point on a link, velocities in a slider crank mechanism, rubbing velocity at a pin joint. [15 hrs] Acceleration analysis: acceleration diagram for a link, acceleration of a point on a link, acceleration in the slider crank mechanism, Coriolis Component of Acceleration. [15 hrs] **Indicative Contents** المحتويات الإرشادية Part B - machine dynamics Dynamic force analysis, Calculation of efficiency and power transmittion. Balancing of rotating masses: Balancing of a single rotating mass by two masses rotating in different planes, balancing of several masses rotating in the same plane, balancing of several masses rotating in different planes. Balancing of reciprocating masses: Primary and secondary unbalanced forces of reciprocating masses, Partial balancing of unbalanced primary force in a reciprocating engine. [15 hrs] Part C – Inertia forces Turning Moment Diagram: Turning moment diagram for a multi-cylinder engine, Fluctuation of energy, Determination of maximum fluctuation of energy, Coefficient of fluctuation of energy and speed, Energy stored in a flywheel, Dimensions of the flywheel. Gyroscope: Precessional angular motion, Gyroscopic couple, Effect of gyroscopic couple on an airplane, Stability of a four-wheel drive moving in a curved path. [10 hrs]

Part D – Friction

Belts: Types of Flat Belt Drives, Velocity Ratio of belt drive, Length of an open belt Drive, power transmitted by a belt, Ratio of driving tensions for flat belt drive, centrifugal tension, maximum tension in the belt, initial tension in the belt. V-belt drive, ratio of driving tensions for V-belt. Clutches: flat collar bearing, single disc or plate clutch, multiple disc clutch, cone clutch, centrifugal clutches. [12 hrs]

Part E – Gear theory & Analysis

Toothed Gearing: terms used in gears, low of gearing, velocity of sliding of teeth, length of arc of contact, interference in involute Gears, minimum number of teeth. Gear train: simple and compound gear trains, reverted gear train, Epicyclic gear train, compound Epicyclic gear train (Sun and Planet), torques in Epicyclic gear trains. [8 hrs]

The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1- Lectures - aim to deliver fundamental knowledge in relation to theory of machines and the application of the theories to practical examples. 2- Tutorial sessions - are deployed to illustrate the application of fundamental knowledge of theory of machines to different practical exercises. 3- Assignments - are arranged to provide the opportunity for students to search for information, analyze machines with knowledge obtained, and present the completed

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	78	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	5.2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	72	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.8	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

Module Evaluation					
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning
		mber			Outcome
	Quizzes	2	10% (10)	5, 10	LO #2, 4, 9 and 10
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 5, 7 and 11
assessment	Projects / Lab.	1	10% (10)	Continuous	
	Report	1	10% (10)	13	LO # 1 and 8
Summative	Midterm Exam	2 hr	10% (10)	8	LO # 1-6
assessment	Final Exam	3 hr	50% (50)	16	All
Total assessment 100% (100 Marks)					

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Introduction: definition, fundamental units, International System of Units, kinematics and kinetics of motion.			
Week 2	Mechanisms: types, characteristics, and applications, kinematic analysis for different mechanisms.			
Week 3	Velocity analysis : velocity of a point on a link by instantaneous centre method, number and types of instantaneous centers in a mechanism, method of locating instantaneous centers in a mechanism. Relative Velocity Method: velocity of a point on a link, velocities in a slider crank mechanism, rubbing velocity at a pin joint.			
Week 4	Acceleration analysis: acceleration diagram for a link, acceleration of a point on a link, acceleration in the slider crank mechanism			
Week 5	Coriolis Component of Acceleration.			
Week 6	Dynamic force analysis: Calculation of efficiency and power transmition.			
Week 7	Mid-term Exam + Balancing of Rotating Masses: Balancing of a Single Rotating Mass By Two Masses Rotating in Different Planes, Balancing of Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes.			
Week 8	Balancing of Reciprocating Masses: Primary and Secondary Unbalanced Forces of Reciprocating Masses, Partial Balancing of Unbalanced Primary Force in a Reciprocating Engine.			
Week 9	Turning Moment Diagram: Turning Moment Diagram for a Multicylinder Engine, Fluctuation of Energy, Determination of Maximum Fluctuation of Energy, Coefficient of Fluctuation of Energy and speed, Energy Stored in a Flywheel, Dimensions of the Flywheel.			
Week 10	Gyroscope: Precessional Angular Motion, Gyroscopic Couple, Effect of Gyroscopic Couple on an Airplane, Stability of a Four Wheel drive Moving in a Curved Path.			
Week 11	Belts: Types of Flat Belt Drives, Velocity Ratio of belt drive, Length of an open belt Drive, power transmitted by a belt, Ratio of driving tensions for flat belt drive, centrifugal tension, maximum tension in the belt, initial tension in the belt.			
Week 12	V-belt drive, ratio of driving tensions for V-belt			

Week 13	Clutches: flat collar bearing, single disc or plate clutch, multiple disc clutch, cone clutch,
	centrifugal clutches.
Week 14	Toothed Gearing: terms used in gears, low of gearing, velocity of sliding of teeth, length of
	arc of contact, interference in involute Gears, minimum number of teeth.
Week 15	Gear train: simple and compound gear trains, reverted gear train, Epicyclic gear train,
	compound Epicyclic gear train (Sun and Planet), torques in Epicyclic gear trains.
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources			
	Text		
Required Texts	Theory of Machine. By: R.S. Khurmi and J. K. Gupta. 14th ed.; S. Chand & Co. Ltd., New Delhi, 2005.	NO	
Recommended Texts	Design of Machinery: an introduction to synthesis and analysis of mechanisums and machines, R. L. Norton, McGraw-Hill, 2004	NO	
Websites	https://drive.google.com/drive/folders/151XuIZZvf-l- Ur1XiOwFMS0KuxIYGvQh?usp=sharing https://www.classcentral.com/course/swayam-kinematics-of- machines-13022	mechanisms-and-	

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Carrier	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C – Good	ختر	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Module Information						
Module Title			Modu	le Delivery		
Module Type		Core			☑ Theory	
Module Code		MTE 307			⊠ Lecture □ Lab	
ECTS Credits		5			□ Tutorial □ Tutorial	
SWL (hr/sem)		125			□ Practical□ Seminar	
Module Level		UGII	Semester o	f Deliver	Delivery Six	
Administering Dep	partment	MTE	College	College COE		
Module Leader	Loay B. Younis	Aldabbagh	e-mail	loayaldabbagh@uomosul.edu.iq		ul.edu.iq
Module Leader's	Acad. Title	Assistant Professor	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Zahraa Reyad N	1ahmood	e-mail	zahraa.reyad@uomosul.edu.ig		ul.edu.iq
Peer Reviewer Name		Laith Mohammed Jasim	e-mail Jasiml68@uomosul.edu.iq		.iq	
Scientific Committee Approval Date		2024-2025	Version Nu	mber	1.0	

Relation with other Modules				
Prerequisite module	None	Semester	None	
Co-requisites module	None	Semester	None	

Modu	Module Aims, Learning Outcomes and Indicative Contents				
	The aims of the module are				
Module Aims أهداف المادة الدر اسية	To study the Introduction and basic concepts, dimension and units, system and control volume, properties of system, states and equilibrium, process and cycle, temperature and the zero law of thermodynamics, pressure, and manometer, barometer. To understand the Energy, and energy transfer and general energy analysis.				
	 To understand the Energy, and energy transfer and general energy analysis To provide the student for the properties of pure substances, Energy analysis of closed systems, and Energy analysis of closed systems. 				

	4. Understanding the type of to heat transfer and its relationship to
	thermodynamics (first and second law of thermodynamics).
	5. To introduce the Mass and energy analysis of control volumes
	6. Study the second law of thermodynamics, heat engine, heat pump, and
	refrigerators system
	7. To study and understand the one-dimensional, steady-state conduction with and without heat generation.
	8. To study and understand the thermal resistance and extended surfaces and
	their design (Fins).
	9. Provide the students with two-dimensional, steady-state conduction
	(Separation of variables, Shape factors, and Finite difference methods).
	10. To introduce the heat transfer by convection (laminar and turbulent boundary
	layer equation, dimensionless parameters, Reynolds analogy).
	11. To understand the subject of radiation, physics of thermal radiation, black
	body heat exchange.
	12. To provide the students with heat exchange, Classification of heat exchangers
	in Mechatronics systems, Design of heat exchangers.
	On completion of the course students should be able to:
	1. Will understand the basic concepts, dimension and units, system and control
	volume, properties of system.
	2. Be familiar with properties of pure substance and close and open system.
	3. They have deep understanding of first and second law of thermodynamic and
	its application in heat engine, heat pump, and refrigeration system.
	 Be familiar with the terminology associated with type of heat transfers and their applications.
Module Learning	5. Use the three types of heat transfer (conduction, convection and radiation
	correctly to solve problems.
Outcomes	6. The student can understand the physics and analyze and solve all type of one-
Guttomes	dimensional, steady-state conduction with and without heat generation.
	7. The student have familer with all type of fins and there appllication and they can analyze and design the extended surfaces.
	8. To solve the two-dimensional, steady-state conduction by using the Separation
مخرجات التعلم للمادة الدراسية	of variables, Shape factors, and Finite difference methods.
	9. Will understand the principle and the physics of the convection heat transfer
	and they can distinction between laminar and turbulent boundary layer
	equation.
	10. Thy can use a prototype to solve any problem using the dimensionless
	parameters and Reynolds analogy.
	11. They have a deep understand the subject of radiation, physics of thermal
	radiation, black body heat exchange.
	12. The students learn the classification of heat exchangers in Mechatronics systems and how can use it for design of heat exchangers.
	systems and now can use it for design of near exchangers.
	Indicative content includes the following.
	Part A
	Basic concepts and definitions of thermodynamics. Properties of pure substances. The
Indicative Contents	first law of thermodynamics for the closed and open systems. The second law of
المحتويات الإرشادية	thermodynamics. Entropy. Second-Law analysis of engineering systems. And Energy,
	and energy transfer and general energy analysis [6 hrs]
	Part B

Properties of pure substances, pure substance, phases of a pure substance, phase-change processes of pure substances, property diagrams for phase-change processes, property tables, the ideal-gas equation of state, compressibility factor—a measure of deviation from ideal-gas behavior. [12 hrs]

Part C

energy analysis of closed systems, moving boundary work, energy balance for closed systems, specific heats, internal energy, enthalpy, and specific heats of ideal gases, internal energy, enthalpy, and specific heats of solids and liquids. [6 hrs]

part D

mass and energy analysis of control volumes, conservation of mass, flow work and the energy of a flowing fluid, energy analysis of steady-flow systems, some steady-flow engineering devices. [12 hrs]

part E

the second law of thermodynamics, introduction to the second law, thermal energy reservoirs, heat engines, refrigerators and heat pumps, reversible and irreversible processes, the carnot cycle, the carnot principles, the thermodynamic temperature scale, the carnot heat engine, the carnot refrigerator and heat pump. [6 hrs]

Part F

introduction to heat transfer, conduction, convection, radiation, the thermal resistance concept, relationship to thermodynamics, relationship to the second law of thermodynamics and the efficiency of heat engines, units and dimensions, introduction to conduction, the conduction rate equation, the thermal properties of matter, the heat diffusion equation, boundary and initial conditions [12 hrs]

Part G

one-dimensional, steady-state conduction, the plane wall, the composite wall, contact resistance, an alternative conduction analysis, conduction with thermal energy generation, heat transfer from extended surfaces, a general conduction analysis, fins with uniform and nonuniform cross-sectional area, fin performance. [12 hrs]

Part H

two-dimensional, steady-state conduction, alternative approaches, the method of separation of variables, the conduction shape factor and the dimensionless conduction heat rate, finite-difference equations, solving the finite-difference equations. [12 hrs]

Part I

introduction to convection, the convection local and average convection coefficients on boundary layers, compressible flow, boundary layer similarity: the normalized boundary layer equations. [12 hrs]

Learning and Teaching Strategies

The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills.

This will be achieved through;

- 1- Lectures aim to deliver fundamental knowledge in relation to heat transfer and the application of the theories to practical examples.
- 2- Tutorial sessions are deployed to illustrate the application of fundamental knowledge of heat transfer to different practical exercises.
- 3- Assignments are arranged to provide the opportunity for students to search for information, analyze the type of heat transfer, conduction, convection, and radiation, with knowledge obtained, and present the completed tasks.

Strategies

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	108	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	7.2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	42	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2.8	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

Module Evaluation						
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning	
		mber	Troight (mana)	Treem But	Outcome	
	Quizzes	2	15% (15)	3, 10	LO #2, 4, 6, 8 and 10	
Formative	Assignments	2	5% (5)	2, 12	LO # 3, 5, 7, 9 and 11	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 1, 6 and 9	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	
assessment Final Exam 3hr			50% (50)	16	All	
Total assessment			100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)
	Material Covered
Week 1	Introduction and basic concepts, dimension and units, system and control volume, properties of system, states and equilibrium, process and cycle, temperature and the zero law of thermodynamics, pressure, and manometer, barometer.
Week 2	Energy, and energy transfer and general energy analysis
Week 3	Properties of pure substances
Week 4	Energy analysis of closed systems
Week 5	Mass and energy analysis of control volumes
Week 6	The second law of thermodynamics, heat engine, heat pump, and refrigerators system
Week 7	Mid-term Exam
Week 8	Introduction - Heat transfer by conduction, Heat transfer by convection (classified according to the nature of the flow), Heat transfer by radiation.
Week 9	The Thermal Resistance Concept, Relationship to Thermodynamics, Units and Dimensions, solving problem. And introduction to one dimensional heat Conduction, The Conduction Rate Equation.
Week 10	The Conduction Rate Equation, The Heat Diffusion Equation in caritasan, cylindrical and spherical coordinate. Boundary and Initial Conditions.
Week 11	One-Dimensional, Steady-State Conduction with out and with thermal Energy Generation, plane wall, Thermal Resistance, The Composite Wall, Contact Resistance, Porous Media, in <i>Radial</i> , Cylinder, and spherical Systems, An Alternative Conduction Analysis, Conduction.
Week 12	Heat Transfer from Extended Surfaces (A General Conduction Analysis, Fins of Uniform and nonuniform Cross-Sectional Area, Fin Performance.
Week 13	Two-Dimensional, Steady-State Conduction, Alternative Approaches, The Method of Separation of Variables.
Week 14	The Conduction Shape Factor and the Dimensionless Conduction Heat Rate, solving problem
Week 15	Finite-Difference Equations, The Energy Balance Method
Week 16	Introduction to Convection, The Convection Local and Average Convection Coefficients on Boundary Layers, Compressible Flow, Boundary Layer Similarity: The Normalized Boundary Layer Equations

Learning and Teaching Resources				
	Text	Available in the Library?		
	1. Thermodynamics: An Engineering Approach, 7 th Edition,			
Required Texts	Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008.	Yes		
	2. Property Tables Booklet, by Y.A Çengel and M. A. Boles, 4 th			
	Edition, 2002			

	1. fundamental of Heat and Mass transfer, by Frank P.
	Incropera and David P. Dewitt, 7 th Printed in the United
	States of America2011
Recommended Texts	In the library, there are many thermodynamics books that can be used as reference books.
	https://www.amazon.com/Thermodynamics-Engineering-published-Mcgraw-Hill-
	Education/dp/B00E28JL0Q
Websites	https://www.amazon.com/Fundamentals-Heat-Transfer-Frank-
	Incropera/dp/0471457280

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
C	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Module Information								
Module Title	Hydrai	ems	Module Delivery					
Module Type				☑ Theory ☐ Lecture ☑ Lab				
Module Code								
ECTS Credits	5 Tutorial							
SWL (hr/sem)		125		☐ Practical ☐ Seminar				
Module Level		UGIV	Semester o	f Delivery Six				
Administering Department		MTE	College	COE				
Module Leader	Hassan Mudhafar Saeed		e-mail	Saeedh81@uomosul.edu.iq				
Module Leader's Acad. Title		Lecturer	Module Leader's Qualification		Ph.D.			
Module Tutor	Teba Hani Fathi		e-mail	teba96mecha@gmail.com				
Peer Reviewer Name		Laith Mohammed Jasim	e-mail	Jasiml68@uomosul.edu.iq				
Scientific Committee Approval Date		2024-2025	Version Number 1.0		1.0			

Relation with other Modules					
Prerequisite module	None	Semester	None		
Co-requisites module	None	Semester	None		

Module Aims, Learning Outcomes and Indicative Contents				
	The aims of the module are to			
Module Aims	1) introduce students to the hydraulic and pneumatic systems; their principles of operation and applications of basic industrial processes.			
أهداف المادة الدراسية	 The components in the power generation, control, and drive sections are discussed in various levels with more focus on the control section. Component functions, construction, and usage. The control section using fluid power, electric power, and PLC is used throughout the example circuits. 			

	5) During the progress in the course, with various industrial circuits are discussed, with focus on fluid pressure and flow rate to control the output work at the actuators.
	6) The course ends with the types of actuators and their special uses and a how to calculate actuator efficiency.
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 On completion of the course students should be able to: Recognize various types of fluid power circuits, their components, and the function of each component. Distinguish the preparation section components and the function of each component in a circuit. Recognize various types of valves: directional, non-return, flow, pressure, and other combination control valves. Also identify the function of each of these valves in a circuit. Select the proper actuator for a fluid power circuit including special duty actuators. Recognize various basic industrial and workshop fluid power circuits, and their special duty. Read and symbolize various fluid power circuit and their components.
Indicative Contents المحتويات الإرشادية	Indicative content includes the following. Part A — Introduction to fluid power systems Introduction to fluid power systems, hydraulic vs pneumatic, criteria of choosing working media, advantages and disadvantages, construction of electrohydraulic/pneumatic systems, performance relations (pressure, flowrate, power, efficiency), Identification code of fluid power circuit components. Part B — Power supply section Working media power generation unit and components, Working media, power generation (pump, compressor), reservoirs, working media conditioning, symboles used in power generation section, Air service unit. Part C - DCVs DCV designation , classification, usage, selection, and performance. Part D - Non-return Valves definition, types, check valve, applications of check valve, pilot-check valve, logic valves, quick exhaust valve, shut-off valve. Part D - FCVs function and types, non-pressure compensated valves (throuttle, oriffice), meater-in, meter-out, bleed-off circuits, one-way FCV, mechanically adjustable one-way FCV, pressure compensated FCV, hydraulic Flow divider, time delay valves. Part E - PCVs functions and types, pressure switches, symboling of PCVs, pressure releif valve, safety valve, counter-balance PCV, Brake valve, sequence valve, piloted releif valve, pressure regulating valve (2-ways, 3-ways), pressure compensated vs non-pressure compensated valves. Part F – PLC control electric and PLC – control: overview of electric/electronic control vs pilot control of fluid power systems, PLC introduction, logic and sequencing applications using PLC, time control/delay using PLC electric and PLC – control: pressure based sequencing using PLC, collecting examples. Part G — Actuators definition and function of drive section, types of actuators, input/output energies of actuators, design considerations, hydraulic vs pneumatic actuators, classifications, types of loads on actuators, linear actuators, single acting cylinder function/operation/types/usage, SAC vs DAC, comparison cylinder performance

cylinders: double rod cylinder, Tandem cylinder, rodless cylinders, telescopic cylinders,

impact cylinders, doublex cylinders, bellow actuators, diaphram cylinder, rotary actuators: introduction and performance, output power, running turque, turque vs pressure, power vs pressure, speed and displacement, control of torque and speed, motors vs pumps, symbols of motors, classification of motors, limited rotation actuators, vane type, piston type, indicators

Part H - preliminary design circuits

circuits for speed control, force control, time and sequence control.

Learning and Teaching Strategies The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1. Lectures: aim to deliver fundamental knowledge in relation to fluid power systems. Power point presentations are used through data show. 2. Assignments: are arranged to provide the opportunity for students to search for methods of designing basic fluid power systems with specific tasks. 4. Seminars: devoted make students develop their knowledge by searching for new circuit implementation. 5. Computer: the student will be asked to use state of the art available simulating software those support the topics covered in this course.

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	63	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4.2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	62	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.13	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125			

Module Evaluation					
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
Formative	Quizzes	5	10% (10)	5, 6, 7, 11, 14	LO # 1, 3, 2, 4, and 6
assessment	Assignments	8	10% (10)	2, 4, 5, 7, 10, 11, 14	LO # 1, 2, 3, 4, and 6

	Lab.	2	10% (10)	Continuous	LO # 2, and 6
	Report	1	10% (10)	14	LO # 1, 2, 4, and 6
Summative	Midterm Exam	2 hr	10% (10)	8	LO # 1, 2, 4, and 6
assessment	Final Exam	3 hr	50% (50)	16	LO # 1, 2, 4, and 6
Total assessment		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)		
	Material Covered		
Week 1	Introduction to fluid power systems, criteria of choosing working media, construction of electro-hydraulic/pneumatic systems, performance relations.		
Week 2	Working media, power generation unit and components, reservoirs, working media conditioning, symboles used in power generation section, Identification code of fluid power circuit components.		
Week 3	DCVs: definition, designation, classification, selection, and performance.		
Week 4	DCVs: Usage.		
Week 5	Non-return Valves: definition, types, check valve, pilot-check valve, logic valves, quick exhaust valve, shut-off valve.		
Week 6	FCVs: function and types, non-pressure compensated valves, meater-in, meter-out, bleed-off circuits, one-way FCV, mechanically adjustable one-way FCV.		
Week 7	FCVs: pressure compensated FCV, hydraulic Flow divider, time delay valves		
Week 8	Mid-term Exam		
Week 9	PCVs: functions and types, pressure switches, symboling of PCVs, pressure releif valve, safety valve, counter-balance PCV, Brake valve, sequence valve,		
Week 10	PCVs: piloted releif valve, pressure regulating valves.		
Week 11	Electric control components and PLC : overview of electric/electronic control vs pilot control of fluid power systems, PLC overview, logic and sequencing applications using PLC, time control/delay using PLC, pressure based sequencing using PLC.		
Week 12	Actuators: definition and function of drive section, types of actuators, input/output energies of actuators, design considerations, hydraulic vs pneumatic actuators, classifications, types of loads on actuators, linear actuators, single acting cylinder function/operation/types/usage, double acting cylinder function/operation/types/usage, SAC vs DAC.		
Week 13	Actuators: Cylinder performance characteristics, extension and retraction force calculation, maximum force, piston velocity, piston power and efficiency.		
Week 14	Actuators: Other types of linear cylinders: double rod cylinder, Tandem cylinder, rodless cylinders, telescopic cylinders, impact cylinders, doublex cylinders, bellow actuators, diaphram cylinder.		
Week 15	Actuators: rotary actuators: introduction and performance, output power, running turque, turque vs pressure, power vs pressure, speed and displacement, control of torque and speed, motors vs pumps, symbols of motors, classification of motors, limited rotation actuators, vane type, piston type, indicators.		
Week 16	Preparatory week before the final Exam		

	Delivery Plan (Weekly Lab. Syllabus)		
	Material Covered		
Week 1	Introducing the commercial simulating software available in the market. Installations and usage		
Week 2	Practicing on simulating software		
Week 3	Single-Acting Air Cylinder, Double-Acting Air Cylinder, Two-Hand Safety Circuit, Double-Acting Air Cylinder Remote Control, Single-Acting Air Cylinder Remote Control, Interlocking Start Switch Circuit, Sequence Control of Two Air Cylinders		
Week 4	One-Cycle Cylinder Reciprocation Using Pushbuttons and single solenoid valve One-Cycle Cylinder Reciprocation Using Pushbutton and single-solenoid valve One-Cycle Cylinder Reciprocation Using Pushbuttons and double solenoid valve One-Cycle Cylinder Reciprocation Using Limit Switch and single solenoid valve One-Cycle Cylinder Reciprocation Using Limit Switch and double solenoid valve Cylinder Advance or Reverse Control Using a Pushbutton and single solenoid valve Cylinder Advance or Reverse Control Using a Pushbutton and double solenoid valve		
Week 5	One-Cycle Cylinder Reciprocation Using Timer and single solenoid valve One-Cycle Cylinder Reciprocation Using Timer and double solenoid valve One-Cycle Cylinder Reciprocation Using Timer, Limit switch and double solenoid valve Ex-AND Valve, Ex-OR Valve, Ex-Quick-Exhaust Valve		
Week 6	Flow Control Valve, Air Cylinder Slow Advance and Rapid Reverse, Air Cylinder Used in Machining Process, Emergency Stop Circuit		
Week 7	Classwork examples on meter-in, meter-out, Time Delay Valve, Air Cylinder Manual Control Advance and Delayed, Air Cylinder Two-Hand Control Advance and Automatic reverse		
Week 8	Mid-term exam		
Week 9	Air Cylinder Manual Control Advance and Pressure Control Reverse		
Week 10	Sequence Valve, Ex-Pressure Switch Uses Implementation of in-class examples with simulating software		
Week 11	Implementation of in-class examples with simulating software		
Week 12	Continuous Cylinder Reciprocation Using Limit Switches and single solenoid valve Continuous Cylinder Reciprocation Using Limit Switches and double solenoid valve Continuous Cylinder Reciprocation Using Timer, Limit switches and double solenoid valve Continuous Cylinder Reciprocation Using Timer and single solenoid valve		
Week 13	PLC in-class examples implementation		
Week 14	PLC in-class examples implementation		
Week 15	Review of the Lab exaperimentations		
Week 16	Preparatory week before the final Exam		

Learning and Teaching Resources			
	Text	Available in the Library?	
Required Texts	Anthony Esposito, Fluid Power with Applications, 7th ed., 2014.	No	
Recommended Texts	 M. Galal Rabie, Fluid Power Engineering, 2009. Parker Motion & Control, Fluid Power Basics, An Introduction to Hydraulics and Pneumatics, 1993. Andrea Vacca, Germano Franzoni, Hydraulic Fluid Power: Fundamentals, Applications, and Circuit Design, 2021. 	No	
Websites	https://uomosul.edu.iq/engineering/%d9%85%d9%81%d8%b1%d8%af%d8%af%d9%85%d9%88%d8%a7%d8%af- %d8%a7%d9%84%d8%af%d8%b1%d8%a7%d8%b3%d9%8a%d8%a9/ https://www.lunchboxsessions.com/explore https://www.e4training.com/index.php https://www.festo.com/us/en/e/technical-education/customer-supp id 31263/ https://www.fpda.org/aws/FPDA/pt/sp/home_page https://www.fluidpowerworld.com/ https://www.youtube.com/c/AirmaxPneumaticsLTD/videos https://www.ifps.org/		

Grading Scheme				
Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Carrier	B - Very Good	جيد جدا	80 - 89	Above average with some errors
Success Group (50 - 100)	C – Good	جيد	70 - 79	Sound work with notable errors
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Module Information							
Module Title	Compu	ter Aided Machine Do	esign I	Modu	ıle Delivery		
Module Type		Core			☑ Theory		
Module Code		MTE 309			□ Lecture ⊠ Lab		
ECTS Credits		5			☐ Tutorial		
SWL (hr/sem)		125			☐ Practical ☐ Seminar		
Module Level	UGIII		Semester of Delivery		Six		
Administering Dep	partment	MTE	College	ce COE			
Module Leader	Ahmad Wadol	lah Saleh Al-Sabawi	e-mail	<u>ahr</u>	madalsabawi@uc	omosul.edu.iq	
Module Leader's	Acad. Title	Lecturer	Module Leader's Qualification		MSc		
Module Tutor	Shahad Waleed Ahmed		e-mail	shahad.ahmed@uomosul.edu.iq		ul.edu.iq	
Peer Reviewer Na	eer Reviewer Name Loay B. Y.		e-mail	loayaldabbagh@uomosul.edu.iq		ul.edu.iq	
Scientific Committee Approval Date		2024-2025	Version Nu	mber	1.0		

	Relation with other Modules		
Prerequisite module	MTE 107: Mechanics of Materials	Semester	Two
Co-requisites module	MTE 407: Computer Aided Machine Design II	Semester	Eight

Module Aims, Learning Outcomes and Indicative Contents				
Module Aims أهداف المادة الدراسية	 Upon successful completion of the course, students should be able to: Model basic and complex parts and components. Describe the fundamental components and limitations of a modern computer numerical control (CNC) machine tool. Select suitable cutting tools and process parameters for a given milling or turning operation. Write, read and troubleshoot NC programs written in standard G-code format. Formulate free-form curves and surfaces mathematically using a parametric expression. Describe the basic principles of Hermite curve, Bezier curve, B-spline curve and NURBS curve representations 			

	7. Use computer-aided manufacturing (CAM) software to generate both			
	roughing and finishing operations.			
	8. Describe the relative advantages and disadvantages between two and half axis, three-axis and five axis machining.			
	9. Work and operate typical CNC machines.			
	At the completion of course, the student will be able to			
	9. Apply/develop solutions or to do research in the areas of computer aided			
Module Learning	manufacturing.			
Outcomes	10. Deal with simple or complex part geometries.			
	11. Write gcode for relatively simple shapes and parts.			
	12. Edit and develop gcode texts that is generated by CAM software and do in –			
مخرجات التعام المادة	site modification on a text file format. 13. Exposed to the available basic CNC machines.			
مخرجات التعلم للمادة الدراسية	14. Choose the suitable strategy for machining, either manual or programmed.			
الدراسية	15. Design and manufacture CNC machines from scratch.			
	16. Get a fundamental knowledge of the software used for CNC simulation and			
	gcode exporting tools.			
	Indicative content includes the following.			
	Section 1 introduction to CAM and NC programming			
	Classification of CAM systems, NC programming, gcode, rapid movement command,			
	G0, feedrate movement command, G1, circular interpolation commands, clockwise			
	command G2, counter clockwise command, G3, pause command, dwell command, G4,			
	XY plane designation, G17, YZ plane designation, G18, ZX plane designation, G19,			
	English units of inputs, G20, metric units of inputs, G21, machine zero return positon			
	check, G27, machine zero return – primary reference point, G28, skip function, G31,			
	threading function, G33, exact stop, G61, Absolute input of motion values, G90,			
Indicative Contents	incremental input of motion values, G91, feedrate per minute in/min or mm/min, G94,			
المحتويات الإرشادية	feedrate per revolution – in/rev or mm/rev, G95, retract motion to the initial level in a			
	fixed cycle, G98, retract motion to the initial level in a fixed cycle, G99 [25 hrs]			
	Section 2 Canned Cycles			
	High speed deep hole drilling cycle, G73, left hand tapping cycle, G74, precision boring			
	cycle, G76, fixed cycle cancel, G80, plain drilling cycle, G81, spot drilling cycle, G82,			
	deep hole drilling cycle (peck drilling), G83, right hand tapping cycle, G84, boring cycle,			
	G85. [15 hrs]			
	Section 3 CNC Milling Operations and Computer Aided Design			
	2.5 milling, facing, slotting, gear machining, 2d pocket machining, profile machining,			
	boring, drilling, 2d contour, 2d adaptive clearing. [25]			
	bornig, arming, zu contour, zu auaptive cleding. [23]			

Learning and Teaching Strategies				
Strategies	Tools and strategies, in addition to the student – teacher interaction in – and – off class, used to deliver the course to the students are basically divided upon the			
	following: 5. Lectures			

6. Lab works.	
7. Assignments.	
8. Mini projects	

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	65	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4.3	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	60	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125			

Module Evaluation						
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning	
		mber	Weight (Wanks)	Week Due	Outcome	
	Quizzes	3	10% (10)	5, 10, 12	LO #2, 4, 7 and 8	
Formative	Assignments	1	10% (10)	Continuous	LO # 3, 5, 6 and 10	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 1, 6 and 9	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	3 hr	50% (50)	16	All	
Total assessme	ent		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)		
	Material Covered		
Week 1	Introduction to CAM		
Week 2	Fundamental principles of NC programming		
Week 3	Positional data		
Week 4	Cutting commands I		
Week 5	Cutting commands II		
Week 6	Canned Cycles, part I		
Week 7	Midterm Exam + Canned Cycles, part II		
Week 8	Milling cycles, Part I		

Week 9	Cutting conditions
Week 10	Tool offsets
Week 11	Milling cycles Part II
Week 12	Basic turning cycles, part I
Week 13	Basic turning cycles, part II
Week 14	Computer aided design, a model drawing section
Week 15	Computer aided design, a model machining section using CAM software
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)		
	Material Covered		
Week 1	Part or component modeling, section I		
Week 2	Part or component modeling, section 2		
Week 3	Part or component modeling, section 3		
Week 4	Part or component modeling, section 4		
Week 5	Part or component modeling, section 5		
Week 6	Part machining, milling operation, section 1		
Week 7	Part machining, milling operation, section 2		
Week 8	Part machining, milling operation, section 3		
Week 9	Part machining, milling operation, section 4		
Week 10	Part machining, milling operation, section 5		
Week 11	Part machining, turning operation, section 1		
Week 12	Part machining, turning operation, section 2		
Week 13	Part machining, laser cutting, section 1		
Week 14	Part machining, laser cutting, section 2		
Week 15	Part making, 3-d printing		
Week 16	Part or component modeling, section I		

Learning and Teaching Resources

	Text	Available in the Library?	
Required Texts	P. Radhakrishanan, and others, CAD/CAM/CIM, 3 rd Ed., New	No	
Required Texts	Age International Publishers, 2008	NO	
Recommended Texts	Peter Smid, CNC Programming Handbook, 3 rd Ed., Industrial	No	
Recommended Texts	Press, Inc., 2007	NO	
Websites	https://ocw.mit.edu/courses/res-2-005-girls-who-build-make-your-own-wearables-		
vvensiles	workshop-spring-2015/pages/manufacturing-mechanical-design/		

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Croup	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Module Information						
Module Title	Micro	Microcontroller System Design			ıle Delivery	
Module Type		Core			☑ Theory	
Module Code		MTE 310			□ Lecture 図 Lab	
ECTS Credits		5			☐ Tutorial	
SWL (hr/sem)		125			□ Practical□ Seminar	
Module Level	UGIII		Semester o	er of Delivery Six		Six
Administering Dep	partment	MTE	College	llege COE		
Module Leader	Mohammed Y	aseen	e-mail	moham	med.alnuaimi@	uomosul.edu.iq
Module Leader's A	le Leader's Acad. Title		Module Lea	ader's Qu	alification	Ph.D.
Module Tutor	Abdullah Murtadah		e-mail	Alfakhry.abdullah@gmail.com		il.com
Peer Reviewer Name		Sa'ad Ahmed Salih	e-mail kazzazs60@uomosul.edu.iq		u.iq	
Scientific Committee Approval Date		2024-2025	Version Number 1.0			

Relation with other Modules				
Prerequisite module	None	Semester	None	
Co-requisites module	None	Semester	None	

Module Aims, Learning Outcomes and Indicative Contents				
Module Aims	The aims of the module are to:			
أهداف المادة الدراسية	1. Introduce the Core Concepts of Microcontrollers: The course aims to impart a solid understanding of microcontrollers, their architectures, and the differences between microprocessors and microcontrollers.			
	2. Foster Understanding of PIC Microcontrollers: The course aims to provide an in-depth understanding of PIC microcontrollers, focusing			

specifically on the PIC16F84A. This includes its internal architecture, memory organization, and features. 3. **Teach Assembly Language Programming:** The course aims to equip students with the skills to write, debug, and understand Assembly language code for PIC microcontrollers, focusing on a variety of instruction types. 4. **Provide Practical Experience:** The course aims to provide students with hands-on experience with the PIC16F84A microcontroller through lab exercises and a final project, thereby encouraging practical application of theoretical knowledge. 5. **Illustrate Microcontroller Applications:** The course aims to demonstrate the wide range of applications of microcontrollers in the field of Mechatronics, showing how they enable interaction between mechanical, electrical, and computer systems. 6. **Develop Problem-Solving Skills:** The course aims to foster problemsolving skills by teaching students to apply their understanding of microcontrollers to address real-world challenges. 7. **Prepare Students for Future Learning:** The course aims to serve as a foundation for further studies or professional work in microcontroller system design or related fields. 8. Encourage Independent Learning: The course aims to foster a spirit of independent learning and curiosity among students, encouraging them to explore beyond the provided materials and deepen their understanding of the subject. On completion of the course students should be able to: 1. Understand Basic Microcontroller Concepts: By the end of the course, students should understand the fundamental concepts and components of a microcontroller system, including the differences between microprocessors and microcontrollers, and the key features of RISC and CISC architectures. 2. **Grasp PIC Microcontroller Architecture:** Students should be able to explain the internal architecture of PIC microcontrollers, including the layout and functioning of the data and program memory. **Module Learning** 3. Understand and Apply Assembly Language Programming: Students **Outcomes** should be able to write and understand programs written in Assembly language for the PIC microcontroller. They should be familiar with the syntax, directives, and the use of different instructions (bit-oriented, مخرجات التعلم للمادة byte-oriented, arithmetic and logic, control, shift and rotate, loop instructions). الدراسية 4. Familiarize with Microcontroller Interfacing: Students should understand how to interface a microcontroller with peripheral devices. They should be able to design, develop, and debug microcontrollerbased systems for a variety of applications. 5. **Develop Problem-Solving Skills:** Students should be able to apply their theoretical knowledge to practical problems, using their understanding of microcontrollers to develop solutions to real-world challenges.

Understand the Role of Microcontrollers in Mechatronics: By the

end of the course, students should appreciate the role of

	microcontrollers in the field of Mechatronics and how they enable the interaction of mechanical, electrical, and computer systems. 7. Gain Hands-On Experience: Through laboratory exercises, students should gain practical experience with the PIC16F84A microcontroller, including programming, debugging, and integrating the microcontroller with other hardware components. 8. Demonstrate Skills in a Final Project: Students should be able to demonstrate their grasp of the course material by successfully completing a final project that requires them to design and implement a microcontroller-based system.
	1. Introduction to Microcontrollers: [2hr]
	 Definition and explanation of microcontrollers Comparison between microcontrollers and microprocessors Applications and uses of microcontrollers in various industries Microcontroller Architectures: [6hr]
	2. Wherecontroller Architectures, [onl]
	Overview of RISC and CISC architectures
	 Differences and applications of these architectures Introduction to Harvard and Von Neumann architectures
	3. Internal Architecture of PIC Microcontrollers: [6hr]
	 Detailed explanation of the architecture of PIC microcontrollers Components of PIC microcontrollers: CPU, Memory, I/O Ports, Timers, etc.
	Special Function Registers (SFRs) in PIC microcontrollers
Indicative Contents المحتويات الإرشادية	4. Memory Organization of Microcontrollers: [4hr]
م کی	 Understanding of program and data memory Role and significance of ROM, RAM, EEPROM in microcontrollers
	5. Data Memory of PIC Microcontrollers: [6hr]
	 In-depth understanding of data memory in PIC microcontrollers Role and operation of General Purpose Registers (GPRs)
	6. Program Memory of PIC Microcontrollers: [6hr]
	Understanding of program memory and its role in the execution process
	Role and operation of Program Counter
	Introduction to the concept of interrupts and their operation
	7. PIC Microcontroller Assembly Programming: [8hr]
	Introduction to Assembly language programming for PIC microcontrollers
	 Learning the syntax, directives, and addressing modes

 Understanding the instruction set architecture (ISA)
--

8. Types of PIC Microcontroller Instructions:[8hr]

- Bit-oriented instructions
- Byte-oriented instructions
- Arithmetic and logic instructions
- Control instructions
- Shift and rotate instructions
- Loop instructions

9. Microcontroller Interfacing and Applications:[6hr]

- Understanding how to interface a microcontroller with peripheral devices
- Exploration of different types of sensors and actuators, their applications, and interfacing techniques

10. Hands-On Experiences:[8hr]

- Laboratory experiments to apply theoretical concepts
- Project development for practical application of knowledge

Learning and Teaching Strategies

- 1. **Lectures:** Traditional lectures form the backbone of most courses. They should be used to deliver the theoretical aspects of microcontroller system design, and to introduce new topics and concepts.
- 2. **Interactive Discussions:** During lectures, try to encourage active participation from students by including interactive discussions. Asking questions, encouraging students to ask their own questions, and discussing real-world applications can make the learning process more engaging.
- 3. **Laboratory Sessions:** Practical lab sessions are crucial in a technical course like this. Lab exercises should be designed to complement the theory discussed in the lectures. These will provide hands-on experience with the PIC16F84A microcontroller, as well as valuable problem-solving experience.
- 4. **Individual and Group Projects:** Projects (both individual and group) should be used to allow students to apply what they've learned in a real-world context. This can also foster teamwork and communication skills.
- 5. **Self-Directed Learning:** Encourage students to learn independently. Provide them with a list of recommended readings and resources to explore. This promotes lifelong learning skills.
- 6. **Demonstrations:** Use demonstrations to illustrate more complex concepts or processes. For instance, showing students how to set up the

Strategies

- development environment for programming the microcontroller, or demonstrating how a particular circuit works.
- 7. **Online Learning Resources:** Use online resources like tutorials, videos, and interactive modules to supplement the course material. This can be especially useful for complex topics that might benefit from different presentation formats.
- 8. **Peer Learning:** Encourage students to learn from each other, both during formal study groups and in informal settings. This can improve understanding and retention of the course material.
- 9. **Regular Assessments:** Regular quizzes, tests, and exams can help to reinforce learning and identify areas where students may be struggling. Provide feedback on these assessments to guide students' learning.
- 10. **Feedback:** Encourage feedback from students to understand what is working and what is not. This can help improve the course in real-time and make the teaching more effective.

The aim of these strategies should be to promote an active, student-centered learning environment that encourages curiosity, critical thinking, and real-world problem-solving skills.

Student Workload (SWL)			
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	63	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4.2
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	62	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.13
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125		

Module Evaluation						
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning	
	mber				Outcome	
	Quizzes	2	10% (10)	5, 10	LO #1, 2, and 3	
Formative	Assignments	2	8% (10)	2, 12	LO #2, 3, 4, and 6	
assessment	Projects / Lab.	1	15% (10)	Continuous		
	Report	1	7% (10)	13	LO #4, 5, 6, and 8	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-5	
assessment	Final Exam	3 hr	50% (50)	16	All	
Total assessment			100% (100 Marks)			

Delivery Plan (Weekly Syllabus)		
	Material Covered	
Week 1	Introduction to the microcontrollers and the difference between microprocessor and microcontroller.	
Week 2	The RISC and CISC architectures.	
Week 3	The Internal Architecture of the PIC microcontrollers	
Week 4	The memory organisation of microcontrollers.	
Week 5	The Data memory of PIC Microcontrollers.	
Week 6	The program memory of PIC Microcontrollers.	
Week 7	Mid-term Exam + The PIC microcontroller assembly statement and instruction set.	
Week 8	The PIC microcontroller Bit oriented instructions.	
Week 9	The PIC microcontroller Byte oriented instructions.	
Week 10	The PIC microcontroller arithmetic and Logic instructions.	
Week 11	The PIC microcontroller control instructions.	
Week 12	The PIC microcontroller shift and rotate instructions.	
Week 13	The PIC microcontroller loop instructions.	
Week 15	Student Project Discussion	
Week 16	Preparatory week before the final Exam	

Delivery Plan (Weekly Lab. Syllabus)		
	Material Covered	
Week 1	Introduction to the Development Environment and Basic I/O	
Week 2	Exploring the PIC16F84A Architecture and Memory Organization	
Week 3	Assembly Programming and Control Structures	
Week 4	Use of Timers and Interrupts	
Week 5	Serial Communication	
Week 6	Analog-to-Digital Conversion	
Week 7	Mini Project	

Learning and Teaching Resources

	Text	Available in the Library?
Required Texts	 Martin P. Bates,"Introduction to Microelectronic Systems: The PIC 16F84 Microcontroller",Butter worth-Heinemann, 2011. The Microchip Corporation Data Sheet of PIC 16F84A Microcontroller. 	Yes
Recommended Texts	Martin P. Bates, "PIC Microcontrollers: An Introduction to Microelectronics, Elsevier Science & Technology, 2011.	Yes
Websites	https://www.classcentral.com/course/swayam-fluid-mechanic 58461 Online Course: PIC Microcontroller: Advanced Training Course Central	

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Carrier	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
(50 - 100) —	C - Good	جيد	70 - 79	Sound work with notable errors	
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Module Information							
Module Title			Modu	le Delivery			
Module Type				☑ Theory			
Module Code		MTE 311			☐ Lecture ☐ Lab ☑ Tutorial		
ECTS Credits		5					
SWL (hr/sem)			☐ Practical☐ Seminar				
Module Level	UGIII		Semester o	of Delivery Six		Six	
Administering Dep	ing Department MTE		College	COE			
Module Leader	Laith Mohammed Jasim		e-mail	Jasiml6	8@uomosul.edu	.iq	
Module Leader's A	Acad. Title Assistant Professor		Module Leader's Qualification Ph.D.		Ph.D.		
Module Tutor	Ali Ayad Albabeli		e-mail	alibabily9000@gmail.com		<u>m</u>	
Peer Reviewer Name		Dr. Loay Younes Aldabbagh	e-mail	loayaldabbagh@uomosul.edu.iq		ul.edu.iq	
Scientific Committee Approval Date		2024-2025	Version Number 1.0				

Relation with other Modules				
Prerequisite module	None	Semester	None	
Co-requisites module	None	Semester	None	

Module Aims, Learning Outcomes and Indicative Contents				
Module Aims أهداف المادة الدراسية	 The aims of the module are to know why numerical methods should be learned, when they should be used, and how accurate their results are. provide knowledge about numerical methods and how to apply them in solving mathematical problems that are frequently occurring in engineering sciences. provide a basic understanding of the derivation, analysis, and use of these numerical methods, describe, understand, and analyze the several errors and approximations in 			
	numerical methods.			

Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 improve the student's skills in numerical methods with simple programming and using numerical analysis software, software package MATLAB, and other convenient numerical software such as Microsoft Excel. apply gained knowledge to deal with handling large systems of equations, non-linearities, and complicated geometries that are often impossible to solve analytically. On completion of the course, students should be able to: understand the basics of computer arithmetic, for example, machine precision and rounding errors. solve nonlinear algebraic equations and find their roots numerically by using bracketing and open methods, like False-Position and Newton's method. understand the difference between the direct and indirect methods for solving systems of linear equations. Discuss the ill and well-conditioned in addition to singular systems, and how to apply the concepts of pivoting to the systems. solve systems of linear equations by using the direct and indirect (iterative) methods, like Gauss elimination and Jacobi iteration method. explain the difference between the regression and interpolation methods in curve fitting. apply curve fitting depending on the concept of regression and interpolation for a given set of discrete data in one and two dimensions, using methods like Lagrangian and spline. approximate the first and second derivatives numerically, using various finite differences such as forward, backward, and central difference approximation. approximate integrals numerically using quadratures, for example, Trapezoidal and Simpson's rules. Understand the difference between ordinary and partial differential equations and the difference between boundary and initial value problems, and discussion their boundary conditions. solve ordinary dif		
	12. implement, in MATLAB and Microsoft Excel, numerical methods covered in		
	the course for solving different mathematical problems. Indicative content includes the following.		
Indicative Contents المحتويات الإرشادية	Unit – I: Introduction - Concepts and role for the numerical method in engineering, approximations and errors, the definition of Round-off error and truncation error, absolute and relative true/approximation error. Numerical solution of Nonlinear algebraic equations - Bracketing methods (Graphical, Bisection, and False-position method). Open methods (Simple fixed-point iteration, Newton-Raphson and secant method). Introduction to MATLAB, code of Bisection and Newton-Raphson methods in MATLAB [10 hrs] UNIT- II: Numerical solution of linear algebraic equations (system) - The difference between the direct and indirect methods, singular and ill/well-conditioned system, partial and complete pivoting, convergence criteria, Jacobi iteration method, gauss-Seidel iterative method, Gauss-Seidel iterative with the relaxation factor method, Tridiagonal system and its solution by Thomas method. code of Jacobi iteration, gauss-Seidel iterative and Thomas methods in MATLAB [10 hrs]		

UNIT- III:

Curve Fitting- Classification of Curve Fitting (Regression and Interpolation), the concepts of regression, and Least Square Criterion, Linear Regression, Nonlinear Regression, popular nonlinear regression models (Exponential, Power, Growth, and Polynomial model), the linearization of the first three nonlinear models, Polynomial regression. Implement all the regression models in Microsoft Excel. Interpolation - Lagrangian Method, spline method, Cubic Spline Interpolation using Cheney and Kincaid Formula. [10 hrs]

UNIT - IV:

Numerical Integration- Trapezoidal Rule (equal/non-equal segment width and single/double integral), Simpson's 1/3 rule (equal/non-equal segment width and single/double integral), and Simpson's 3/8 rule (equal/non-equal segment width and single/double integral). code of Trapezoidal and Simpson's 1/3 rules in MATLAB. Numerical Differentiation- Tayler series and truncation error, the approximation of the first derivative (FDA, BDA and CDA), the approximation of the second derivative (FDA, BDA and CDA). code of the approximation of the first and second derivative in MATLAB. [10 hrs]

UNIT - V:

Numerical Solution of Ordinary Differential Equation (ODE)- Classification of Differential Equation (Initial Value Problem "IVP" and Boundary Value Problem "BVP"), the numerical methods for solving the IVP (Euler's, Heun's, Midpoint and Fourth-Order Runge-Kutta methods). Fourth-Order Runge-Kutta method for solving the IVP, Numerical solution for the system of ODEs or second order ODE with the above methods. The numerical methods for solving the BVP- The shooting method adaptation together with the methods of IVP to solve BVP, and finite difference method. code of the Euler's and Fourth-Order Runge-Kutta methods in MATLAB. [20 hrs]

Learning and Teaching Strategies

The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills.

This will be achieved through;

- 1- Lectures aim to deliver concepts and fundamental knowledge in relation to numerical analyses and the application of their methods to purely mathematical examples.
- 2- Tutorial sessions are deployed to illustrate the application of fundamental knowledge of numerical methods to different practical engineering problems.
- 3- Assignments are arranged to provide the opportunity for students to search for information, analyze problems and discrete data, model their equations, with knowledge obtained, and present the completed tasks.
- 4- Computer sessions to develop actual computer codes to solve real problems, and thus the use of computer software to implement numerical algorithms is an important part of the subject.

Strategies

Student Workload (SWL)

Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	63	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4.2
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	62	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.13
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125		

	Module Evaluation						
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
		mber	weight (warks)	Week Buc	Outcome		
	Quizzes	2	10% (10)	5, 10	LO #2, 4, 7 and 8		
Formative	Assignments	5	10% (10)	3, 5, 8, 11, 13	LO # 1, 2, 3, 5, 6, 9 and		
assessment	Assignments	3	10% (10)	3, 3, 6, 11, 13	10		
assessifient	Projects / Lab.	1	10% (10)	Continuous			
	Report	1	10% (10)	13	LO # 9, 11 and 12		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7		
assessment	Final Exam	3 hr	50% (50)	16	All		
Total assessme	ent		100% (100 Marks)				

	Delivery Plan (Weekly Syllabus)			
	Material Covered			
Week 1	Introduction - Concepts for the numerical method in engineering, approximations and errors, Numerical solution of Nonlinear algebraic equations, introduction to MATLAB.			
Week 2	Bracketing methods, Bisection, and False-position method, code of Bisection in MATLAB			
Week 3	Open methods, Simple fixed-point iteration, Newton-Raphson and secant method, code Newton-Raphson methods in MATLAB, Numerical solution of linear algebraic equations, the difference between the direct and indirect methods.			
Week 4	singular and ill/well-conditioned system, pivoting, Jacobi iteration method.			
Week 5	gauss-Seidel iterative method, Gauss-Seidel iterative with the relaxation factor method, Thomas algorithm, code of certain methods in MATLAB			
Week 6	Curve Fitting- the concepts of regression, Linear Regression, Nonlinear Regression, popular nonlinear regression models, linearization.			
Week 7	Mid-term Exam + Polynomial regression. Implement all the regression models in Microsoft Excel.			
Week 8	Interpolation - Lagrangian and spline Methods.			

Week 9	Numerical Integration- Trapezoidal Rule (single/double integral), Simpson's 1/3 rule (single/double integral) code of Trapezoidal and Simpson's 1/3 rules in MATLAB.
Week 10	Simpson's 3/8 rule (single/double integral), Numerical Differentiation, Tayler series and truncation error, the approximation of the first derivative
Week 11	The approximation of the second derivative (FDA, BDA and CDA). code of the approximation of the first and second derivative in MATLAB. Numerical Solution of Ordinary Differential Equation (ODE)
Week 12	Numerical Solution of Ordinary Differential Equation (ODE)- Initial Value Problem "IVP" and Boundary Value Problem "BVP", the numerical methods for solving the IVP (Euler's, Heun's, Midpoint).
Week 13	Fourth-Order Runge-Kutta method for solving the IVP, Numerical solution for the system of ODEs with the above methods, code of the Euler's and Fourth-Order Runge-Kutta methods in MATLAB.
Week 14	The numerical methods for solving the BVP- The shooting method adaptation together with the methods of IVP to solve BVP.
Week 15	Finite difference method.
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Steven C. Chapra and Raymond P. Canale, Numerical Methods for Engineers: With Software and Programming Applications, McGraw-Hill Science/Engineering/Math; 4th edition (July 16, 2001)	Yes		
Recommended Texts	Steven T. Karris, Numerical Analysis Using MATLAB and Excel, Orchard Publications; 3rd edition (February 21, 2007)	No		
Websites	https://www.coursera.org/learn/numerical-methods-engineer	<u>'S</u>		

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Croup	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Module Information						
Module Title	Powe	er Electronics and Dri	ve	Modu	le Delivery	
Module Type		Core			☑ Theory	
Module Code		MTE 312			□ Lecture 図 Lab	
ECTS Credits		5			□ Tutorial □ Tutorial	
SWL (hr/sem)		125			□ Practical□ Seminar	
Module Level		UGIII	Semester o	Semester of Delivery Six		Six
Administering Dep	partment	MTE	College		COE	
Module Leader	Myasar Salim Y	ounus	e-mail	myasara	alattar@uomosu	l.edu.iq
Module Leader's	Acad. Title	Lecturer	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Mamoon Ammar Atrakchii		e-mail	Maamo	in91@gmail.com	<u>1</u>
Peer Reviewer Name Dr. Firas A		Dr. Firas Ahmed	e-mail	dr.firasa	aldurze@uomosi	ul.edu.iq
Scientific Committee Approval Date		2024-2025	Version Nu	mber	1.0	

Relation with other Modules				
Prerequisite module	None	Semester	None	
Co-requisites module	None	Semester	None	

The aims of the module are to 1. Understand the principle of power electronics science and its re other electric and electronic science 2. Fundamental the power electronics switches (devices) and their characteristics, and application 3. Illustrate the type of triggering circuit, snubber circuit 4. Understanding the types of power electronics circuits (power cotheir relations each other's 5. Understand the power converters of (ac to dc) type or rectifiers, principles, equation, circuit schemes for different topologies, an and output wave form	onverters) and

	 6. Understand the power converters of (ac to ac) type or rectifiers, operation principles, equation, circuit schemes for different topologies, and its input and output wave form 7. Understand the power converters of (dc to dc) type or rectifiers, operation
	principles, equation, circuit schemes for different topologies, and its input
	 and output wave form 8. Understand the power converters of (dc to ac) type or rectifiers, operation principles, equation, circuit schemes for different topologies and its input and
	output wave form
	9. Understand pulse width modulation techniques, application,
	10. Understand switch mode power supply
	On completion of the course students should be able to:
Modulo Loarning	Has the ability to recognize the power switches types
Module Learning Outcomes	Use his knowledge to choose a to build a power conversion circuit for different types of application
	3. Has the ability to analyze the characteristic power switches
	4. Use his knowledge to choose a to build a triggering circuit for power
مخرجات التعلم للمادة الدراسية	converters 5. Understanding the principle of designing an electric system containing power electronics device
. 3	6. be able to understand the types of power supply and its application and characteristics
	Indicative content includes the following.
	Part A – power electronics principles and switches
	Introduction to power electronics science, its applications, principles limitation, circuits
	types, also introduce the types of power electronics switches like (diodes, transistors,
	thyristors, [8 hrs]
	Thyristor triggering circuit, snubber circuit. [8 hrs]
	Part B – principle of rectifiers
	Type of ac to dc convertors, single and multi -phase, controlled, semi controlled and
	fully controlled rectifiers, input /output wave form, average, rms voltage and current,
	[10 hrs]
Indicative Contents	Part C – ac-ac voltage controller
المحتويات الإرشادية	Type of ac to ac convertors, single and multi -phase, voltage controller, mode of
	converter (phase and integral type mode) [8 hrs]
	Part D –dc – ac convertors (invertors)
	Type of dc to ac convertors, single multi—phase invertors, multi levels type invertors,
	resonance type invertors. [12 hrs]
	Part E – dc – dc convertors (choppers)
	Types of dc chopper, principle operation of chopping, buck type copper, boost type,
	buck-boost type [10 hrs]
	Part F – pulse width modulation
	Pulse width modulation (PWM) types, operation principles. [4 hrs]
	r alse with modulation (1 vvivi) types, operation principles. [4 iiis]

Learning and Teaching Strategies			
Strategie	es	The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1- Lectures - aim to deliver fundamental knowledge in relation to power electronics k 2- Tutorial sessions - are deployed to illustrate the application of fundamental knowledge of power electronics to different practical exercises. 3- Assignments - are arranged to provide the opportunity for students to search for information, analyze fluid systems with knowledge obtained, and present the completed tasks.	

Student Workload (SWL)					
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	63	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4.2		
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	62	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.13		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125		,		

Module Evaluation						
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning	
		mber			Outcome	
	Quizzes	4	10% (10)	3,5,7,9,	1-6	
Formative	Assignments	1	10% (10)	8	2 -5	
assessment	Projects / Lab.	1	10% (10)	Continuous	2,3, and 6	
	Report	1	10% (10)	13	3,4, and 6	
Summative	Midterm Exam	2 hr	10% (10)	10	All	
assessment	Final Exam	3 hr	50% (50)	16	All	
Total assessment			100% (100 Marks)			

Delivery Plan (Weekly Syllabus)		
	Material Covered	
Week 1	power electronics switches types (diodes, transistors, thyristors)	

Week 2	power electronics switches types (diodes, transistors, thyristors)
Week 3	Triggering circuit types
Week 4	Snubber circuit type
Week 5	Single phase uncontrolled rectifiers (half wave, full wave bridge, full wave center tapped)
Week 6	three phase uncontrolled rectifiers (half wave, full wave bridge, full wave center tapped)
Week 7	Single phase-controlled rectifiers (half wave, full wave bridge, full wave center tapped)
Week 8	three phase-controlled rectifiers (half wave, full wave bridge, full wave center tapped)
Week 9	Type of ac-to-ac convertors, single phase voltage controller
Week 10	ac to ac convertors, multi- phase voltage controller
Week 11	ac to ac convertors, mode of converter (phase and integral type mode)
Week 12	Types of dc chopper, principal operation of chopping, buck type copper,
Week 13	dc chopper, boost type, buck-boost type
Week 14	dc chopper, buck-boost type
Week 15	Pulse width modulation (PWM) types, operation principles
Week 16	Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)		
	Material Covered	
Week 1	Introduction to lab instrument and measurements	
Week 2	Diode characteristics	
Week 3	Triggering circuit for thyristor	
Week 4	PWM circuit	
Week 5	Introduction to MATLAB software	
Week 6	MATLAB Simulink with power electronics circuit	
Week 7	single phase uncontrolled rectifier (half wave)	
Week 8	single phase uncontrolled rectifier (full wave) bridge type	
Week 9	single phase uncontrolled rectifier (half wave) using MATLAB	
Week 10	single phase uncontrolled rectifier (full wave) bridge type using MATLAB	
Week 11	Three phase rectifiers half wave using MATLAB	
Week 12	Dc chopper buck converter using MATLAB	
Week 13	Dc chopper boost converter using MATLAB	

Week 14	Ac voltage rectifiers single phase using MATLAB
Week 15	Ac voltage rectifiers three phase using MATLAB

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Power Electronics Semiconductor Devices, THIRD EDITION Robert Perret2009, John Wiley & Sons, Power Electronics. Daniel W. Hart,.2010 McGraw-Hill	no		
Recommended Texts	POWER ELECTRONICS HANDBOOK, J. David Irwin, Auburn, 2001 Academic Press	no		
Websites	https://www.coursera.org/specializations/power-electronics?action=enroll			

Grading Scheme					
Group Grade التقدير Marks (%) Definition		Definition			
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Suggest Croup	B - Very Good	جید جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Module Information							
Module Title	M	Modern Control System			le Delivery		
Module Type		Core			⊠ Theory ⊠ Lecture ⊠ Lab		
Module Code		MTE 401					
ECTS Credits		6			☑ Tutorial		
SWL (hr/sem)		150			☐ Practical☐ Seminar		
Module Level		UGIV	Semester o	emester of Delivery Seven		Seven	
Administering Department		MTE	College	COE			
Module Leader	Firas Ahmed Majeed		e-mail	dr.firasa	dr.firasaldurze@uomosul.edu.iq		
Module Leader's A	Acad. Title	Lecture	Module Leader's Qualification Ph.D.		Ph.D.		
Module Tutor	Ahmed Abdulkareem Muhammad		e-mail	Ahmedmechatronics93@gmail.com			
Peer Reviewer Name		Dr.Aws Hazim Saber Anaz	e-mail	e-mail aws.anaz@uomosul.edu.iq		ı.iq	
Scientific Committee Approval Date		2024-2025	Version Number 1.0				

Relation with other Modules				
Prerequisite module	None	Semester	None	
Co-requisites module	None	Semester	None	

Module Aims, Learning Outcomes and Indicative Contents			
Module Aims The aims of the module are to This course is an introductory course on linear control systems based on the state-			
space models. The main goal of the course is to provide students with basic tools i			
	modeling, analysis and design for control and estimation. The analysis in this course		
	includes stability, controllability, observability, while the design methods are divided		

	into pole placement for state feedback and observer design, and optimal methods		
	such as linear quadratic regulator. Students will also learn how to apply the theory to		
	engineering problems with MATLAB. The course will cover both continuous-time and		
	discrete-time systems, as well as both time invariant and time-varying systems.		
	Simple examples from mechanical and electrical engineering will be used to show t		
	applicability of the theory. This course will give the basic knowledge for advanced		
	control courses, such as nonlinear control, optimal control, digital control, sampled-		
	data control and system identification.		
	On completion of the course, students should be able to:		
	1- Construct state space models of dynamic systems.		
Module Learning	2- Explain basic control concepts such as controllability, observability, poles and		
Outcomes	zeros, stability		
	3- Explain concepts of full-state control systems		
م مارس السال المارة	4- Explain concepts of optimal control systems		
مخرجات التعلم للمادة الدراسية	5- Explain concepts of digital controllers		
<u> </u>	6- Simulate state space systems in MATLAB/Simulink		
	7- Have had experience with designing control systems		
	Indicative content includes the following.		
	Introduction to State Space Modelling [4 hrs]		
	Linearisation of Non-linear Differential Equation [8 hrs]		
	Construction of State Space Models [4 hrs]		
	Modelling Multiple DOF Systems [6 hrs]		
	Conversion between SS to TF and back again: Control canonical, observer canonical		
	form [4 hrs]		
Indicative Contents	Solution to state equations, poles, zeros and stability [4 hrs]		
Indicative Contents المحتوبات الإرشادية	Controllability and Observability [8 hrs]		
المعمويات الإرتسادية	Feedback Control & Pole Placement [4 hrs]		
	Observers (Estimators) [4 hrs]		
	Optimal Control (LQR) [8 hrs]		
	Optimal Observers (Kalman-Bucy Filters, LQG) [8 hrs]		
	Reduced Order Observers [8 hrs]		
	Compensators [4 hrs]		
	Reference Input & Command Tracking [4 hrs]		
	Digital Control: Sampling & Quantization [4 hrs]		
	0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

Digital Control Design by Emulation [4 hrs]
Summary [4 hrs]
Computer lab-based tutorials using MATLAB/SIMULINK and Quanser QuaRC (12
tutorials)

	Learning and Teaching Strategies
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1- Lectures - aim to deliver fundamental knowledge in relation to modern control systems and the application of the theories to practical examples. 2- Tutorial sessions - are deployed to illustrate the application of fundamental knowledge of modern control systems to different practical exercises. 3- Assignments - are arranged to provide the opportunity for students to search for information, analyze modern control systems with knowledge obtained, and present the completed tasks.

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	93	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	6.2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	57	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.8	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

Module Evaluation					
Weight (Marks) Week Due					Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #2, 4, and 7
Formative	Assignments	2	10% (10)	3, 12	LO #1- 7
assessment	Projects / Lab.	1	10% (10)	Continuous	
	Report	1	10% (10)	Continuous	
	Midterm Exam	2 hr	10% (10)	7	LO # 1-7

Summative assessment	Final Exam	3 hr	50% (50)	16	All
Total assessme	Total assessment		100% (100 Marks)		

	Delivery Plan (Weekly Syllabus)		
	Material Covered		
Week 1	Meaning of a state, State variables, State equations		
Week 2	State space representation of systems, non uniqueness of state variables		
Week 3	Eigenvalues of a system, Invariance of eigenvalues, Diagonalization of a matrix		
Week 4	Solving linear time-invariant state equations		
Week 5	Transfer function and Transfer matrix		
Week 6	Controllability and Observability		
Week 7	Mid-term Exam		
Week 8	Control system design via pole placement		
Week 9	Design of state observers		
Week 10	Stability		
Week 11	Liapunov stability analysis		
Week 12	Optimal control		
Week 13	Quadratic optimal control problem		
Week 14	Intriduction of Digital Control		
Week 15	Sampling & Quantization		
Week 16	Preparatory week before the final Exam		

	Delivery Plan (Weekly Lab. Syllabus)			
	Material Covered			
Week 1	Study of open loop and closed loop time/ frequency responses of first/second order LTI system			
Week 2	Conversion of transfer functions to state model of LTI system and vice versa			
Week 3	Determine State Space Model of a given system and determine its controllability and observability.			
Week 4	Analysis of Zero order hold and first order hold circuits.			
Week 5	Conversion of transfer functions to state model of discrete time system.			

Week 6	To determine state transition matrix of a given system.
Week 7	Study of operation of a stepper motor interface with microprocessor.

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Dorf and Bishop "Modern Control Systems"	Yes		
Recommended Texts	Franklin G. F., Powell J. D., Workman M., "Digital Control of Dynamic Systems"	Yes		
Websites	https://www.coursera.org/learn/ engineering			

Grading Scheme				
Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
S	B - Very Good	جيد جدا	80 - 89	Above average with some errors
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Module Information							
Module Title	Iı		Modu	ıle Delivery			
Module Type		Core			☑ Theory		
Module Code		MTE 402			□ Lecture 図 Lab		
ECTS Credits		5			☐ Tutorial		
SWL (hr/sem)		125			☐ Practical ☐ Seminar		
Module Level		UGIV	Semester o	f Deliver	Delivery Seven		
Administering Dep	partment	MTE	College	COE			
Module Leader	Dr. Ali A. Abdul	la Alkurukchi	e-mail	ali.alku	rukchi@uomosul	.edu.iq	
Module Leader's	Acad. Title	Lecturer	Module Leader's Qualification Ph		Ph.D.		
Module Tutor	Teba Hani Fathi		e-mail	teba96mecha@gmail.com		<u>ım</u>	
Peer Reviewer Name Dr. Saad S. Ahmed		e-mail	kazzazs	kazzazs60@uomosul.edu.iq			
Scientific Committee Approval Date 2024-2025		Version Nu	mber	1.0			

Relation with other Modules			
Prerequisite module	None	Semester	None
Co-requisites module	None	Semester	None

Module Aims, Learning Outcomes and Indicative Contents				
Module Aims أهداف المادة الدراسية	The aim of the "Industrial Automation" module is to provide students with a comprehensive understanding of automation systems in industrial settings. The module aims to develop students' knowledge and skills in industrial automation, including the architecture of automation systems, sensing and actuation components, control systems, and programming of programmable logic controllers (PLCs). By the end of the module, students will be well-equipped to succeed in the dynamic field of industrial automation.			

Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Upon successful completion of the module, students will be able to: Demonstrate an understanding of the benefits of automation in industrial settings and its pivotal role in production systems. Differentiate between industrial automation and information technology, and analyze the advantages of automation across various industries. Comprehend the architecture of automation systems, including the functional elements and their roles. Identify and analyze industrial sensors and actuators, their characteristics, and their applications in automation systems. Explain the principles of industrial control systems and their integration into automation architectures. Develop programming skills for programmable logic controllers (PLCs) and apply them to control industrial processes. Utilize formal modeling techniques for effective sequence control design in industrial automation. Apply the acquired knowledge and skills to design and implement automation systems for specific industrial applications.
Indicative Contents المحتويات الإرشادية	The module will cover the following indicative contents: 1. Introduction to Industrial Automation • Benefits of automation in industrial settings • Distinction between industrial automation and information technology • Role of automation in production systems 2. Architecture of Automation Systems • Functional elements of automation systems • Integration of sensing and actuation components 3. Industrial Sensors and Actuators • Types and characteristics of industrial sensors • Applications of industrial actuators • Selection criteria for sensors and actuators 4. Industrial Control Systems • Principles of control theory • Control strategies and feedback mechanisms • Integration of control systems in automation architectures 5. Programming of Programmable Logic Controllers (PLCs) • Introduction to PLCs and their applications • Programming languages for PLCs (e.g., ladder logic) • Troubleshooting and debugging PLC programs 6. Sequence Control Design • Formal modeling techniques for sequence control design • Tools and methods for effective sequence control 7. Application of Automation Systems • Case studies and examples of automation systems in various industries • Design and implementation of automation systems for specific industrial applications

Learning and Teaching Strategies

- 1. Lectures: Traditional lectures can be used to deliver key theoretical concepts, principles, and frameworks related to industrial automation. Lectures provide a structured approach to disseminating information to students.
- 2. Practical Lab Sessions: Hands-on practical lab sessions are essential for students to apply their theoretical knowledge and develop practical skills in industrial automation. These sessions can involve working with programmable logic controllers (PLCs), sensors, actuators, and control systems to design and implement automation solutions.
- 3. Case Studies: Case studies can be used to explore real-world applications of industrial automation. Students can analyze and discuss case studies to understand the challenges, benefits, and solutions employed in different industries. This promotes critical thinking and problem-solving skills.
- 4. Group Projects: Group projects encourage collaborative learning and enable students to apply their knowledge to solve complex automation problems. Students can work in teams to design and implement automation systems, present their solutions, and receive feedback from peers and instructors.
- 5. Simulations and Virtual Labs: Using simulation software or virtual labs allows students to practice and experiment with automation systems in a safe and controlled environment. These tools can simulate real-world scenarios, enabling students to develop skills in system modeling, control programming, and troubleshooting.
- 6. Interactive Discussions: Interactive discussions, such as seminars or group discussions, provide opportunities for students to actively engage with the course material. They can share their perspectives, ask questions, and participate in debates to deepen their understanding of industrial automation concepts.
- 7. Guest Lectures and Industry Visits: Inviting guest speakers from industry or organizing visits to industrial automation facilities provide students with valuable insights into real-world applications, industry trends, and challenges. These experiences help bridge the gap between academia and industry.
- 8. Self-Directed Learning: Encouraging students to take responsibility for their learning through self-directed study is important. Providing resources like textbooks, academic papers, online materials, and recommending additional readings enables students to explore topics beyond the core curriculum and further develop their understanding.
- 9. Formative Assessments and Feedback: Regular formative assessments, such as quizzes, assignments, or presentations, allow students to evaluate their progress and receive constructive feedback. This helps identify areas for improvement and promotes active learning.
- 10. Independent Study and Research: Encouraging students to undertake independent study and research projects fosters critical thinking and a deeper understanding of specific topics within industrial automation.

Strategies

Students can explore emerging trends, conduct experiments, or analyze existing research to enhance their knowledge.

Student Workload (SWL)					
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	63	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4.2		
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	62	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.13		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125				

Module Evaluation							
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
		mber		l trock but	Outcome		
	Quizzes	2	10% (10)	5, 10	LO #1-4, 5-6, 8		
Formative	Assignments	2	10% (10)	2, 11, 13,14	LO # 1,6-8		
assessment	Projects / Lab.	1	10% (10)	Continuous	LO# 3, 4, 6, 8		
	Report	1	10% (10)	13	LO # 1, 2		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-6		
assessment	Final Exam	3 hr	50% (50)	16	All		
Total assessment		100% (100 Marks)					

Delivery Plan (Weekly Syllabus)		
	Material Covered	
Week 1	Introduction, The major advantages of using automation, Automation Lab. Example,	
Week 2	Industrial Automation vs. Industrial Information Technology, Role of automation in industry, Automation Advantages, Industrial Product Life Cycle,	
Week 3	Economy of Scale and Economy of Scope, Production Systems Types, Types of Automation Systems	
Week 4	Architecture of Industrial Automation Systems, The Functional Elements of Industrial Automation	

Week 5	Sensing and Actuation Elements, Industrial Sensors and Instrument Systems. Industrial Actuator Systems,
Week 6	Industrial Control Systems, The Architecture of Elements: The Automation Pyramid
Week 7	Mid-Term Exam
Week 8	Introduction to Sequence/Logic Control and Programmable Logic Controllers, Industrial Example of Discrete Sensors and Actuators, Programmable Logic Controllers (PLC),
Week 9	Comparing Logic and Sequence Control with Analog Control, PLC Evolution , PLC >> Application Areas, PLCs Architecture, Communications processors, Expansion units, Input/output Units, Programmers
Week 10	The Software Environment and Programming of PLCs, Structure of a PLC Program, The cyclic execution of PLC Programs,
Week 11	The Relay Ladder Logic (RLL) Diagram, Example: Forward Reverse Control
Week 12	The Function Chart (IEC), The Statement List (STL), Typical Operands of PLC Programs, Internal Variable Operands or Flags,
Week 13	Timers(On delay, Off delay, Fixed pulse width timer, Retentive Timer, Non-Retentive Timer), Counter, User defined Data, Addressing, Operation Set.
Week 14	Formal Modelling of Sequence Control Specifications and Structured RLL Programming, motivation example Industrial stamping process,
Week 15	Steps in Sequence Control Design, Design of RLL Program, state transition logic, state logic, output logic,
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)			
	Material Covered			
Week 1	Introduction to Automation Lab.			
Week 2	Introduction to plc logo, expansion, and its code			
Week 3	Logo Soft comfort development environment 01			
Week 4	Logo Soft comfort development environment 02			
Week 5	Logo Soft comfort development environment 03			
Week 6	Motor starter using plc logo			
Week 7	Mid-term Exam.			
Week 8	Traffic light example			
Week 9	Introduction to Mitsubishi FX1n20MR, and GX work2			
Week 10	Conveyer Belt			
Week 11	Traffic Light			
Week 12	Building scene in Factory IO			
Week 13	Tank filling System: factory IO, plc logo			

Week 14	Conveyer Belt: factory IO, plc logo
Week 15	Final Lab Exam

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	M. Groover, "Automation, Production Systems, and Computer Integrated Manufacturing" 3rd edition.	No		
Recommended Texts				
Websites		·		

Grading Scheme				
Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
S	B - Very Good	جيد جدا	80 – 89	Above average with some errors
Success Group (50 - 100)	C – Good	جيد	70 – 79	Sound work with notable errors
(50 - 100)	D - Satisfactory	متوسط	60 – 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 – 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

	Module Information						
Module Title			Modu	le Delivery			
Module Type		Core			☑ Theory		
Module Code		MTE 403			⊠ Lecture ⊠Lab		
ECTS Credits		6			☑ Tutorial		
SWL (hr/sem)		150		☐ Practical ☐ Seminar			
Module Level		UGIV	Semester o	f Deliver	Delivery Seven		
Administering Dep	partment	MTE	College	COE			
Module Leader	Zead Mohamm	ed Yosif	e-mail	zmyousif@uomosul.edu.iq		ı.iq	
Module Leader's	Acad. Title	Assistant Professor	Module Lea	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Abdullah Murtadha Alfakhrey		e-mail	alfakhrey.abdullah@gmail.com		ail.com	
Peer Reviewer Name		Saad Zaghlul Saeed	e-mail saeeds70@uomosul.edu.iq		u.iq		
Scientific Committee Approval Date		2024-2025	Version Number 1.0				

	Relation with other Modules		
Prerequisite module	None	Semester	None
Co-requisites module	None	Semester	None

Module Aims, Learning Outcomes and Indicative Contents					
	The aims of the module are to				
Module Aims أهداف المادة الدر اسية	 Apply knowledge of mathematics, science, and solve engineering problems in robotics. 				
العارف العربي	2. Understand techniques for studying motion of robots and their components.				
	3. Develop the ability to analyze and understand the dynamics of robots				
	(position, velocity, acceleration, force and torque) characteristics.				

4. Understand motion control of robotic system. 5. Develop the ability to systematically design robots to perform a specified 6. Provide students with a broad introduction to mobile robots and autonomous systems. 7. Understand techniques for studying mobile robot navigation and path planning strategies On completion of the course students should be able to: 1. Understand the transformation of position, velocity and acceleration. 2. Calculate the forewords kinematics to obtain Cartesian coordinates as a function of joint variables. 3. Obtain the joint variables from desired Cartesian coordinates using inverse **Module Learning** kinematics. **Outcomes** 4. Understand the velocity propagation from link to another towards the tip. 5. Obtain the joint torque or force as a function of robot's configuration. 6. Obtain the dynamic equations of any robot arm. مخرجات التعلم للمادة الدر اسبة 7. Transform high-level tasks into trajectories that the robot can follow to achieve. 8. Design a controller for trajectory tracking. 9. Understand basic mobile robot kinematics, common mobile robot types. 10. Understand the parts of mobile robot navigation systems. 11. Understand and apply path planning and navigation algorithms. Indicative content includes the following. Part A – manipulator kinematics Introduction to robotics: Types of joints used in robots Mechanisms, Descriptions (position, orientations, and frames), Link-connection description, derivation of link homogeneous transformations. [18 hrs] Kinematics: Forward kinematics, inverse kinematics of robotic manipulators, algebraic solution, geometric solution. Example of industrial robot. [12 hrs] Part B - manipulator dynamics Differential kinematic equations, Linear and rotational velocity of rigid bodies, velocity propagation from link to link. Manipulator Jacobian, singularities, force relations. [16 hrs] Dynamics: Iterative Newton-Euler dynamic formulation. Trajectory generation: Cubic **Indicative Contents** polynomials, Linear segment with parabolic bade (LSPB). [14 hrs] المحتوبات الارشادية Part C – motion control Linear Control of manipulator: Feedback and closed-loop control, second order linear systems, control-law portioning, trajectory-following control, computed torque method. [16 hrs] Part D – mobile robot Kinematics Mobile robots: Mobile Robot Mechanical Architectures, Mobility and Maneuverability, Vehicle Stability, Wheeled Vehicles, Tracked Vehicles, Legged Vehicles. Kinematics: forward and inverse kinematics. [16 hrs] Part E – mobile robot path planing

Path planning algorithms based on A-star, Dijkstra, probabilistic roadmaps (PRM), and rapidly exploring random trees (RRT). Laboratory experiments were prepared. [20 hrs]

Learning and Teaching Strategies					
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1- Lectures - aim to deliver fundamental knowledge in relation to robotics and the application of the theories to practical examples. 2- Tutorial sessions - are deployed to illustrate the application of fundamental knowledge of robotics to different practical exercises. 3- Assignments - are arranged to provide the opportunity for students to search for information, analyze robots with knowledge obtained, and present the completed tasks.				

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	93	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبو عيا	6.2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	57	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.8	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

Module Evaluation						
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	2	10% (10)	5, 10	LO #2, 4, 9 and 10	
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 5, 7 and 11	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 1 and 8	
Summative	Midterm Exam	2 hrs	10% (10)	7	LO # 1-7	
assessment	Final Exam	3 hrs	50% (50)	16	All	
Total assessment			100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)				
	Material Covered				
Week 1	Introduction to robotics: Types of joints used in robots Mechanisms, Descriptions (position, orientations, and frames).				
Week 2	Link properties: Link-connection description, Derivation of link transformations.				
Week 3	Manipulator Kinematics: Example of industrial robot.				
Week 4	Joint's angle: Inverse kinematics of serial robots. Example of industrial robot.				
Week 5	Linear and rotational velocity of rigid bodies, velocity propagation from link to link.				
Week 6	JACOBIANS: SINGULARITIES, Forces: Static force in manipulators.				
Week 7	Mid-term Exam + Dynamics: Newton's equation, Euler's Equation, Iterative Newton-Euler dynamic formulation, an example of closed –form dynamic equations of manipulator's dynamic equations.				
Week 8	Trajectory generation: Cubic polynomials, Linear segment with parabolic bade (LSPB).				
Week 9	Linear Control of manipulator: Feedback and closed-loop control, second order linear systems.				
Week 10	Control-law partitioning, trajectory following control, computed torque method.				
Week 11	Mobile robots: Mobile Robot Mechanical Architectures, Mobility and Maneuverability, Vehicle Stability, Wheeled Vehicles, Tracked Vehicles, Legged Vehicles.				
Week 12	Mobile robot kinematics: Forward and inverse kinematics				
Week 13	path planning algorithms based on A-star, Dijkstra				
Week 14	probabilistic roadmaps (PRM)				
Week 15	rapidly exploring random trees (RRT).				
Week 16	Preparatory week before the final Exam				

Delivery Plan (Weekly Lab. Syllabus)		
	Material Covered	
Week 1	Introduction: Safety, instructions, brief descriptions for devices and equipments.	
Week 2	Servo motors in robot arms	
Week 3	Construction of sequence and steps for robot arm motion	
Week 4	LabVIEW and NXT MINDSTROM	
Week 5	Forward and Inverse Kinematics for 2-DOF robot arm	
Week 6	Construction and Control of Mobile robot using NXT-LabVIEW	

Week 7	Mid-term Exam
Week 8	Sensing obstacle using Touch sensor
Week 9	Sensing obstacle using ultrasonic sensor
Week 10	Sensing obstacle using light sensor
Week 11	Avoiding obstacle using ultrasonic sensor
Week 12	Analyzing Mobile robot kinematics (Forward and inverse kinematics)
Week 13	Applying Mobile robot path planning techniques
Week 14	Programming Lab-Volt Robot Using RoboCIM
Week 15	Programming Lab-Volt Robot Using Teach Pendent
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	Introduction to robotics mechanics and control, John J. Craig, SI. Units. Third ed., 2005	Yes			
Recommended Texts	Robotics - Modelling, Planning and Control, Bruno Siciliano • Lorenzo Sciavicco • Luigi Villani • Giuseppe Oriolo , 2009.	Yes			
	Introduction to Autonomous Mobile Robots, second edition, by Roland Siegwart, Illah Reza Nourbakhsh and Davide Scaramuzza	No			
Websites	Introduction to Robotics & Artificial Intelligence Udemy http://ais.informatik.uni-freiburg.de/teaching/ss21/robotics/ Mobile Robtoics EE565 / CS5313 (lums.edu.pk)				

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
	A – Excellent	امتياز	90 - 100	Outstanding Performance	
Success Carrier	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C – Good	ختر	70 - 79	Sound work with notable errors	
(50 - 100)	D – Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E – Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Module Information							
Module Title		Computer Interface		Modu	ıle Delivery		
Module Type		Core			☑ Theory		
Module Code		MTE 404			□ Lecture 図 Lab		
ECTS Credits		6					
SWL (hr/sem)		150		☐ Practical☐ Seminar			
Module Level		UGIV	Semester of Delivery Seven		Seven		
Administering Dep	partment	MTE	College	College COE			
Module Leader	Dr. Ali A. Abdul	la Alkurukchi	e-mail	ali.alkuı	rukchi@uomosul	l.edu.iq	
Module Leader's	Acad. Title	Lecturer	Module Lea	ıder's Qu	alification	Ph.D.	
Module Tutor			e-mail				
Peer Reviewer Name		Dr. Zeyad M. Yousif	e-mail Zmyousif@uomosul.edu.iq		ı.iq		
Scientific Committee Approval Date		2024-2025	Version Number 1.0				

	Relation with other Modules		
Prerequisite module	None	Semester	None
Co-requisites module	None	Semester	None

Module Aims, Learning Outcomes and Indicative Contents					
Module Aims	The aims of the module are to 1. To provide students with a comprehensive understanding of computer				
أهداف المادة الدراسية	interfaces and their role in facilitating communication between humans and computers.				
	 To develop practical skills in designing, implementing, and evaluating effective computer interfaces for a variety of applications. 				

	3. To foster critical thinking and problem-solving abilities in the context of
	computer interface design and user-centered interaction.
	Upon successful completion of this module, students will be able to:
	Demonstrate a deep understanding of computer interface concepts, theories, and principles.
Module Learning Outcomes	Design and develop user-centered computer interfaces that meet usability and user experience standards.
	 Apply appropriate tools, technologies, and programming languages to implement computer interfaces.
مخرجات التعلم للمادة الدراسية	Analyze and evaluate the performance, usability, and accessibility of computer interfaces.
الدراسية	 Apply critical thinking and problem-solving skills to address challenges in computer interface design and implementation.
	Communicate effectively and work collaboratively in multidisciplinary teams for interface development projects.
Indicative Contents المحتويات الإرشادية	 Introduction to computer interfaces: Definition, characteristics, and importance of computer interfaces. Overview of human-computer interaction (HCI) principles and theories. Historical evolution and emerging trends in computer interface design. User-centered design and interface requirements: Understanding user needs, requirements, and context of use. User research methods, persona development, and user-centered design approaches. Interface prototyping and iterative design techniques. Interaction design and interface elements: Design principles for effective interaction design. Navigation and information architecture in computer interfaces. Interface elements, including menus, buttons, forms, and visual representations. Programming for interface development: Programming languages and frameworks for interface implementation. User interface (UI) programming concepts. Integration of backend systems and data handling in computer interfaces.

Learning and Teaching Strategies					
Strategies	 Lectures: The module will include interactive lectures delivered by subject matter experts to introduce students to the theoretical concepts, principles, and emerging trends in computer interfaces. Lectures will provide an overview of key topics and theories, supported by real-world examples and case studies. 				

- 2. Practical Sessions: Practical sessions will be conducted to provide hands-on experience in designing, implementing, and evaluating computer interfaces. These sessions will involve the use of relevant software tools, programming languages, and design frameworks. Students will have the opportunity to apply theoretical knowledge in practical scenarios, solve interface design problems, and develop their technical skills.
- 3. Workshops and Seminars: Workshops and seminars will be organized to encourage active learning and critical thinking. These sessions will involve group discussions, brainstorming activities, and case study analysis to explore interface design principles, methodologies, and best practices. Guest speakers from industry or academia may be invited to share their expertise and insights.
- 4. Group Projects: Students will work on group projects that require collaborative work to design and develop computer interfaces. This will provide an opportunity to apply knowledge and skills in a practical setting, while also fostering teamwork, communication, and project management skills. Group projects may involve conducting user research, prototyping interfaces, and usability testing.
- 5. Individual Assignments: Individual assignments will be given to students to encourage independent thinking, research skills, and critical analysis. These assignments may involve interface design critiques, literature reviews, or the development of individual interface components. Feedback and guidance will be provided to support students' learning and improvement.
- 6. Practical Demonstrations: Practical demonstrations will be conducted to showcase examples of well-designed computer interfaces. These demonstrations may include interactive prototypes, live interface implementations, or case studies of successful interfaces. Students will have the opportunity to analyze and evaluate the effectiveness of these interfaces based on usability, user experience, and accessibility criteria.
- 7. Self-directed Learning: Students will be encouraged to engage in self-directed learning through independent study, recommended readings, and exploration of online resources. This will allow students to deepen their understanding of interface design concepts, explore emerging trends, and further develop their skills and knowledge. Online learning platforms, tutorials, and relevant research papers will be made available to support self-directed learning.
- 8. Assessment: Various assessment methods will be employed to evaluate students' learning outcomes, including individual and group assignments, practical projects, presentations, and examinations. The assessments will be designed to assess students' understanding of theoretical concepts, their ability to apply knowledge in practical scenarios, and their critical thinking and problem-solving skills. Feedback will be provided to students to support their learning and development.

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	93	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	5.33	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	57	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.67	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

Module Evaluation						
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	2	10% (10)	5, 10	LO # 1,3,5	
Formative	Assignments	2	10% (10)	4, 6, 8,10,12	LO # 1, 3, 4, 5, 6	
assessment	Projects / Lab.	1	10% (10)	Continuous	LO# 2, 3, 4, 5, 6	
	Report	1	10% (10)	13	LO # 1, 4, 5	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1,5	
assessment	Final Exam	3 hr	50% (50)	16	All	
Total assessm	ent		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)			
	Material Covered			
Week 1	Introduction to computer interface and Data Acquisition.			
Week 2	Analog Signal Transmission, Wire and cable options, Noise and Ground, Zero and Span Cct (Inverting Summer, Instrument Amplifier)			
Week 3	Signal Conditioning, Isolation Amplifier, Transformer-coupled Amplifiers, Optically Coupled Amplifiers.			
Week 4	Analog to Digital and Digital to Analog Conversion: Sample and Hold circuits, Analog, multiplexers/demultiplexers.			
Week 5	Analog to digital Converters, Digital to analog Converters, Examples of sensors with signal			

	conditioned output.
Week 6	Microprocessor Addressing System: Memory Mapped Addressing, I/O Addressing.
Week 7	Mid-term Exam.
Week 8	Address decoder Design, Assembly Language for I/O
Week 9	Programmable Peripheral Interface (PPI), Advantage, Addressing
Week 10	PPI Examples
Week 11	Computer Parallel Port: Architecture
Week 12	Computer Parallel Port: programming and examples
Week 13	Computer Serial Port: Architecture
Week 14	Computer serial Port: programming and examples
Week 15	Computer Game Port: Architecture, programming, and examples
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered				
Week 1	Introduction to LabVIEW				
Week 2	Digital output using data acquisition card and GUI development (LabVIEW)				
Week 3	Digital input using data acquisition card and GUI development (LabVEW)				
Week 4	Building temperature controller using data acquisition card PC (LabVEW)				
Week 5	Building servo motor controller using data acquisition card and PC				
Week 6	Building dc motor controller using data acquisition card and PC				
Week 7	Building dc motor controller using data acquisition card and PC				
Week 8	Mid-term Exam.				
Week 9	Introduction to Programming PPI using MTS-86C				
Week 10	Programming output / input ports using PPI and MTS-86C (1)				
Week 11	Programming output / input ports using PPI and MTS-86C (2)				
Week 12	Programming parallel ports(Centronic) using PC				
Week 13	Esp32 and remoteXY development environment toward IOT(1)				
Week 14	Esp32 and remoteXY development environment toward IOT(2)				
Week 15	Esp32 and remoteXY development environment toward IOT(3)				
Week16	Preparatory week before the final Exam				

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	 PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control by Kevin James, Industrial Control Electronics by Michael Jacob 	No			
Recommended Texts					
Websites					

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Suggest Crown	B - Very Good	جيد جدا	80 – 89	Above average with some errors	
Success Group (50 - 100)	C - Good	جيد	70 – 79	Sound work with notable errors	
(50 - 100)	D - Satisfactory	متوسط	60 – 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 – 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Module Information							
Module Title	A	Artificial Intelligence		Modu	le Delivery		
Module Type				☑ Theory			
Module Code		MTE 405			□ Lecture 図 Lab		
ECTS Credits		5			□ Tutorial		
SWL (hr/sem)		125		☐ Practical☐ Seminar			
Module Level		UGIV	Semester o	f Deliver	Delivery Seven		
Administering Dep	partment	MTE	College	ollege COE			
Module Leader	Aws Anaz		e-mail	aws.ana	az@uomosul.edu	<u>pi.u</u>	
Module Leader's A	Acad. Title	Lecturer	Module Lea	nder's Qu	alification	Ph.D.	
Module Tutor			e-mail				
Peer Reviewer Name		Dr. Rafid Ahmed	e-mail rafidahmedkhalil@uon		iosul.edu.iq		
Scientific Committee Approval Date		2024-2025	Version Number 1.0				

Relation with other Modules					
Prerequisite module	None	Semester	None		
Co-requisites module	None	Semester	None		

Module Aims, Learning Outcomes and Indicative Contents						
Module Aims The aims of the module are to 4. To let the students be aware of radically different Artificial Intelligence Approaches from the conventional ones, 5. To describe when/how and why we need Artificial Intelligence 6. learn how to implement different Artificial Intelligence Approaches						

	 Understand why Artificial Intelligence Approaches should be learned, when they should be used, and how accurate their results are. Apply Artificial Intelligence Approaches in Mechatronics real world applications.
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 On completion of the course, students should be able to: 12. Gain an overview of artificial intelligence, machine learning, and computational intelligence. 13. Understand the concepts of neural networks and different learning methods. 14. Choose artificial intelligence approaches effectively for real-life problems. 15. Implement AI applications in mechatronic engineering.
Indicative Contents المحتويات الإرشادية	Indicative content includes the following. Unit – I: Introduction to Intelligence [2 hrs]. Introduction to Artificial Neural Networks, Neuron Model [8 hrs]. UNIT- II: Feedforward Neural Networks, Derivation of Error Backpropagation (EBP) Training Algorithm, Improving the Convergence Properties of EBP, Second Order Training Schemes. Radial Basis Function Neural Networks, CNN, Unsupervised Learning [30 hrs]. UNIT- III: Fuzzy Logic, Membership Functions. Standard Fuzzy Systems (SFS), Adaptive Neuro-Fuzzy Inference Systems (ANFIS) [20 hrs]. UNIT – IV: Introduction to Genetic Computing, Encoding and Decoding, Operators: Mutation, Crossover, Offspring generation, Particle Swarm Optimization, Applications of Particle Swarm Optimization [20 hrs]. UNIT – V: Al applications in Mechatronics [10 hrs].

Learning and Teaching Strategies					
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1- Lectures - aim to deliver concepts and fundamental knowledge in relation to Artificial Intelligence Approaches and their application. 2- Project - is deployed to illustrate the application of fundamental knowledge of Artificial Intelligence Approaches to different practical engineering problems. 3- Assignments - are arranged to provide the opportunity for students to search for information, and analyze problems. 4- Lab sessions - to develop actual computer codes to solve real problems, and thus the use of computer software to implement Artificial Intelligence Approaches.				

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	93	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	6.2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	32	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2.13	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125			

Module Evaluation							
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
		mber	Weight (Wanks)	Week Due	Outcome		
	Quizzes	2	10% (10)	5, 10	LO #1, 3 and 4		
Formative	Assignments	2	5% (5)	3, 5, 8, 11, 13	LO # 1, 2, 3 and 4		
assessment	Projects / Lab.	1/1	20% (20)	Continuous			
	Report	1	5% (5)	13	All		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-3		
assessment	Final Exam	3 hr	50% (50)	16	All		
Total assessment			100% (100 Marks)				

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Introduction to Intelligence.			
Week 2	Introduction to Artificial Neural Networks, Neuron Model.			
Week 3	Feedforward Neural Networks, Derivation of Error Backpropagation (EBP) Training Algorithm.			
Week 4	Improving the Convergence Properties of EBP, Second Order Training Schemes.			
Week 5	Radial Basis Function Neural Networks.			
Week 6	Unsupervised Learning. Deep learning.			
Week 7	Mid-term Exam + Convolutional Neural Networks (CNN).			
Week 8	Fuzzy Logic, Membership Functions.			
Week 9	Standard Fuzzy Systems (SFS), Adaptive Neuro-Fuzzy Inference Systems (ANFIS).			
Week 10	Intelligent Control: Fuzzy control, and Fuzzy PID controller.			

Week 11	Introduction to Genetic Computing, Encoding and Decoding, Operators: Mutation, Crossover, Offspring generation.
Week 12	Particle Swarm Optimization.
Week 13	Applications of Particle Swarm Optimization.
Week 14	Al applications in Mechatronics.
Week 15	Project presentation and submission.
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)			
	Material Covered			
Week 1	Single perceptron implementation			
Week 2	Classification using Single perceptron			
Week 3	Regression using Single perceptron			
Week 4	MLP Implementation			
Week 5	ANN for Classification			
Week 6	ANN for regression			
Week 7	CNN in image classification			
Week 8	Fuzzy logic control			
Week 9	Fuzzy controller			
Week 10	Fuzzy PID controller			
Week 11	ANFIS modeling			
Week 12	ANFIS in regression			
Week 13	Path planning using evolutionary algorithm			
Week 14	Genetic algorithm implementation			
Week 15	Mobile Robot navigation using Particle Swarm Optimization			

Learning and Teaching Resources					
Text Library?					
Required Texts	Fundamentals of Computational Intelligence: Neural Networks, Fuzzy Systems, and Evolutionary Computation" (IEEE Press Series on Computational Intelligence) 1st Edition by James Keller, Derong Liu, and David Fogel.	No			

Recommended Texts	Liu, Jinkun. Intelligent control design and MATLAB simulation. Singapore: Springer, 2018.	No
Websites https://classroom.google.com/c/NDA4Mjg2NDkyNjU5?cjc=i4awuuy		<u>awuuy</u>

Grading Scheme						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Module Information							
Module Title			Modu	ıle Delivery			
Module Type		Core			☐ Theory		
Module Code		MTE 406			□ Lecture ☑ Lab		
ECTS Credits		4		☐ Tutorial			
SWL (hr/sem)	100			☐ Practical ☐ Seminar			
Module Level		UGIV	Semester of Delivery Seven		Seven		
Administering Dep	partment	MTE	College	COE			
Module Leader			e-mail				
Module Leader's A	Acad. Title		Module Lea	der's Qu	alification		
Module Tutor	or		e-mail				
Peer Reviewer Name			e-mail				
Scientific Committee Approval Date		2024-2025	Version Number		1.0		

Relation with other Modules					
Prerequisite module None Semester None					
Co-requisites module	MTE 412: Project II	Semester	Eight		

Module Aims, Learning Outcomes and Indicative Contents					
Module Aims	The aims of the module are to				
أهداف المادة الدراسية	1- Practical application of the materials taken during the previous years				
اهدانی ادامی ادامی است	2- Learning to use correct calculations and analyze results				
3- Prepare to invest the study information and apply it in the work site					
Module Learning On completion of the course, students should be able to:					
Outcomes 16. an ability to identify, evaluate and solve engineering problems uti					
	the acquired principal knowledge of engineering, science, and				

مخرجات التعلم للمادة الدراسية	 mathematics. 17. an ability to design an integrated system and its various components and processes to produce solutions that fulfill the need of society. 18. an ability to communicate effectively using oral, written, and graphic forms with different levels of audiences. solve systems 19. an ability to acquire new engineering knowledge and skills in the mechatronics engineering fields. 20. an ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits.
Indicative Contents المحتويات الإرشادية	Indicative content includes the following. Unit – I: An introduction to the project, defining the business idea, implementation stages, and proceeding with the theoretical side of the project [15 hrs] UNIT- II: Practical application of theoretical outputs [15 hrs] UNIT- III: Analyze the practical results and write the outputs and the most important recommendations [15hrs]

Learning and Teaching Strategies				
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1- Lectures - aims to introduce the basic concepts and knowledge regarding forces analysis and the application of its methods to purely mathematical examples. 2- Tutorials - These are posted to illustrate the application of basic knowledge of equilibrium theory used to solve various practical engineering problems. 3- Assignments - are arranged to provide the opportunity for students to search for information, analyze problems and discrete data, model their equations, with knowledge obtained, and present the completed tasks. 4-Computer courses - to develop actual computer codes to solve real problems, therefore the use of computer programs for force analysis and component calculation is an important part of the subject.			

Student Workload (SWL)					
Structured SWL (h/sem) 48 Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب أسبوعيا					
Unstructured SWL (h/sem)	52	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.46		

الحمل الدراسي غير المنتظم للطالب خلال الفصل		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	100	

Module Evaluation							
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
		mber	Weight (Warks)	Week Bue	Outcome		
	Quizzes	2	10% (10)	5, 10	LO #1-5		
Formative	Assignments	2	10% (10)	3, 5, 8, 11, 13	LO # 1-5		
assessment	Projects / Lab.	1	10% (10)	Continuous			
	Report	1	10% (10)	13	LO # 1-5		
Summative Midterm Exam		2 hr	10% (10)	7	LO # 1-5		
assessment Final Exam 3 hr 50% (50) 16 All							
Total assessment 100% (100 Marks)							

Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered			
Week 1	Introduction to the project			
Week 2	Introduction to the project			
Week 3	Gathering the required information and working on the theoretical part of the project			
Week 4	Gathering the required information and working on the theoretical part of the project			
Week 5	Continue with the theoretical part of the project			
Week 6	Continue with the theoretical part of the project			
Week 7	Mid-term Exam			
Week 8	The practical side of the project			
Week 9	The practical side of the project			
Week 10	The practical side of the project			
Week 11	The practical side of the project			
Week 12	The practical side of the project			
Week 13	The practical side of the project			
Week 14	The practical side of the project			

Week 15	The practical side of the project
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources					
	Available in the Library?				
Required Texts	Engineering Mechanics, STATICS, Bedford A. and Fowler W., PEARSON, Prentice Hall, 5th Edition, 2008. 3. Vector Mechanics for Engineers, STATICS, Beer F. P., Johnston E. R., Mazurek D. F.,	Yes			
Recommended Texts	Vector Mechanics for Engineers, STATICS, Beer F. P., Johnston E. R., Mazurek D. F., Cornwell P. J. and Eisenberg E. R., McGraw-Hill, 9th Edition, 2010.	Yes			
Websites	https://www.coursera.org/learn/ engineering mechanic				

Grading Scheme						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Module Information						
Module Title	Computer Aided Machine Design II			Modu	le Delivery	
Module Type		Core			☑ Theory	
Module Code		MTE 407			□ Lecture ☑ Lab	
ECTS Credits		7			☐ Tutorial	
SWL (hr/sem)		175			☐ Practical ☐ Seminar	
Module Level		UGIV	Semester of Delivery Eight		Eight	
Administering Dep	partment	MTE	College COE			
Module Leader	Ahmad Wadolla	ah Saleh Al-Sabawi	e-mail	ahmada	ahmadalsabawi@uomosul.edu.iq	
Module Leader's	Acad. Title	Lecturer Module Le		der's Qualification MSc		MSc
Module Tutor	Shahad Waleed Ahmed		e-mail	shahad.ahmed@uomosul.edu.iq		ul.edu.iq
Peer Reviewer Name		Loay B. Y.	e-mail	loayalda	loayaldabbagh@uomosul.edu.iq	
Scientific Committee Approval Date		2024-2025	Version Nu	mber	1.0	

Relation with other Modules					
Prerequisite module	MTE 309: Computer Aided Machine Design I	Semester	Six		
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents					
Module Aims Upon successful completion of the course, students should be able to: 10. Model basic and complex parts and components. 11. Describe the fundamental components and limitations of a modern components numerical control (CNC) machine tool. 12. Select suitable cutting tools and process parameters for a given millin turning operation. 13. Write, read and troubleshoot NC programs written in standard G-code for					

	14. Formulate free-form curves and surfaces mathematically using a parametric expression.
	15. Describe the basic principles of Hermite curve, Bezier curve, B-spline curve and
	NURBS curve representations
	16. Use computer-aided manufacturing (CAM) software to generate both
	roughing and finishing operations. 17. Describe the relative advantages and disadvantages between two and half
	axis, three-axis and five axis machining.
	18. Work and operate typical CNC machines.
	At the completion of course, the student will be able to
	1. Apply/develop solutions or to do research in the areas of computer aided
Module Learning	manufacturing.
Outcomes	 Deal with simple or complex part geometries. Write gcode for relatively simple shapes and parts.
	4. Edit and develop gcode texts that is generated by CAM software and do in –
	site modification on a text file format.
مخرجات التعلم للمادة الدراسية	5. Exposed to the available basic CNC machines.
الدراسية	6. Choose the suitable strategy for machining, either manual or programmed.
	7. Design and manufacture CNC machines from scratch.
	8. Get a fundamental knowledge of the software used for CNC simulation and gcode exporting tools.
	Indicative content includes the following.
	Section 1 introduction to CAM and NC programming
	Classification of CAM systems, NC programming, gcode, rapid movement command,
	G0, feedrate movement command, G1, circular interpolation commands, clockwise
	command G2, counter clockwise command, G3, pause command, dwell command, G4,
	XY plane designation, G17, YZ plane designation, G18, ZX plane designation, G19,
	English units of inputs, G20, metric units of inputs, G21, machine zero return positon
	check, G27, machine zero return – primary reference point, G28, skip function, G31,
	threading function, G33, exact stop, G61, Absolute input of motion values, G90,
Indicative Contents	incremental input of motion values, G91, feedrate per minute in/min or mm/min, G94,
المحتويات الإرشادية	feedrate per revolution – in/rev or mm/rev, G95, retract motion to the initial level in a
	fixed cycle, G98, retract motion to the initial level in a fixed cycle, G99 [25 hrs]
	Section 2 Canned Cycles
	High speed deep hole drilling cycle, G73, left hand tapping cycle, G74, precision boring
	cycle, G76, fixed cycle cancel, G80, plain drilling cycle, G81, spot drilling cycle, G82,
	deep hole drilling cycle (peck drilling), G83, right hand tapping cycle, G84, boring cycle,
	G85. [15 hrs]
	Section 3 CNC Milling Operations and Computer Aided Design
	·
	2.5 milling, facing, slotting, gear machining, 2d pocket machining, profile machining,
	boring, drilling, 2d contour, 2d adaptive clearing. [25]

Learning and Teaching Strategies						
Strategies	Strategies					

Tools and strategies, in addition to the student – teacher interaction in – and – off class, used to deliver the course to the students are basically divided upon the following:

- 9. Lectures
- 10. Lab works.
- 11. Assignments.
- 12. Mini projects

Student Workload (SWL)					
Structured SWL (h/sem) Structured SWL (h/w) 4 الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب أسبوعيا 4					
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	60	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125				

Module Evaluation							
	Time/Nu Weight (Marks) Week Due Relevant Learning						
		mber			Outcome		
	Quizzes	3	10% (10)	5, 10, 12	LO #2, 4, 7 and 8		
Formative	Assignments	1	10% (10)	Continuous	LO # 3, 5, 6 and 10		
assessment	Projects / Lab.	1	10% (10)	Continuous			
	Report	1	10% (10)	13	LO # 1, 6 and 9		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7		
assessment	Final Exam	3 hr	50% (50)	16	All		
Total assessme	ent		100% (100 Marks)				

Delivery Plan (Weekly Syllabus)				
Material Covered				
Week 1	Introduction to CAM			
Week 2	Fundamental principles of NC programming			
Week 3	Positional data			
Week 4	Cutting commands I			

Week 5	Cutting commands II			
Week 6	Canned Cycles, part I			
Week 7	Midterm Exam + Canned Cycles, part II			
Week 8	Milling cycles, Part I			
Week 9	Cutting conditions			
Week 10	Tool offsets			
Week 11	Milling cycles Part II			
Week 12	Basic turning cycles, part I			
Week 13	Basic turning cycles, part II			
Week 14	Computer aided design, a model drawing section			
Week 15	Computer aided design, a model machining section using CAM software			
Week 16	Preparatory week before the final Exam			

Delivery Plan (Weekly Lab. Syllabus)					
	Material Covered				
Week 1	Part or component modeling, section I				
Week 2	Part or component modeling, section 2				
Week 3	Part or component modeling, section 3				
Week 4	Part or component modeling, section 4				
Week 5	Part or component modeling, section 5				
Week 6	Part machining, milling operation, section 1				
Week 7	Part machining, milling operation, section 2				
Week 8	Part machining, milling operation, section 3				
Week 9	Part machining, milling operation, section 4				
Week 10	Part machining, milling operation, section 5				
Week 11	Part machining, turning operation, section 1				
Week 12	Part machining, turning operation, section 2				
Week 13	Part machining, laser cutting, section 1				
Week 14	Part machining, laser cutting, section 2				
Week 15	Part making, 3-d printing				

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	P. Radhakrishanan, and others, CAD/CAM/CIM, 3 rd Ed., New Age International Publishers, 2008	No			
Recommended Texts	Peter Smid, CNC Programming Handbook, 3 rd Ed., Industrial Press, Inc., 2007	No			
Websites	https://ocw.mit.edu/courses/res-2-005-girls-who-build-make- workshop-spring-2015/pages/manufacturing-mechanical-design				

Grading Scheme						
Group Grade		Marks (%) Definition		Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Module Information							
Module Title	Specia	nics	Modu	le Delivery			
Module Type				☑ Theory			
Module Code				☐ Lecture ☐ Lab ☑ Tutorial			
ECTS Credits							
SWL (hr/sem)			☐ Practical☐ Seminar				
Module Level		UGIV	Semester of Delivery		у	Eight	
Administering Dep	partment	MTE	College	COE			
Module Leader	Rafid ahmed Kh	nalil	e-mail	myasaralattar@uomosul.edu.iq		l.edu.iq	
Module Leader's	Acad. Title		Module Lea	Leader's Qualification			
Module Tutor Amena Fawzy			e-mail	enaminafawzy@gmail.com		<u>om</u>	
Peer Reviewer Name			e-mail	e-mail			
Scientific Committee Approval Date		2024-2025	Version Number 1.0				

	Relation with other Modules		
Prerequisite module	None	Semester	None
Co-requisites module	None	Semester	None

Module Aims, Learning Outcomes and Indicative Contents							
The aims of the module are to							
Module Aims	 Understand the Fundamental of Nano technology, and Nano materials with its application 						
أهداف المادة الدراسية	Present the embedded system which used to control the complicated electrical and mechanical system						
	 Understanding the operation principle of the electrical vehicle and its characteristics, mode of operation, development, 						
	 Understand the SCADA system which used to monitoring and controlling the industrial operation 						

	5. Understanding the concept of Autotronics as a branch of mechatronics that				
	deals with integration of electronics system in automobiles				
	 Knowing the concept of Bio mechatronics which consist of biology – mechanics and electronics 				
	7. Introduce the principle of reconfigurable robot.				
	8. Introduced the concept of renewable energy used as a sustainable resource				
	used to reduce the carbonic emissions				
	On completion of the course students should be able to:				
Basil Islandia	an ability to characterized Nano technology used in modern mechatronics				
Module Learning	application				
Outcomes	2. an ability to design monitoring and controlling system using SCADA				
	3. An ability to understand the design and building an electric vehicle and connect				
	these concept with the autotropic branch as a field of mechatronics				
مخرجات التعلم للمادة	4. an ability to understand the relation among the electrical, mechanical and vital				
مخرجات التعلم للمادة الدراسية	elements as combination of new mechatronics design				
# J	5. to encourage the used to use the renewable sources6. Understanding the principle of reconfigurable robots which used in different				
	field like medical, industrial, agriculture etc.				
	Indicative content includes the following.				
	Part A – Nano technology				
	Nanotechnology systems and applications typically involve the study and manipulation				
	of materials and devices at the nanoscale level (1 to 100 nanometers). Indicative				
	contents of this topic could include an overview of nanotechnology, nanomaterials				
	synthesis and characterization, nanoelectronics, nanomedicine, nanosensors,				
	nanophotonics, nanomagnetics, and their applications in various fields such as energy,				
	electronics, healthcare, and environmental science, [6 hrs]				
	Part B – Embedded systems				
	Embedded systems design and applications involve the development and				
	implementation of computer systems with dedicated functions within larger				
	mechanical or electrical systems. Indicative contents of this topic may include				
Indicative Contents	microcontrollers, microprocessors, real-time operating systems, firmware				
المحتويات الإرشادية	development, system-on-chip (SoC) design, hardware/software co-design, low-power				
	design techniques, interfacing with sensors and actuators, and applications in areas				
	like automotive systems, consumer electronics, industrial automation, and IoT devices				
	[6 hrs]				
	Part C – Electric vehicles				
	Electric vehicles (EVs) refer to automobiles that are powered by electric motors instead				
	of internal combustion engines. Indicative contents of this topic may cover various				
	aspects of EVs, such as battery technologies, electric motor design, power electronics,				
	charging infrastructure, energy management systems, regenerative braking, range				
	estimation, and overall system integration. It could also include discussions on the				
	environmental impact of EVs, government policies, and emerging trends in the electric				
	transportation industry. [6 hrs]				
	Part D – SCADA				

SCADA (Supervisory Control and Data Acquisition) Systems are used to monitor and control industrial processes and infrastructure. Indicative contents of this topic may include components of SCADA systems, such as remote terminal units (RTUs), programmable logic controllers (PLCs), human-machine interfaces (HMIs), communication protocols, data acquisition, control algorithms, and cybersecurity considerations. It could also cover applications in fields like power generation, water treatment, oil and gas, manufacturing, and building automation. [6 hrs]

Part E – Autotronics

Autotronics Engineering combines automotive technology with electronics, encompassing the design, development, and integration of electronic systems in automobiles. Indicative contents of this topic may include engine management systems, electronic fuel injection, ignition systems, anti-lock braking systems (ABS), traction control systems (TCS), vehicle communication networks (CAN, LIN), automotive sensors, actuators, diagnostics, and electronic control units (ECUs). It covers the electrical and electronic systems that improve vehicle performance, safety, and comfort [5 hrs]

Part F – Biomechatronics

Biomechatronics is an interdisciplinary field that combines biology, mechanics, electronics, and computer science to develop prosthetics, exoskeletons, and robotic systems that interact with and augment human capabilities. Indicative contents of this topic may include biomechanics, sensors, signal processing, human-machine interfaces, control systems, artificial muscles, neural interfaces, rehabilitation engineering, and applications in fields such as healthcare, assistive technologies, and human augmentation. [5 hrs]

Part g – Reconfigurable robots

Reconfigurable robots are robotic systems designed to adapt and reconfigure their physical structure or control strategies to perform various tasks or respond to changing environments. Indicative contents of this topic may include modular robotics, self-reconfiguration mechanisms, kinematics, dynamics, control algorithms, sensing and perception, planning and coordination, and applications in areas like search and rescue, space exploration, manufacturing, and swarm robotics. [5 hrs]

Part g – Renewable energy

Renewable energy refers to energy generated from natural resources that are continually replenished, such as solar power, wind power, hydropower, geothermal energy, and biomass. Indicative contents of this topic may include various types of renewable energy technologies, their principles of operation, power generation, energy storage systems, grid integration, environmental impact assessment, policy and regulatory frameworks, and the economic viability of renewable energy sources as alternatives to fossil fuel [5 hrs]

Learning and Teaching Strategies						
Strategies	Learning and Teaching Strategies The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1- Lectures - aim to deliver fundamental knowledge in relation to mechatronics branch, renewable energy 2- Tutorial sessions - are deployed to illustrate the application of fundamental					
	knowledge of mechatronics branch, renewable energy to different practical exercises. 3- Assignments - are arranged to provide the opportunity for students to search for information, analyze fluid systems with knowledge obtained, and present the completed tasks.					

Student Workload (SWL)						
Structured SWL (h/sem) 48 Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب أسبوعيا						
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	77	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	5.13			
Total SWL (h/sem) 125 الحمل الدراسي الكلي للطالب خلال الفصل						

Module Evaluation							
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
		mber	weight (Marks)	week Due	Outcome		
	Quizzes	2	10% (10)	4,6	3,4,6		
Formative	Assignments	1	10% (10)	8	1,2,4		
assessment	Projects / Lab.	1	10% (10)	Continuous	2		
	Report	1	10% (10)	13	1,6		
Summative	Midterm Exam	2 hr	10% (10)	10	All		
assessment	Final Exam	3 hr	50% (50)	16	All		
Total assessme	Total assessment 100% (100 Marks)						

Delivery Plan (Weekly Syllabus)
Material Covered

Week 1	Nanotechnology systems and applications	
Week 2		
Week 3		
Week 4	Embedded systems design and applications	
Week 5		
Week 6	Electric vehicle	
Week 7	CCADA Customa	
Week 8	SCADA Systems	
Week 9	Autotopia Frainceria	
Week 10	Autotronics Engineering	
Week 11		
Week 12	bio mechatronics	
Week 13		
Week 14	reconfigurable robot	
Week 15	Renewable energy	
Week 16	Preparatory week before the final Exam	

	Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered				
Week 1					
Week 2					
Week 3					
Week 4					
Week 5					
Week 6					
Week 7					

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	W. Bolton,"Mechatronics", 6th Edition,Pearson Education Limited, 2016.	no		

Recommended Texts		no
Websites	Well known Scientific Website about the Topics	

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Module Information						
Module Title Engineering Manag			t	Modu	le Delivery	
Module Type		Basic			☑ Theory	
Module Code		MTE 409			☐ Lecture ☐ Lab	
ECTS Credits		3			☐ Tutorial	
SWL (hr/sem)	L (hr/sem) 75 Practical Seminar					
Module Level		UGIII	Semester of Delivery		Eight	
Administering Department		MTE	College COE			
Module Leader	Mohammed Fala	ah Mohammed Kanna	e-mail mohammed.falah kanna@uomosul.edu.id		@uomosul.edu.iq	
Module Leader's Acad. Title		Lecturer	Module Leader's Qualification		Ph.D.	
Module Tutor			e-mail			
Peer Reviewer Name		Dr. Loay Aldabbagh	e-mail	loayaldabbagh@uomosul.edu.iq		l.edu.iq
Scientific Committee Approval Date		2024-2025	Version Nu	umber	1.0	

Relation with other Modules				
Prerequisite module	None	Semester	None	
Co-requisites module	None	Semester	None	

Module Aims, Learning Outcomes and Indicative Contents						
The aims of the module are to:						
Module Aims	 To introduce students to the fundamental concepts and objectives of Engineering Management. 					
أهداف المادة الدراسية	 Introduce students to various technical and economic studies relevant to project feasibility, including production costs, plant performance appraisal, and productivity analysis. 					
	Familiarize students with the principles and practices of administrative and production organization in industrial enterprises.					

4. Develop students' knowledge and skills in using operations research techniques to optimize production processes. 5. Enable students to analyze and optimize resource allocation in engineering management scenarios. 6. Cultivate an understanding of quality control principles and their application in engineering management. On completion of the course students should be able to: 1. Demonstrate a clear understanding of the concepts and objectives of engineering management. 2. Apply technical and economic analysis methods to evaluate project feasibility and make informed decisions. 3. Analyze and evaluate production costs, plant performance, and productivity **Module Learning** measures. **Outcomes** 4. Understand the principles of administrative and production organization and their application in industrial enterprises. 5. Apply operations research techniques, including linear programming, to optimize production processes. مخرجات التعلم للمادة 6. Develop skills in solving transportation and allocation problems to obtain الدراسية optimal solutions and effectively manage resources. 7. Evaluate quality control principles and techniques and their application in ensuring product and process quality. 8. Apply time measurement studies and network planning techniques for project implementation, allocate resources effectively, and manage industrial costs. 9. Apply quality control principles and ensure reliability in an industrial context. Indicative content includes the following. UNIT - I: Introduction - An introduction to the concept of industrial engineering as a branch of engineering management and its objectives, what is the key applications of operations research in the industrial field, encompassing methods, theories, analyses, and models. [2 hrs.] UNIT- II: It includes the study of production costs (variable and fixed), the use of the project profitability ratio, the size and value of the break-even point, the safety limit ratio, and the project amortization (payback) period for the invested capital period. Break-even point analysis, the relationship between cost and profit, the volume of production, **Indicative Contents** types of productivity, methods of measuring it (conversion factor method and monetary method), and ways to increase it will also be discussed. Then the benefits of المحتوبات الإرشادية studying the work and its main steps are discussed, as well as measuring the content of the work and determining the standard time. [2 hrs.] **UNIT-III:** It includes the study of organizations types, parallel management levels, technological organization and its types, and the production cycle. [2 hrs.] **UNIT-IV:** In this unit, operations research will be covered, and the basic requirements of linear programming and its formulas (general, canonical, and standard), how to convert between them, how to formulate the model mathematically and solve the linear programming model using the graphical, simplified, M-technique, and the Two-Phase technique methods. Added to that, addressing either profit maximization, revenue maximization, cost minimization, or time reduction will be discussed. The module will provide insights into how to find the optimal solution for these specific cases. [6 hrs.]

Mid-term Exam. [2 hrs.]

UNIT - V:

This unit focuses on transportation and allocation models, specifically addressing the cost-effective transportation problem. This problem will be presented as a specific instance of linear programming models, and the module will explore four methods to obtain the initial solution: the Northwest Corner method, the Least Cost method, the RAM (Russel's Approximation Method), and the VAM (Vogel's Approximation Method). Once the initial solution is obtained, it will be assessed and enhanced using either the Multipliers method or the Stepping Stone method to attain the optimal solution. The problem will be defined as a special case of linear programming models, addressing either profit maximization, revenue maximization, cost minimization, or time reduction. The module will provide insights into how to find the optimal solution for these specific cases. [8 hrs.]

UNIT - VI:

The unit will cover the definition of network planning diagrams and how to draw them, as well as the identification of critical paths (CP) and critical time. Additionally, the module will explore the methodology of Program Evaluation and Review Technique (PERT) for assessing and reviewing programs. Techniques for accelerating and delaying network plans, with the objective of achieving the minimum possible time and cost for project implementation, will also be discussed. [4 hrs.]

UNIT - VII:

In this unit, students will learn about the concept of sequencing models, which involves scheduling tasks on a single machine. The module will cover the identification of the shortest processing time (SPT) and the longest processing time (LPT) for optimal scheduling. Additionally, you will explore the Processing of n jobs through two machines, three machines, and the completion of tasks on multiple machines. The objective is to understand different sequencing strategies based on the number of machines involved and the completion of a specific number of tasks. [2 hrs.]

UNIT - X:

In this unit, students will learn about the concept of quality control, which involves ensuring that products or processes meet predefined quality standards. The comprehensive inspection method and sampling techniques will be discussed. Quality control charts will be introduced for monitoring the central tendency and variability of a process, including control charts for the mean and range. Control charts for standard deviation and the proportion of nonconforming units will also be explored. The module will also delve into the concept of quality levels and various sampling methods, such as single, double, and multiple sampling, used for inspection purposes. [2 hrs.]

Learning and Teaching Strategies

The Learning and Teaching Strategies for this module may include:

Strategies

1. Lectures: The module will involve traditional lectures delivered by the instructor to present key concepts, theories, and principles related to engineering

- management. This format allows for the dissemination of essential information and theoretical foundations.
- 2. Case Studies: Case studies can be used to provide real-world examples and practical applications of the concepts covered in the module. Analyzing and discussing case studies helps students understand how engineering management principles are applied in various scenarios and industries.
- 3. Group Discussions: Group discussions can be conducted to encourage active participation and engagement among students. This strategy fosters collaborative learning, allows for the exchange of ideas and perspectives, and promotes critical thinking and problem-solving skills.
- 4. Assessments: Various forms of assessments, such as assignments, quizzes, and examinations can be used to evaluate students' understanding and application of the module content. These assessments provide feedback to both students and instructors, facilitating the monitoring of progress and the identification of areas for improvement.

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	33	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	2.2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	42	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2.8	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	75			

Module Evaluation						
		Time	Weight (Marks)	Week Due	Relevant Learning	
		/Number	vveignt (ivial ks)	Week Due	Outcome	
	Quizzes	3	15% (15)	4, 7, 10	LO #2,3, 4, 7 and 8	
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 6, 7 and 8	
assessment	Projects / Lab.	1	10% (10)	Continues		
	Report	1	5% (5)	11	LO # 1 and 9	
Summative	Midterm Exam	2hr	10% (10)	7	LO # 1-5	
assessment	Final Exam	3hr	50% (50)	16	All	
Total assessment 100% (100 Marks)						

	Delivery Plan (Weekly Syllabus)
	Material Covered
Week 1	Introduction - Concepts and objectives of Engineering Management.
Week 2	Technical and economic studies for project feasibility, production costs, plant performance appraisal (productivity, and work study).
Week 3	Administrative and production organization of industrial enterprises.
Week 4	Using operation research in production: Linear programming formulas, and Formulation of the model.
Week 5	Using operation research in production: Solve the linear programming model (Graphical method, and Simplex method).
Week 6	Using operation research in production: Solve the linear programming model (M-technique, and the Two- Phase technique methods).
Week 7	Mid-term Exam
Week 8	Allocation of resources: Transportation Model, the least cost transportation problem, methods for finding an acceptable initial basic solution (Northwest corner method, and the least cost method).
Week 9	Allocation of resources: Methods for finding an acceptable initial basic solution (Vogel's Approximation Method (V.A.M.), and Russel's Approximation Method (R.A.M.).
Week 10	Quality Control and production inspection method: Optimal Solution (Stepping Stone method, and Multipliers method).
Week 11	Industrial costs and controllable cost techniques: Assignment model (minimized, and maximized).
Week 12	Time measurement studies for production operations: Network planning (Critical Path, and program Evaluation and Review Technique (PERT)).
Week 13	Time measurement studies for production operations: Network planning (time studies for production operations (finding the lowest possible time and cost for project implementation (3-6)).
Week 14	Method time studies for production operations: Processing n jobs through 1 to m machines.
Week 15	Quality Control and Reliability
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Available in the Library?			
Required Texts	 3. د. عادل عبد المالك " الهندسة الصناعبة " – دار الكتب للطباعة والنشر - جامعة البصرة - الطبعة الأولى 2000 			

	1. د. خليل العاني ، د. إسماعيل إبر اهيم القزاز ، د. عادل عبد المالك آوريال الدرة الجودة الشاملة ومتطلبات الأيزو 2000:9001 " الطبعة الأولى 2001 ، مطبعة الأشقر - بغداد. 5. Hamdy A. Taha " Operations Research: an introduction" 6th edition (1997), Prentice-Hall. 6. Prem Kumar Gupta and D.S. Hira " Operations Research: an introduction" 2nd edition (1989) S. Chand & Company LTD, NewDelhi. Charles E. Ebeling "An Introduction to Reliability and Maintainability Engineering " (1997), McGraw-Hill.
Recommended Texts	1. د. مازن بكر عادل وأخرون " بحوث العمليات للإدارة الهندسية " جامعة الموصل 1986 2. Phillips,D.T.;Ravindran,A.;Solberg ,J." Operations Research: Principles and Practice " (1976) John Wiley
Websites	https://www.classcentral.com/course/swayam-fluid-mechanics-and-its-applications- 58461

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Group (50 - 100)	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
	C - Good	جيد	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	iroup FX – Fail (قيد المعالجة)		(45-49)	More work required but credit awarded	
(0 – 49) F – Fail		راسب	(0-44)	Considerable amount of work required	

MODULE DESCRIPTION FORM

Module Information						
Module Title	Design of Mechatronics Systems			Modu	ıle Delivery	
Module Type		Core			☑ Theory	
Module Code		MTE 410			□ Lecture 図 Lab	
ECTS Credits		5			☐ Tutorial	
SWL (hr/sem)	125				☐ Practical☐ Seminar	
Module Level	UGIV		Semester o	f Deliver	Delivery Eight	
Administering Dep	partment	MTE	College	COE		
Module Leader	Saad Ahmed S	aleh Al Kazzaz	e-mail	kazzazs	kazzazs60@uomosul.edu.iq	
Module Leader's A	Acad. Title	Assistant Professor	Module Lea	ader's Qualification Ph.D.		Ph.D.
Module Tutor	,		e-mail			
Peer Reviewer Name Sayf A. Majed		e-mail	sayf@uomosul.edu.iq			
Scientific Committee Approval Date		2024-2025	Version Number 1.0			

	Relation with other Modules		
Prerequisite module	None	Semester	None
Co-requisites module	None	Semester	None

Modu	Module Aims, Learning Outcomes and Indicative Contents					
Module Aims أهداف المادة الدراسية	The aims of the module are to develop the knowledge and skills necessary to adopt an interdisciplinary approach to mechatronic system design. Topics covered include the concepts of mechatronic systems, their primary components, and how they are designed in a systematic manner.					
Module Learning Outcomes	On completion of the course, students should be able to: 1. design part of a mechatronic system 2. get and maintain the big picture in a multidisciplinary development project					

3. use systems engineering methods, tools and thinking in a multidisciplinary مخرجات التعلم للمادة development project الدراسية 4. implement a mechatronic design problem in a structured manner 5. integrate knowledge from previous modules communicate with mechatronic specialists 6. 7. frame and evaluate a visibility on application of systems engineering Indicative content includes the following. Unit – I: Introduction to mechatronics systems, components and their applications in different subject such as consumer electronics, home appliance, automobiles, aero lance and etc. Modeling of systems components; mechanical, electricals, electromechanical, sensors.... etc are implemented using different modelling methods. Block Diagram Modeling can be implemented by Direct Method, Analogy Approach and Modified Analogy Approach. [10 hrs] UNIT- II: Modeling Mechanical Translational Systems - Mechanical Rotational System are presented with examples. The Models of Electrical-Mechanical Coupling are introduced using analogy approach and final block diagram model achieved. The fluid system components as apart of mechatronics systems are also modeled and examples give the students the required skills to deal with such system. [10 hrs] **Indicative Contents** UNIT- III: Sensors and transducer Sensitivity Analysis and Influence of Component variation are discussed to obtain system uncertainty. Empirical data-based modelling; المحتوبات الإرشادية Linear time invariant models; Model structure selection; Model parameter identification/estimation. Analysis and simulation of a range of mechanical/electrical transducers and actuators for analogue/ digital interfaces such as; pressure/heat/chemical/electromechanical/optical. [10 hrs] UNIT - IV: Electronic interface design between the digital controller and the analogue/digital mechatronic. Mathematical Modeling of a DC motor in Simulink. Modelling different types of mathematical models for an industrial dynamic process. Mechanical/Electrical analysis-based modelling; Modeling of different types of control system for different parts in industries. [10 hrs] UNIT - V: Two exit practical mechatronics systems are introduced, analyze and studies. Modeling, simulation, prototyping, on-line modeling is performed going to system implementation. [20 hrs] **Learning and Teaching Strategies** The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1- Lectures - aim to deliver concepts and fundamental knowledge in relation to **Strategies** mechatronics system components and design concepts. 2- Laboratory - to perform practical implementation under guidance of lab instructor. The students perform the experiments in groups in MATLAB. 3- Assignments - are arranged to provide the opportunity for students to search for information, analyze problems, model their equations, with knowledge obtained, and present the completed tasks.

Student Workload (SWL)				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	63	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4.2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	62	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.13	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125			

Module Evaluation						
		Time/Nu	Maight (Marks)	Week Due	Relevant Learning	
		mber	Weight (Marks) Week Due		Outcome	
	Quizzes	2	10% (10)	5, 10	LO #2, 4, 7	
Formative	Assignments	5	10% (10)	3, 5, 8, 11, 13	LO # 1, 2, 3, 5, 6, 7	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 5-7	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	3 hr	50% (50)	16	All	
Total assessme	ent		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus				
	Material Covered				
Week 1	Introduction to mechatronics systems, Applications in Mechatronics				
Week 2	Block Diagram Modeling -Direct Method- Analogy Approach- Modified Analogy Approach				
Week 3	Modeling Electrical Systems.				
Week 4	Modeling Mechanical Translational Systems- Mechanical Rotational System.				
Week 5	Electrical-Mechanical Coupling.				
Week 6	Modeling of fluid systems.				
Week 7	Mid-term Exam				
Week 8	Sensors and transducer Sensitivity Analysis—Influence of Component Variation.				
Week 9	Empirical data-based modelling; Linear time invariant models; Model structure selection; Model parameter identification/estimation.				

Week 10	Analysis and simulation of a range of mechanical/electrical transducers and actuators for analogue/ digital interfaces such as; pressure/heat/chemical/electromechanical/optical.
Week 11	Electronic interface design between the digital controller and the analogue/digital mechatronic.
Week 12	Modelling different types of mathematical models for an industrial dynamic process; Mechanical/Electrical analysis-based modelling;
Week 13	Modeling of different types of controllers.
Week 14	Case study I
Week 15	Case Study II
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)					
	Material Covered					
Week 1	Introduction to MATLAB Simulink.					
Week 2	Self-Learning Assignment -MATLAB & Simulink on-ramp					
Week 3	Mathematical Modeling of a series RLC circuit and Simulation in Simulink					
Week 4	Mathematical Modeling of a Mass-Spring-Damper system in Simulink					
Week 5	Virtual Reality World Models of Dynamic Systems					
Week 6	Free lab for students' practices and report discussion					
Week 7	Mid-term Exam					
Week 8	Mathematical Modeling of a DC motor in Simulink					
Week 9	Physical Modeling of a DC motor in Simulink Using Simscape					
Week 10	Modeling of a Mechanism Using Simscape Multibody					
Week 11	Modeling and Analyzing of a Simple Pendulum Using Simscape Multibody					
Week 12	Import CAD Model into Simscape Multibody					
Week 13	Gathering sensor data using data acquisition card in different modes					
Week 14	Free lab for students practice and report discussion					
Week 15	Final paratactical Exam					

Learning and Teaching Resources					
	Text	Available in the Library?			
		Library.			

Required Texts	Mechatronics System Design, Second Edition, SI by Devdas Shetty and Richard A. Kolk	Yes	
Recommended Texts	 Introduction to Mechatronics and Measurement Systems, by David G. Alciatore and Michael B. Histand. Mechatronics with Experiments, Second Edition, by Sabri Cetinkunt, 2007 	No	
Websites	https://www.coursera.org/learn/		

Grading Scheme						
Group Grade		التقدير (%) Marks (%) D		Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

MODULE DESCRIPTION FORM

Module Information							
Module Title	Computer Aided Manufacturing (CAM)			Modu	le Delivery		
Module Type				☑ Theory			
Module Code		MTE 411			□ Lecture 図 Lab		
ECTS Credits				☐ Tutorial			
SWL (hr/sem)			☐ Practical ☐ Seminar				
Module Level		UGIV	Semester of Delivery Ei		Eight		
Administering Dep	partment	MTE	College	COE			
Module Leader	Ahmad Wadol	lah Saleh Al-Sabawi	e-mail	ahmadalsabawi@uomosul.edu.iq		sul.edu.iq	
Module Leader's A	Acad. Title	Lecturer	Module Lea	Iodule Leader's Qualification MSc		MSc	
Module Tutor	Mamoon Ammar Atrakchii			Maamoin91@gmail.com		1	
Peer Reviewer Name		Dr. Omar Waleed	e-mail	omarmaaroof@uomosul.edu.iq		l.edu.iq	
Scientific Committee Approval Date		2024-2025	Version Number 1.0				

	Relation with other Modules		
Prerequisite module	None	Semester	None
Co-requisites module	None	Semester	None

Module Aims, Learning Outcomes and Indicative Contents						
Module Aims أهداف المادة الدراسية	 Upon successful completion of the course, students should be able to: Model basic and complex parts and components. Describe the fundamental components and limitations of a modern computer numerical control (CNC) machine tool. Select suitable cutting tools and process parameters for a given milling or turning operation. Write, read and troubleshoot NC programs written in standard G-code format. Formulate free-form curves and surfaces mathematically using a parametric expression. 					

	24. Describe the basic principles of Hermite curve, Bezier curve, B-spline curve and						
	NURBS curve representations 25. Use computer-aided manufacturing (CAM) software to generate both						
	25. Use computer-aided manufacturing (CAM) software to generate both						
	roughing and finishing operations.						
	26. Describe the relative advantages and disadvantages between two and half						
	axis, three-axis and five axis machining.						
	27. Work and operate typical CNC machines. At the completion of course, the student will be able to						
	9. Apply/develop solutions or to do research in the areas of computer aided						
Module Learning	manufacturing.						
_	10. Deal with simple or complex part geometries.						
Outcomes	11. Write gcode for relatively simple shapes and parts.						
	12. Edit and develop gcode texts that is generated by CAM software and do in –						
	site modification on a text file format.						
مخرجات التعلم للمادة	13. Exposed to the available basic CNC machines.						
مخرجات التعلم للمادة الدراسية	14. Choose the suitable strategy for machining, either manual or programmed.						
. 3	15. Design and manufacture CNC machines from scratch.						
	16. Get a fundamental knowledge of the software used for CNC simulation and						
	gcode exporting tools.						
	Indicative content includes the following.						
	Section 1 introduction to CAM and NC programming						
	Classification of CAM systems, NC programming, gcode, rapid movement command,						
	G0, 263ederate movement command, G1, circular interpolation commands, clockwise						
	command G2, counter clockwise command, G3, pause command, dwell command, G4,						
	XY plane designation, G17, YZ plane designation, G18, ZX plane designation, G19,						
	English units of inputs, G20, metric units of inputs, G21, machine zero return positon						
	check, G27, machine zero return – primary reference point, G28, skip function, G31,						
	threading function, G33, exact stop, G61, Absolute input of motion values, G90,						
Indicative Contents	incremental input of motion values, G91, 263ederate per minute in/min or mm/min,						
المحتويات الإرشادية	G94, 263ederate per revolution – in/rev or mm/rev, G95, retract motion to the initial						
	level in a fixed cycle, G98, retract motion to the initial level in a fixed cycle, G99,						
	Section 2 Canned Cycles						
	High speed deep hole drilling cycle, G73, left hand tapping cycle, G74, precision boring						
	cycle, G76, fixed cycle cancel, G80, plain drilling cycle, G81, spot drilling cycle, G82,						
	deep hole drilling cycle (peck drilling), G83, right hand tapping cycle, G84, boring cycle,						
	G85,						
	Section 3 CNC Milling Operations and Computer Aided Design						
	2.5 milling, facing, slotting, gear machining, 2d pocket machining, profile machining,						
	boring, drilling, 2d contour, 2d adaptive clearing,						

Learning and Teaching Strategies			
Strategies			

Tools and strategies, in addition to the student – teacher interaction in – and – off class, used to deliver the course to the students are basically divided upon the following:

13. Lectures

- 14. Lab works.
- 15. Assignments.
- 16. Mini projects

Student Workload (SWL)					
Structured SWL (h/sem) Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب أسبوعيا					
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	62	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.13		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125				

Module Evaluation							
	Time/Nu Weight (Marks) Week Due Relevant Learning						
		mber			Outcome		
	Quizzes	2	10% (10)	5, 10	LO #2, 4, 7 and 8		
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 5, 6 and 8		
assessment	Projects / Lab.	1	10% (10)	Continuous			
	Report	1	10% (10)	13	LO # 1, 6 and 8		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7		
assessment	Final Exam	3 hr	50% (50)	16	All		
Total assessme	nt		100% (100 Marks)				

	Delivery Plan (Weekly Syllabus)				
	Material Covered				
Week 1	Introduction to CAM				
Week 2	Fundamental principles of NC programming				
Week 3	Positional data				
Week 4	Programming motion commands				

Week 5	Mid-term Exam
Week 6	Canned Cycles, part I
Week 7	Canned Cycles, part II
Week 8	Milling cycles, Part I
Week 9	Cutting conditions
Week 10	Tool offsets
Week 11	Milling cycles Part II
Week 12	Basic turning cycles, part I
Week 13	Basic turning cycles, part II
Week 14	Computer aided design, a model drawing section
Week 15	Computer aided design, a model machining section using CAM software
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered				
Week 1	Part or component modeling, section I				
Week 2	Part or component modeling, section 2				
Week 3	Part or component modeling, section 3				
Week 4	Part or component modeling, section 4				
Week 5	Part or component modeling, section 5				
Week 6	Part machining, milling operation, section 1				
Week 7	Part machining, milling operation, section 2				
Week 8	Part machining, milling operation, section 3				
Week 9	Part machining, milling operation, section 4				
Week 10	Part machining, milling operation, section 5				
Week 11	Part machining, turning operation, section 1				
Week 12	Part machining, turning operation, section 2				
Week 13	Part machining, laser cutting, section 1				
Week 14	Part machining, laser cutting, section 2				
Week 15	Part making, 3-d printing				

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	P. Radhakrishanan, and others, CAD/CAM/CIM, 3 rd Ed., New Age International Publishers, 2008	No			
Recommended Texts	Peter Smid, CNC Programming Handbook, 3 rd Ed., Industrial Press, Inc., 2007	No			
Websites	https://www.classcentral.com/course/swayam-fluid-mechanic	cs-and-its-applications-			

Grading Scheme							
Group Grade		التقدير	Marks (%)	Definition			
	A - Excellent	امتياز	90 - 100	Outstanding Performance			
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors			
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors			
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded			
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required			

MODULE DESCRIPTION FORM

Module Information							
Module Title			Modu	ıle Delivery			
Module Type		Core			☐ Theory		
Module Code		MTE 412			☐ Lecture ☑ Lab		
ECTS Credits		4		☐ Tutorial			
SWL (hr/sem)	SWL (hr/sem)		100		☐ Practical☐ Seminar		
Module Level		UGIV	Semester of Delivery Eight		Eight		
Administering Dep	partment	MTE	College COE				
Module Leader			e-mail				
Module Leader's A	Acad. Title		Module Lea	ıder's Qu	alification		
Module Tutor			e-mail				
Peer Reviewer Name		Dr. Loay Aldabbagh	e-mail <u>loayaldabbagh@uomosul</u>		sul.edu.iq		
Scientific Committee Approval Date		2024-2025	Version Number 1.0				

Relation with other Modules					
Prerequisite module	MTE 406: Project I	Semester	Seven		
Co-requisites module	None	Semester	None		

Module Aims, Learning Outcomes and Indicative Contents					
Module Aims	The aims of the module are to				
	To understand concepts of mechatronics engineering				

أهداف المادة الدراسية	10. To contribute students to complete conceptual design of a comprehensive					
	study in up-to-date engineering's topics.					
	11. Covers developments in the field of engineering.					
	12. To analyze and solve the engineering problem					
	13. Write and present technical reports.					
	On completion of the course students should be able to:					
	7. Define a problem from mechatronics engineering perspective					
	8. Develop solution alternatives for problems					
Module Learning 9. Extract useful information from literature						
Outcomes	10. Appraise the importance of teamworking and participate actively and					
	effectively in multidisciplinary teams.					
	11. Complete conceptual design step of a project					
	12. Develop and conduct appropriate experimentation, analyze and interpret					
مخرجات التعلم للمادة الدراسية	data, and use engineering judgment to draw conclusions.					
الدراسية	13. Write well organized thesis and reports.					
	14. Get skills in design and perform practical implementation of projects					
	15. Propose future works for further developments					
	16. determine the feasibility of engineering projects, establish goals, plan tasks,					
	and formulate schedules and budgets for the attainment of objectives.					
	Indicative content includes the following:					
	Determination of the risks and possible failures and developing precautions. As well as,					
	Evaluation of solution methods and choosing an appropriate single method					
	[12 hrs]					
	Confirmation of project based on commercial marketing statement. [6 hrs]					
	The student will learn the Initialization of simulations of analytical models					
Indicative Contents	And choosing a suitable simulation tool based on project conception and acquire the					
المحتويات الإرشادية	key skills of the simulation tool [12 hrs]					
	Perform model-based project, Perform the practical work based on simulation results					
	[12 hrs]					
	Collect and analyze the experimental data and compare it with the simulated once					
	Write the report including conclusions and future works [6 hrs]					

Learning and Teaching Strategies					
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the discussions, while at the same time refining and expanding their critical thinking skills. This will be achieved through; 1- Lectures - aim to deliver fundamental knowledge in relation to economic engineering and theories to practical examples. 2- Tutorial sessions - are deployed to illustrate the fundamental knowledge of economic engineering.				

3- Assignments - are arranged to provide the opportunity for students to search for information, analyze economic theories with knowledge obtained, and present the completed tasks.

Student Workload (SWL)						
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	48	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	3.2			
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	52	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.4			
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	100					

Module Evaluation							
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome		
	Quizzes	2	10% (10)	5	LO #1- 5		
Formative	Assignments	2	10% (10)	3,5	LO #1- 6		
assessment	Projects / Lab.	1	10% (10)	Continuous			
	Report	1	10% (10)	7	LO # 7-9		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 7-9		
assessment	Final Exam	3 hr	50% (50)	16	All		
Total assessme	ent		100% (100 Marks)				

Delivery Plan (Weekly Syllabus)					
	Material Covered				
Week 1	Determination of risks and possible failures and developing precautions				
Week 2	Determination of risks and possible failures and developing precautions				
Week 3	Evaluation of solution methods and choosing a appropriate single method				
Week 4	Evaluation of solution methods and choosing a appropriate single method				
Week 5	Confirmation of project based on commercial marketing statement				
Week 6	Confirmation of project based on commercial marketing statement				
Week 7	Initialization of simulations of analytical models				

Week 8	Choose a suitable simulation tool based on project conception				
Week 9	Acquire the key skills of the simulation tool				
Week 10	Perform model-based project				
Week 11	Perform the practical work based on simulation results				
Week 12	Perform the practical work based on simulation results				
Week 13	Perform the practical work based on simulation results				
Week 14	Collect and analyze the experimental data and compare it with the simulated once				
Week 15	Write the report including conclusions and future works				
Week 16	Present conceptual design report				

Learning and Teaching Resources						
	Text	Available in the Library?				
Required Texts						
Recommended Texts						
Websites	https://uomosul.edu.iq/engineering/%d9%85%d8%b4%d8%a7b9-%d8%a7%d9%84%d8%aa%d8%ae%d8%b1%d8%ac-4/	7%d8%b1%d9%8a%d8%				

Grading Scheme								
Group	Grade	التقدير	Marks (%)	Definition				
	A - Excellent	امتياز	90 - 100	Outstanding Performance				
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors				
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors				
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings				
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria				
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded				
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required				