Basic Chemistry

Density is the mass of an object divided by its volume. Density often has units of grams per cubic centimeter ($\mathrm{g} / \mathrm{cm}^{3}$).

Density $=\frac{\mathrm{wt}(\mathrm{g})}{\mathrm{v}\left(\mathrm{cm}^{3}\right)} \quad$ or $=\frac{\mathrm{wt}(\mathrm{g})}{\mathrm{v}(\mathrm{ml})}$
In the law above, It's also can replace the density by the Specific gravity which is the density of a material at a certain temperature divided by the density of water at certain temperature; the reference temperature is usually 20 degrees Celsius.

Dilution law

Dilution law: number of moles, equivalents or formal weights of the concentrated solution should be equal to those of diluted one.
number of moles $=$ number of moles
$($ concentrated $)=($ diluted $)$
No. moles(con.) = MX V
M con. X Vcon. $=$ Mdil. X Vdil.
Ex: A bottle of concentrated HClO 4 has the following information on its label : Gram formula weight ($100.5 \mathrm{~g} / \mathrm{fw}$), Specific gravity 1.60 and weight / weight \% equal (70%) calculate:

A- Formal concentration

B- How many grams of HClO 4 are contained in each milliliter of the reagent.

C- How would you prepare 250 ml of 3 F of $\mathrm{HClO4}$ from the concentrated reagent?

A- $\mathrm{F}=\% \times \mathrm{Sp} . \mathrm{g} \times 10$
Gfw
$\mathbf{F}=\frac{70 \times 1.6 \times 10}{100.5}=11.144 \mathrm{~F}$
$\mathrm{b}-\mathrm{WtWt} \%=\mathrm{Wt}$ of solute $\times 100$
Wt of solution
$\mathrm{Sp} . \mathrm{g}=\mathrm{Wtg}$ of solution
Vml of solution
$\therefore \mathrm{Wtg}$ of solution $=\mathrm{Sp} . \mathrm{g} \times \mathrm{Vml}$ of solution
$\mathrm{Wt} / \mathrm{Wt} \%=\mathrm{Wt}$ of solute $\quad * 100$
Sp. $\mathrm{g} \times \mathrm{Vml}$ of solution
$70=\underline{\mathrm{Wt}(\mathrm{g}) \mathrm{HClO}_{4}} * 100$
1.6×1
$W t(\mathrm{~g}) \mathrm{HClO}_{4}=1.12 \mathrm{~g}$
c- The formal concentration of concentrated solution equal 11.144 as
calculated in (a)
$\mathrm{F}_{1} \mathrm{~V}_{1}$ (for concentrated solution) $=\mathrm{F}_{2} \mathrm{~V}_{2}$ (for ditute solution)
$11.144 \times \mathrm{V}_{1}=3 \times 250$
$\mathrm{V}_{1}=67.3 \mathrm{ml}$
67.3 ml of concentrated solution dilute to 250 ml by water

Molarity: (\mathbf{M}) is the number of molecular weights or moles of solute per liter of solution, or the number of mill moles per milliliter.
Note: the formal and molar concentration of solution may in some cases be identical, in others, they will be quite different.

$$
\mathrm{M}=\frac{\text { no. of moles }}{\mathrm{V} \text { Liter }}
$$

$$
=\frac{\text { no. of mmoles }}{\mathrm{Vml}}
$$

$\mathrm{M}=\mathrm{Wt}(\mathrm{g}) \times 1000 \mathrm{~mole} /$ Liter
 M.Wt \times Vml

Ex: describe the preparation of $\mathbf{2}$ liter of $\mathbf{0 . 1 0 8} \mathbf{~ M ~ B a C l 2 ~ f r o m ~ B a C l 2 ~}$. $\mathbf{2 H} 2 \mathrm{O}(\mathrm{Mw}=244.3 \mathrm{~g} / \mathrm{mol})(\mathrm{Aw}$ of $\mathrm{Ba}=\mathbf{1 3 7 . 3 2 7}, \mathrm{Cl}=\mathbf{3 5 . 5}, \mathrm{H}=1, \mathrm{O}=$ 16).

$$
\mathrm{M}=\frac{\mathrm{Wt}(\mathrm{~g}) \times 1000}{\mathrm{MW} \times \mathrm{Vml}}
$$

$0.108=\mathrm{Wt} \mathrm{BaCl} 2 \times 1000$
$\therefore \mathrm{WBaCl}_{2}=44.56 \mathrm{gm}$

$$
206.3 \times 2000
$$

B/ Molarity (M) for concentrated solutions :

$$
\mathrm{M}=\frac{\mathrm{Wt}(\mathrm{~g}) \times 1000}{\mathrm{MWt} \times \mathrm{Vml}}
$$

$$
\text { density for solutioion }(\mathrm{d})=\frac{\mathrm{Wt} \mathrm{~g} \text { of solution }}{\mathrm{Vml} \text { of solution }}
$$

```
\(\therefore \mathrm{Vml}=\mathrm{Wt} \mathrm{g}\) of sol.
    d
\(\mathrm{M}=\frac{\mathrm{Wt}(\mathrm{g}) \times 1000 * \mathrm{~d}}{\mathrm{MWt} \times \mathrm{W} \text { g of sol }}\).
\(M=\% \times d \times 10\)
    MWt
or \(\mathrm{M}=\% \times \mathrm{Sp} . \mathrm{g} \times 10\)
    MWt
```

Ex: A bottle of concentrated $\mathbf{H 2 S O 4}$ has the following information on its label : molecular weight $98.078 \mathrm{~g} / \mathrm{mole}$, density $1.84 \mathrm{~g} / \mathrm{ml}$ and weight / weight \% equal (98 \%) calculate:
a- Molar concentration
b- prepare 100 ml of $\mathbf{0 . 5 M}$ of $\mathbf{H 2 S O 4 f r o m}$ the concentrated reagent ?
$\frac{a-\mathrm{M}=\% \times \mathrm{Sp} . \mathrm{g} \times 10}{\mathrm{MWt}}$
M $=98 \times 1.84 \times 1098.078=18.38$ mole Liter
b- $M_{1} V_{1}\left(\right.$ for concentrated solution) $=M_{2} V_{2}$ (for ditute solution)
$18.38 \times V_{1}=0.5 \times 100 V_{1}=2.72 \mathrm{ml}$ of concentrated solution dilute to 100 ml by water

Normality (N) : is the number of equivalents of solute which are contained in a liter of solution (or milliequivalents per milliliter)
$\mathrm{N}=$ no.of equivalents
VLiter
$=\frac{\text { no. of mequivalents }}{\text { Vml }}$
no.of equivalents $(\mathrm{Eq})=$ Wight (Wt) in gram
EW g/equivalent
$\mathrm{N}=\underline{\mathrm{Wt}(\mathrm{g}) \times 1000}$ equivalent/Liter
eq.Wt $\times \mathrm{Vml}$

Eq.Wt= M.wt
η
$\eta=$ no. of inoized H (acid)
$=$ no. of inoized $0 H$ (base)
$=$ oxdation no. of cation \times no. of their atmes (salt)
$=$ no.of electrons gained or lost (oxidation and reduction)
EX : Describe the preparation of 2 liters of $0.1 \mathbf{N ~ N a}_{2} \mathbf{C O}_{3}$ (M.wt $=106$ g/mole) from the pure solid.

$$
\begin{aligned}
& N=\frac{W t(g) \times 1000}{e q . W t * V m l}=\frac{106}{2}=53 \\
& 0.1=\frac{W t \times 1000}{53 \times 2000} \text { Wt=10.6 g of } \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

The relationship between Mand N

$$
\begin{aligned}
& M=\frac{W^{*} 1000}{\mathrm{Mw}} \\
& \text { Eq. } \mathrm{Wt}=\frac{\mathrm{M} \cdot \mathrm{wt}}{\eta} \\
& \mathrm{M} . \mathrm{wt}=\mathrm{Eq} \cdot \mathrm{Wt}^{*} \eta \\
& \mathrm{M}=\frac{\mathrm{Wt}^{*} 1000}{E w^{*} \eta^{*} \mathrm{Vml}} \\
& M=\frac{N}{\eta} \\
& \mathrm{~N}=\mathrm{M}^{*} \eta
\end{aligned}
$$

B/ Normality (N) for Liquids:
$\mathrm{N}=\frac{\mathrm{Wt}(\mathrm{g}) \times 1000}{\mathrm{Eq} \cdot \mathrm{Wt} \times \mathrm{Vml}}$
density for solutioion $(\mathrm{d})=\mathrm{Wt} \mathrm{g}$ of solution
Vml of solution
$\therefore \mathrm{Vml}=\mathrm{Wtg}$ of sol.
d
$\mathrm{N}=\mathrm{Wt}(\mathrm{g}) \times 1000 \times \mathrm{d}$
Eq.Wt \times Wt g of sol.
$\mathrm{N}=\% \times \mathrm{d} \times 10$
Eq.Wt
or $\mathrm{N}=\% \times$ Sp. $\mathrm{g} \times 10$
Eq.Wt

Ex: A bottle of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ has the following information on its label : molecular weight $98.078 \mathrm{~g} / \mathrm{mole}$, density $1.84 \mathrm{~g} / \mathrm{ml}$ and weight / weight \% equal (98%) calculate:

A- normal concentration
B- prepare 100 ml of 0.5 N of H 2 SO 4from the concentrated reagent !
$\mathrm{A}-\mathrm{N}=\frac{\% \times \text { Sp. } \mathrm{g} \times 10}{\text { eq. Wt }} \longrightarrow \mathrm{N}=\frac{98 \times 1.84 \times 1098.0782}{\frac{98.078}{2}}$

> =36.76 equivalent /Liter
b- $\mathrm{N}_{1} \mathrm{~V}_{1}$ (for concentrated solution) $=\mathrm{N}_{2} \mathrm{~V}_{2}$ (for ditute solution)
$36.76 \times \mathrm{V}_{1}=0.5 \times 100 \mathrm{~V}_{1}$
$=1.36 \mathrm{ml}$ of concentrated solution dilute to 100 ml by water

Mole fraction or Molar fraction

$X i=$ \qquad
Total moles of all substance
$X_{A}=\frac{\text { moles of } A}{\text { moles } A+\text { moles } B}$
$X_{B}=$ moles of B moles $A+$ moles B
A usually solute and B solvents and the summation of the mole fraction of both solute and solvent $=1 X_{A}+X_{B}=1$
Ex: Solutions contain 5.8 g of acetone ($\mathbf{5 8} \mathrm{g} / \mathrm{mole}$) and 90 g of water ($18 \mathrm{~g} / \mathrm{mole}$) calculate mole fraction of each component.
No. of moles of water $=90 / 18=5$
No. of moles of acetone $=5.8 / 58=0.1$
Mole fraction of acetone $=0.1 /(0.1+5)=0.0196$
Mole fraction of water $=1-0.0196=0.984$.

Ex: prepare 250 ml of $\mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{H}_{2} \mathrm{O}$ in the ratio of 1:4.
each volume part= \qquad
इof the ratios for substrate and solvent
$=\frac{250}{1+4}=50 \mathrm{ml}$
$\mathrm{H}_{2} \mathrm{SO}_{4}=1 \times 50=50 \mathrm{ml}$
$\mathrm{H}_{2} \mathrm{O}=4 \times 50=200 \mathrm{ml}$

