Basic chemistry

Concentration is referring to the amount of the component in a certain amount of hole sample or solution expressed by certain unit.

Molar mass of a substance
is the mass (in grams) of 1 mole of that substance. We calculate molar masses by summing the atomic masses of all the atoms appearing in a chemical formula.

In analytical chemistry, we often determine the amount of chemical species from mass measurements.

For such measurements, units of, grams (g), milligrams (mg), or micrograms $(\mu \mathrm{g})$ are used.

Volumes of liquids are measured in units of liters (L), milliliters (mL), microliters $(\mu \mathrm{L})$, and sometimes nanoliters (nL).

Weight and Mass:
Mass m is an invariant measure of the quantity of matter.
Weight w is the force of gravitational attraction between that matter and Earth.
Classification of Analysis according to weight of sample:
Analysis can be analyzed according to weight ranges:
Sample Size Type of Analysis
0.1 g Macro
0.01 to 0.1 g Semimicro
0.0001 to 0.01 g Micro

Less than 10-4 g Ultramicro
\Mole: it refers to Avogadro's number (6.022×1023) of particles represented by atoms, molecules, ions, electrons or ion pairs.

Ex: M.wt of glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is $=(6 \times 12)+(12 \mathrm{x} 1)+(6 \times 16)=180 \mathrm{~g} / \mathrm{mole}$. Millimole (mmol) is $1 / 1000$ of mole $(1 \mathrm{~mol} .=1000 \mathrm{mmol})$.

Note: Mole can be calculated by:
mole $=\mathrm{w} / \mathrm{mwt}(\mathrm{w}$:weight $/ \mathrm{mwt}:$ molecular weight $)$.
Ex: How many moles and millimoles of benzoic acid ($122.1 \mathrm{~g} / \mathrm{mol}$.) are contained in 2.00 g of the pure acid?
no.ofmole $=$ Weight (Wt) in gramMWt $\mathrm{g} / \mathrm{mole}=2122.1=0.01638 \mathrm{~mole}$ mmol. $=0.0163 \mathrm{x} 1000=163.8 \mathrm{mmol}$.

Ex: How many grams of $\mathrm{Na}^{+}(23 \mathrm{~g} / \mathrm{mol})$ are contained in 25.0 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}(142$ $\mathrm{g} / \mathrm{mol}$)?

The chemical formula tells us that 1 mole of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ contains 2 mole of Na^{+2}

Na $\mathrm{Na}_{2} \mathrm{SO}_{4}$ $\underline{\mathrm{Na}}$	$\underline{\mathrm{Na}_{2} \mathrm{SO}_{4}}$		
$2 * \mathrm{AW}$	Mw	$2 * 23$	142
$\mathrm{Wt}(\mathrm{Na}) \mathrm{g}$	$\mathrm{Wt}(\mathrm{gm})$	$\mathrm{W} \mathrm{Na}^{+}$	25
$\mathrm{WNa}=\frac{2 \times 23 \times 25}{142}=8.1 \mathrm{~g}$ of Na^{+}contains in $\mathrm{Na}_{2} \mathrm{SO}_{4}$			

Percentage concentration:

1- Weight percentage
$\mathrm{Wt} \mathrm{Wt} \%=\frac{\mathrm{Wt} \text { of solute }}{\mathrm{Wt} \text { of solution }} \times 100$

Ex: What is the weight percent of glucose in a solution made by dissolving 4.6 g of glucose in 145.2 g of water?

To get weight percent we need the weight of the solute and the total weight of the solution which equal (Wt of glucose +Wt of water)

Wt of solution $=4.6+145.2=149.8 \mathrm{~g}$

$$
\mathrm{WtWt} \%=\frac{\mathrm{Wt} \text { of solute }}{\mathrm{Wt} \text { of solution }} \times 100=4.6149 .8 \mathrm{X} 100=3.1 \% \text { glucose }
$$

Ex: How would you prepare 400 . g of a 2.50% solution of sodium chloride?
$\mathrm{WtWt} \%=\mathrm{Wt}$ of soluteWt of solution $\times 100$

$2.5=\mathrm{Wt}$ of $\mathrm{NaCl} 400 \mathrm{X} 100=10 \mathrm{~g} \mathrm{NaCl}$

2- Volume percent is usually used when the solution is made by mixing two miscible liquids.

$$
\mathrm{V} / \mathrm{V} \%=\frac{\mathrm{V} \text { of solute }}{\mathrm{V} \text { of solution }} \times 100
$$

Ex: Rubbing alcohol is generally 70% by volume isopropyl alcohol. How many milliliter of isopropyl alcohol contain in liter of solution?

$$
\mathrm{V} / \mathrm{V} \%=\frac{\mathrm{V} \text { of solute } \times 100}{\mathrm{~V} \text { of solution }}
$$

$70=\underline{\mathrm{V} \text { of isopropanol } \times 100=700 \mathrm{ml}, ~}$ 1000

3-Weight - volume w/v \%

$\mathrm{Wt} / \mathrm{V} \%=\mathrm{Wt}$ of solute $\times 100$
V of solution
Ex: A solution was prepared by dissolving 2.45 g of AgNO 3 in sufficient water to give 50 ml . for this solution, Calculate the weight - volume percentage of AgNO3?

$$
\mathrm{W} / \mathrm{V} \%=\frac{\mathrm{Wt} \text { of solute } \times 100}{\mathrm{~V} \text { of solution }} \times
$$

$\underline{2.45 \mathrm{~g} \times 100=4.9 \mathrm{~g} / \mathrm{ml}, ~}$
50 ml
$\mathrm{ppm}, \mathrm{ppb}, \mathrm{ppt}=$ used for very dilute solution
$\begin{array}{ll}\text { part per thousand }(\mathrm{ppt})=\frac{\mathrm{Wt}(\mathrm{g})}{\mathrm{Vml}} \times 1000 & \mu \mathrm{~g} / \mathrm{L}=\mathrm{mg} / \mathrm{ml} \mathrm{g} / \mathrm{L} \\ \text { part per million }(\mathrm{ppm})= & \underset{\mathrm{Wt}(\mathrm{g})}{\mathrm{Vml}} \times 10^{6}\end{array} \quad \mu \mathrm{~g} / \mathrm{ml}=\mathrm{mg} / \mathrm{L}$.
part per billion $(\mathrm{ppb})=\underline{\mathrm{Wt}(g) \times 10^{9} \quad \mu \mathrm{~g} / \mathrm{L}, ~}$
Vml

Ex: Describe the preparation of 100 ml of $100 \mathbf{p p m ~ N a}^{+}$solution by using

$$
\begin{aligned}
& \operatorname{ppm~Na} \\
& +=\frac{\mathrm{Wt}(\mathrm{~g}) \text { of } \mathrm{Na}^{+}}{\mathrm{Vml}} * 10^{6} \\
& 100=\frac{\mathrm{Wt}(\mathrm{~g}) \mathrm{of} \mathrm{Na}^{+}}{100} * 106=0.01{\mathrm{~g} \text { of } \mathrm{Na}^{+}}^{\frac{\mathrm{Na}^{+}}{2^{*} \mathrm{~A} . \mathrm{wt}}} \quad \frac{\mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{M} . \mathrm{Wt}} \\
& \\
& \text { Wt of } \mathrm{Na}_{2} \mathrm{SO}_{4}=\frac{0.01 \times 142=}{46}=0.03086 \mathrm{~g}
\end{aligned}
$$

Formality (F): can be define as the number of formula weights of substance contained in one liter of solution, or the number of milliformula weights per milliliter of solution.
$\mathrm{F}=\frac{\text { no. of formulas }}{\mathrm{V} \text { Liter }}=\frac{\text { no. of milliformulas }}{\mathrm{Vml}}$
no.of formulas (fw) = Weight (Wt) in gram
gfw/formulas
$(\mathrm{fw} / \mathrm{L})$ or $(\mathrm{mfw} / \mathrm{ml})$ or $(\mathrm{F})=\mathrm{Wt}(\mathrm{g}) \times 1000$ formula $/$ Liter
gfw \times Vml
B/ Formality (F) for concentrated solutions :
$\mathrm{F}=\frac{\mathrm{Wt}(\mathrm{g}) \times 1000}{\mathrm{gfw} \times \mathrm{Vml}}$
density for solutioion (d) $=W \underline{W t g}$ of solution Vml of solution ,
$\therefore \mathrm{Vml}=\underline{\mathrm{Wtg} \text { of sol }}$.
d
$\mathrm{F}=\underline{\mathrm{Wt}(\mathrm{g}) \times 1000 * \mathrm{~d}}$
$\mathrm{gfw} \times$ Wt g of sol.
$\mathrm{F}=\% \times \mathrm{d} \times 10$
or $\mathrm{F}=\% \times$ Sp. $\mathrm{g} \times 10$
gfw
gfw

