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9.2 Composite Bodies

A composiie ooy comsists of a seres of comnedicd “simpler™ shaprod
banfiies which may be rectangular, imangudar, semcmculor, ote. Such o lxnly
can ollten be seetiomed or idscaded into fis conmposite parts and, prowided
the sieiglar and loction of ike conter of Eruviy af each of these parts are
known, wie can then climinme the pecd lor mi ceraliom o determing the
ceider of gravity foe the entbe boady, The method For didiag ts follows ehe
same procedure outlimed in S ¥, 1 Formuolas nnalogous (o Fos 9] resalt:
Bivweerver, ralbier tham acoouni o ancinfimle samvber of &llcreatiol woaphis,
we biave instemd o fimile namber of weights Theselore,

o EAW XYW TIW | .
T Ew CEw T oEw | S

T4 represent the coondinates al the center of gravity o of the
compasie body
% 7. = reprgsent the coordinsles of the center ol gravity of each
3 composite part of the body.
EW s the sum of the weights of all 15¢ compasite parts af the body,
of sy Uhe ot seight of the body.

When the by has o cormdani dermdiv or specific wagtt, the wnler of
gravey ciricinkes with the centread of the body, The seniroid far consposine
bincs, arews omd wolumes Gin be foend ming relaiicons onalogous o
Ens 06 hanwdver, the Ws are repiacad by L5 A omgd 175 respectively
Cemtroads for conmen shapes of Bnes arcas, slells, md valumes that ofen
make up o conmposiie ady are given in the toble on the insde back cover,

In ergler bndesermme she borve coquireil in
Ep ovar ihrs comercic berrier b is Fisl
megeadary i determine the ecatsn of i
coertier of gravity 05 Dug to syt & will
lic an the vortical sgis ol symoma oy



9.2  Cosrcory 8ooe am

| Procedure for Analysis

'ﬁ:lmﬂmn“hcu:qlﬂrﬂg:ﬁfpdpbﬂdynrﬂunﬂmﬂd’:
Cotpesite gromeincal obped reproseled By a line, arco. o valume
can be dererminel wslivg ihe felkwing provedure,

Composkia Pars.
® Lising 2 sketch, divce the oy or abject mti: & findle numoer of
composile pares that bave simpler shapes.

= composite body s 0 iobe, or & geoibeine togion havmg oo
mustirrial, 1hen consder e compogite bodv withoul (he ke and
gomsider thie Bode o ai sl composing pan laving segaive
'l.':‘!ﬂm':th_

Momeant Srms.

* Esiablish ihe coordingty sxes on (ke skeich and determine fhe
coordinaties T, ¥, 7 ol the cenber of pravity or centmoid of spch pare.

Surrmestione,

= Dheterming 7. ¥, 2 by applying the eeater of graviny equalions,
Eiqs 9, of ihe analogaus cestroid equations

® I an objert is symemernion aboan an s, the ceproid of the
abjert hes oo this axis i

W desired, éhe cololspions can be aromsped i mbolas form, us

indicated m the following hree examples.

The ocaivn of groviiyv ol the witer ank s
he determined T dindding 1 e
wornpssile pare el applying Fs 44
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Locae ihe cemrosd of 1he wire shovws in Fg, 9=,

SOLUTICMN

Composite Parts. The wire s divided in1o three sepmends as shoswn
in Fig. 9-1fb,

Moment &rme. The |location of the ceninodd for each segment is
determzinigd and idicated in ik fgure. o partioular. the centraid of
up'rl.'n!{I] s diciermined cither by mbcgratiom or by psing the table
i (e inside back cover

Summations. For comyenicpce, the cnlcudmicas can be tabulnied as
felllevmn:

Sagmant £ { e Tjmm)  ¥imenj () L (mm’} VL (mi’ L tmm’)
1 wifl| = LHES il -353 il i1 5 =T} i
z e 1l 1 20 i il i i
L] M i ] 1] i B 3K}
£l = HuA YRE = 00 EFL = 4 ETL = -3
Thie
e R
X TR i 455 mam Ans
E¥L  —5sE0
[Pt O e T
T Sl 454 225 ifim Aien
EFL  -2m0

1Bb




1FLE | 9.10

Leguze vhe cemtroid of i(he plate area shomon in Fig. 0-1 T,

(1]
Ll

Fig. 9-17
SOLUTROM
Composite Parts. The plate g5 divided into three sepments as
shown in Fg: 9-17k, Here the area- of the small reclangle 3 &

conedered “megnive” snce IL musl be subiracied from e larger
[ e

Mament Arms, The ceniroid of each segmiend is lecated as indigaied
im; thee Srpure: Note thak the 3 coordinaies of {5 end (5 are megaive.

Summations. Taking the data from Fig S-176, ik calenbaisons ane
Tabubited as Follows:

Segmer AR5 Tomp Fiby  TA Y TA (&Y
I }.:_tj.:j| - 43 | | L5 'L}
1 (313 =1 -15 1% ~134 154
1 =[] ==X =25 I 5 -4
A =115 EFA==4 TFA =14
Tl
B
= A - ”j——ll_"'n:‘L"II'I Anx
e I,
Fo T T e i

MAOTE: I these résubis pre plotied m Rp. =07, the beation of point ©

seems rexsonable

9.2  Cosrcory 8ooe

ihj

473
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Locae thw comter of mass of the sssembly shown i Fig 9-18s, The
cumical frustum bas & density of 5, = 8 Mg'm’, snd the hemispherne
has o denssy of py, = -I-H[l..".ru". There s o XSmmmeradias cvlindmeal
ke i tha cemter (f thie Frustuem.

SOLUTION

Composite Parts. The asembly cin be ikiught of s comsisting ol
four sepmesis us shown in Fie, 9-185, For the caboulntions, (3 and G
il be comsbdored os “megalive” sogivent inorder that the Tour
sepmenls whin added topeiber. yicld the lolal composile shipe
sk im Fee %1 da

Moment Arm. Lsing the wble on the inside beck cover, the
compaitatices for (e coptrnd 7 ol sach paece ane shown in the figane,

Summations. Bocause of svmwneney, nile that
Ir=3=10
Emee W = myg, and g 1= constant, the third of Ege bt beoomes
= ETm i The mass of each pivce can be computed fromom = )
uaed used for the cabeulations Ako, | Mp/m® = 10" kp/mny®, so that

Anx

Simm

LSy = ST mm

{hd

Segmest mikgl Fimm) T (kg me )
| BELO-p[ | SN 2y = 4189 i TR
1 410455 =)' = AT -7 = |EEE
3 B0 Y} e {25 100) = -05M ME o+ 25 = 2% ~hEA4M
4 gt LU = L R | Ll _ —Thsd
e = 1143 2o ALEIN
. 2Em o 43RS
Th T ———— - [ A
o Tur | 3042 e s
f i
1]
1080 e -
1|'.'4".*I!I.I:I:I i |
Hiy [
e 51l mm = L4
e 3 1090 pr=mi
H ]
IE'__ln.m :'HI e = Wi
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FUNDAMENTAL PROBLEMS

Fo=T. Locnie the cemirond (¥, 25 of the wire bent in tho =il Locate the contenidx, ) of the cooeeceoiona| aren:
shape shram

Fi-i Locaie the cemieoid ¥ ol the beam's cros-seolional Fodl. Locig the cepier of mwss (00 0 of dhe
[ hempgenoous selid Blogk.

5 iy 2%
%-f i)

P9 Locsle the centived § of tha beam's onios- Pi-IL Dewrming the cemer ol mes {5 07 ol the
seetinnal area, hemogencous woll bock,

HEkigim——
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“lerosiews

SR ooty the comtimid |, ¥ of 13 unildem wire Bgnl 6. Laoesto the centros] (5. 0, 21l e wire
It M Ehages ehowil

¥
- Iidi@iin & 4
N
arem
]
10 mm
1 =
= ] i —
Pl 1 Prub, Ui
#0848 [ocats the centmogd (5., ) ol the wine W47 Loewio the cenbrend (1, ¥, ) of the wire wiich & beni
in the shape shiven.
#
i
ELIET

1P, Hesi® Prmh, 9=47
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*S—gx,  The truss s mads foen seven mémbers, cach having %50, Each of 1he thaee members o the [rame has i mass
s e et benghi af 6 kgfm, Leeste thi positivn (4 ) oo it Lenghi of & kg, Lecane the posities {5, 5§ ol the

of the ceaser of mass, Neplect the mass of 1he presel plaics. center of miss. Negleot the size of the pins a8 the Finis s
the thicknes of the momtare Also calGukaie the resgtions

at thi pim A anad pedior £

wihe st

=, Locate the centraid (7, ¥ of the wire I the wire s =8l Locate the centrowd {1, 7) of the omss-secisomal anea
suspeilbed Trom A, detemsias B angle segiment AT mates alike channsd
willy Bhe wiihl whem The wine i is equilisieim

T
' v
'—MM'+':EII“-"

RS Gy e O

IFirals, 948 Frab, 251
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THSL Locwie 1he cemimmid poof 1be omss-secinnal ara of
e evmicrele hias

*0-88  Locaie ihe contenid ¥ of the cmss-sectioml area b
thee baailn e bam,

I'rub. 853

W5l Locie e cepmodd §oof e channels drogs-
wectinvnal diea

55 Liske B ilemapes bofo e meniredd &l ghe
mismher v ermec-arciamal wrea.
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*HolE, Locale fhe cemtrald § of the ergssssmionn) arew af W4, Locar the cemimid § of the cnmpasiie area.
b iitiliap heam.

P, 958

W89, |acate rhe centroed (1, V) of 1he emposiie anea.

#4=51, The gravity wadl is made of coacrete. [edermme the
Joecatiin £, ¥ o ihé ceated of S O e e wall

Pruh, %57 Prah, 2
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10.5 Moments of Inertia for Compasite Areas
ST pE TG e st T e g e s ol cazmcrhnd han e Mpnels e
slrapes, szl s semicizzhes ceeangacs, arel trineges. Pzowaded e
mopnoerel ol nigtlia el mazhoof taese gt o koo e i b
gz i el T m ooz i, e Ue el sl ezt ol e
Crsmsitg Ao s als Tae eipedrei vany o7 U nerenes nl iner il

a |are paris.

FROCEDURE FOR ANALYSIS

T szenenh al iRaetd ol o caziposd s does sl & e e s
can ke deteromezmed e s B lovwie o prscedoe.

SIFCIUEA.  Ermeer Ot VARnds ST Caggpoostiye Faare,

et eeal sl eodal s ezaes g o el . . . . . .
T v Lsing 2 sketch, Jlwide e arma i1 i scopesite s sed

e alrzag i =y el inciza e e poroeadicalan diskanze G e ek ol cach pac)
1 ghe onloere nme sz

Treretdel- i e,

w | aurae D af imesEa ol el aziesloeald o claeermivand abmael s
centizital as, whislk i garile, o the okerzees s oo the
Cat 120 T o s <l i o Hs aiis: lock e,

o O wer i asts Soes anl e with the velsesm e agie, e
paapllel-avic eorma, £ - 00 AL hon BT R st e et
the rzweanens =f rrmia nd e parl alwowd L e ben@nee 3k,

Fuplana ik,

 The memen ol oz ol ek entine anca 2beab L efesenoe 25y
s desern et by smmming Tae rosC LS uZ il connpae e pars

o I0 s ccmnznnsic Pt as 27 el its oeconent ol i tin s e by
el racsing " e oz L od a2 Lo e b Trar e s
Ao af Che cotie parcinehizlio g o hule.
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PROBLEMS
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CHAPTER 12 KINEMATICS OF A PARTICLE

Displacement

(b)

o

Position

(a)

Velocity
(©)

Fig. 12-16

12.4 General Curvilinear Motion

Curvilinear motion occurs when a particle moves along a curved path.
Since this path is often described in three dimensions, vector analysis will
be used to formulate the particle’s position, velocity, and acceleration.* In
this section the general aspects of curvilinear motion are discussed, and
in subsequent sections we will consider three types of coordinate systems
often used to analyze this motion.

Position. Consider a particle located at a point on a space curve
defined by the path function s(¢), Fig. 12-16a. The position of the particle,
measured from a fixed point O, will be designated by the position vector
r = r(f). Notice that both the magnitude and direction of this vector will
change as the particle moves along the curve.

Displacement. Suppose that during a small time interval Ar the
particle moves a distance As along the curve to a new position, defined
byr’ = r + Ar, Fig. 12-16b. The displacement Ar represents the change
in the particle’s position and is determined by vector subtraction; i.e.,
Ar =r' —r.

Velocity. During the time At, the average velocity of the particle is

_Ar
Vavg = E

The instantaneous velocity is determined from this equation by letting
Ar— 0, and consequently the direction of Ar approaches the tangent to
the curve. Hence, v = AlliI_I)lO(Al‘/ At) or

_dr

Vo

(12-7)

Since dr will be tangent to the curve, the direction of v is also tangent to
the curve, Fig. 12-16¢. The magnitude of v, which is called the speed, is
obtained by realizing that the length of the straight line segment Ar in
Fig. 12-16b approaches the arc length As as Ar—0, we have
v = Alti1_1)10(Ar/At) = Altil_l)lO(AS/At), or

_ds

L

(12-8)

Thus, the speed can be obtained by differentiating the path function s with
respect to time.

*A summary of some of the important concepts of vector analysis is given in Appendix B.



12.4  GENERAL CURVILINEAR MOTION

Acceleration. If the particle has a velocity v at time ¢ and a velocity

v = v + Avatr + At Fig. 12-16d, then the average acceleration of the
particle during the time interval At is

where Av = v’ — v. To study this time rate of change, the two velocity
vectors in Fig. 12-16d are plotted in Fig. 12-16e such that their tails are
located at the fixed point O’ and their arrowheads touch points on a
curve. This curve is called a hodograph,and when constructed, it describes
the locus of points for the arrowhead of the velocity vector in the same
manner as the path s describes the locus of points for the arrowhead of
the position vector, Fig. 12-16a.

To obtain the instantaneous acceleration, let Ar— 0 in the above
equation. In the limit Av will approach the tangent to the hodograph, and
soa = Al}EO(AV/At)’ or

a= " (12-9)

Substituting Eq. 12-7 into this result, we can also write

_dr

dr

By definition of the derivative, a acts tangent to the hodograph,
Fig. 12-16f, and, in general it is not tangent to the path of motion,
Fig. 12-16g. To clarify this point, realize that Av and consequently a must
account for the change made in both the magnitude and direction of the
velocity v as the particle moves from one point to the next along the path,
Fig. 12-16d. However, in order for the particle to follow any curved path,
the directional change always “swings” the velocity vector toward the
“inside” or “concave side” of the path, and therefore a cannot remain
tangent to the path. In summary, v is always tangent to the path and a is
always tangent to the hodograph.

(d)

(e)

Hodograph

()

Acceleration

(2)
Fig. 12-16

path
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Position

()

v=ud+v,j+ vk

Velocity
(b)

Fig. 12-17

12.5 Curvilinear Motion: Rectangular
Components

Occasionally the motion of a particle can best be described along a path
that can be expressed in terms of its x, y, z coordinates.

Position. If the particle is at point (x, y, z) on the curved path s
shown in Fig. 12-17a, then its location is defined by the position vector

r=axi+yj+ 2k (12-10)

When the particle moves, the x, y, z components of r will be functions of
time;i.e., x = x(t), y = y(t), z = z(1), so thatr = r(z).

At any instant the magnitude of r is defined from Eq. B-3 in
Appendix B as

r=Vx+ y2 + 7
And the direction of r is specified by the unit vector u, = r/r.

Velocity.  The first time derivative of r yields the velocity of the
particle. Hence,

XLy + Log + L
v=—=—((x — —
dt  dt dr ™) e
When taking this derivative, it is necessary to account for changes in both
the magnitude and direction of each of the vector’s components. For
example, the derivative of the i component of r is

The second term on the right side is zero, provided the x, y, z reference
frame is fixed, and therefore the direction (and the magnitude) of i does
not change with time. Differentiation of the j and k components may be
carried out in a similar manner, which yields the final result,

d
v = i = v + v,j + vk (12-11)

where

V=X v, =y v, =72 (12-12)
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The “dot” notation x, y, z represents the first time derivatives of x = x(¢),
y = y(1), z = z(¢), respectively.
The velocity has a magnitude that is found from

v = Vi + v} + vl

and a direction that is specified by the unit vector u, = v/v. As discussed
in Sec. 12.4, this direction is always tangent to the path, as shown in
Fig. 12-17b.

Acceleration. The acceleration of the particle is obtained by taking
the first time derivative of Eq. 12-11 (or the second time derivative of
Eq. 12-10). We have

d
a= d—: = a,i + a,j + ak (12-13)
where
a, = UV, = X
a,= b, =y (12-14)
% = % =2

Here a,, a,, a, represent, respectively, the first time derivatives of
vy = (1), vy = vy(t), v, = v,(t), or the second time derivatives of the
functions x = x(¢), y = y(¢), z = z(?).

The acceleration has a magnitude

a= \/a,%+a§+a§

and a direction specified by the unit vector u, = a/a. Since a represents
the time rate of change in both the magnitude and direction of the velocity,
in general a will not be tangent to the path, Fig. 12-17c.

a=ad+aj+ak

37
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Important Points

o Curvilinear motion can cause changes in both the magnitude and
direction of the position, velocity, and acceleration vectors.

o The velocity vector is always directed tangent to the path.

o In general, the acceleration vector is not tangent to the path, but
rather, it is tangent to the hodograph.

o If the motion is described using rectangular coordinates, then the
components along each of the axes do not change direction, only
their magnitude and sense (algebraic sign) will change.

¢ By considering the component motions, the change in magnitude
and direction of the particle’s position and velocity are automatically
taken into account.

Procedure for Analysis

Coordinate System.

e A rectangular coordinate system can be used to solve problems
for which the motion can conveniently be expressed in terms of
its x, y, z components.

Kinematic Quantities.

e Since rectilinear motion occurs along each coordinate axis, the
motion along each axis is found using v = ds/dt and a = dv/dt;
or in cases where the motion is not expressed as a function of
time, the equation a ds = v dv can be used.

e In two dimensions, the equation of the path y = f(x) can be used
to relate the x and y components of velocity and acceleration by
applying the chain rule of calculus. A review of this concept is
given in Appendix C.

e Once the x, y, z components of v and a have been determined, the
magnitudes of these vectors are found from the Pythagorean
theorem, Eq. B-3, and their coordinate direction angles from the
components of their unit vectors, Egs. B-4 and B-5.
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EXAMPLE [[12.9 u

At any instant the horizontal position of the weather balloon in
Fig. 12-18a is defined by x = (8¢) ft, where ¢ is in seconds. If the y A
equation of the path is y = x?/10, determine the magnitude and
direction of the velocity and the acceleration when r = 2 s.
x2
Y=10
SOLUTION N
Velocity.  The velocity component in the x direction is /
X
v—'—i(8t)—8ft/—>
THT g0 T O 16 ft———
To find the relationship between the velocity components we will use the (a)
chain rule of calculus. When s = 2s,x = 8(2) = 16 ft, Fig. 12184, and so
d
v =y = 5(x2/10) = 2xx/10 = 2(16)(8)/10 = 25.6 ft/s |
When ¢ = 2 s, the magnitude of velocity is therefore
v = V8 ft/s? + (25.6ft/s)* = 26.8 ft/s Ans.
The direction is tangent to the path, Fig. 12-18b, where
v ’5.6 v =268 1ft/s
0, = tan”' = = tan”' —— = 72.6° Ans. 6. =72.6°
V, 8 K :
B
Acceleration. The relationship between the acceleration components
is determined using the chain rule. (See Appendix C.) We have (b)
d
ax /UX dt( )
. d . . L ..
@, = W, = E(2xx/10) = 2(x)x/10 + 2x(x)/10
= 2(8)%/10 + 2(16)(0)/10 = 12.8 ft/s> |
Thus,
a=1281t
a = V() + (12.8)> = 12.8 ft/s* Ans. 6, = 90°
The direction of a, as shown in Fig. 12-18¢, is B
(c)
12.8
6, = tan! B 90° Ans. Fig. 12-18
NOTE: It is also possible to obtain v, and a, by first expressing
y=f@ = (8t)2/10 = 6.4/ and then taking successive time derivatives.
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For a short time, the path of the plane in Fig. 12-19a is described by
y = (0.001x%) m. If the plane is rising with a constant upward velocity of
10 m/s, determine the magnitudes of the velocity and acceleration of the
plane when it reaches an altitude of y = 100 m.

SOLUTION
When y = 100 m, then 100 = 0.001x* or x = 316.2 m. Also, due to
constant velocity v, = 10 m/s, so

(ORC.Hibbeler)  , — 4 . 100m = (10 m/s) ¢ t=10s

Velocity. Using the chain rule (see Appendix C) to find the
relationship between the velocity components, we have

y = 0.001x°
. d ) .
v Uy = 3 = E(O.Ole ) = (0.002x)x = 0.002xv, (1)
Thus
/y — 0.00122 10 m/s = 0.002(316.2 m)(v,.)
v, = 15.81 m/s
100 m >~

* The magnitude of the velocity is therefore

(a) v = \/’v,% + 1)3 = \/(15.81 m/s)’> + (10 m/s)*> = 18.7m/s Ans.

Acceleration. Using the chain rule, the time derivative of Eq. (1)
gives the relation between the acceleration components.

a, = b, = (0.002)% + 0.002x(x) = 0.002(v2 + xa,)
d When x = 3162 m, v, = 1581 m/s, b, = a, = 0,
e v 0 = 0.002[(15.81 m/s)* + 3162 m(a,)]
a a, = —0.791 m/s’

vx
100 . 5 :
ml i . The magnitude of the plane’s acceleration is therefore

a=Vd+d=\V=0191m/s) + (0m/s>

(b)
Fig. 12-19 = 0.791 m/s> Ans.

These results are shown in Fig. 12-195b.




12.6

12.6 Motion of a Projectile

The free-flight motion of a projectile is often studied in terms of its
rectangular components. To illustrate the kinematic analysis, consider a
projectile launched at point (xy, y,), with an initial velocity of v, having
components (vy), and (vy),, Fig. 12-20. When air resistance is neglected,
the only force acting on the projectile is its weight, which causes the
projectile to have a constant downward acceleration of approximately
a, =g =981 m/s’org = 32.2 ft/s>.*

# X0
I X

Fig. 12-20

Since a, = 0, application of the constant
acceleration equations, 12—4 to 12-6, yields

(5) v =12t adt v, = (Vo)x
(i)) = X + Vol + %actz; X = Xy + (UO)xt
(5) v = vf + 2a.(x — xo); v, = (Vo)

The first and last equations indicate that the horizontal component of
velocity always remains constant during the motion.

Since the positive y axis is directed upward, then

a, = —g. Applying Egs. 124 to 12-6, we get

(+T) v = vy + act; vy = (/UO)y - gt

+1 y = yo + oot + 3act’; Y=o + (o)t — 387
+h v = 05+ 2a.y ~ yo); v = o)y — 28(y ~ yo)

Recall that the last equation can be formulated on the basis of eliminating
the time ¢ from the first two equations, and therefore only two of the above
three equations are independent of one another.

*This assumes that the earth’s gravitational field does not vary with altitude.

MOTION OF A PROJECTILE

Each picture in this sequence is taken
after the same time interval. The red ball
falls from rest, whereas the yellow ball is
given a horizontal velocity when released.
Both balls accelerate downward at the
same rate, and so they remain at the same
elevation at any instant. This acceleration
causes the difference in elevation between
the balls to increase between successive
photos. Also, note the horizontal distance
between successive photos of the yellow
ball is constant since the velocity in the
horizontal direction remains constant.
(© R.C. Hibbeler)

41
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To summarize, problems involving the motion of a projectile can have
at most three unknowns since only three independent equations can be
written; that is, one equation in the horizontal direction and two in the
vertical direction. Once v, and v, are obtained, the resultant velocity v,
which is always tangent to the path, can be determined by the vector sum
as shown in Fig. 12-20.

Procedure for Analysis

Once thrown, the basketball follows a Coordinate System.

parabolic trajectory. (© R.C. Hibbeler) e Establish the fixed x, y coordinate axes and sketch the trajectory
of the particle. Between any two points on the path specify the
given problem data and identify the three unknowns. In all cases
the acceleration of gravity acts downward and equals 9.81 m /s’
or 32.2 ft/s%. The particle’s initial and final velocities should be
represented in terms of their x and y components.

e Remember that positive and negative position, velocity, and
acceleration components always act in accordance with their
associated coordinate directions.

Kinematic Equations.

e Depending upon the known data and what is to be determined, a
choice should be made as to which three of the following four
equations should be applied between the two points on the path
to obtain the most direct solution to the problem.

Horizontal Motion.

e The velocity in the horizontal or x direction is constant, i.e.,
v, = (vy),, and

x = xo T (Vo) t

Vertical Motion.

e In the vertical or y direction only two of the following three
equations can be used for solution.

v, = (Vg)y + at

1
Y=y t (UO)yt + iactz
Gravel falling off the end of this conveyor

2 _ 2
belt follows a path that can be predicted vy = (Uo)y + 2a.(y — yo)
using the equations of constant
acceleration. In this way the location of For example, if the particle’s final velocity v, is not needed, then

the accumulated pile can be determined.
Rectangular coordinates are used for the
analysis since the acceleration is only in
the vertical direction. (© R.C. Hibbeler)

the first and third of these equations will not be useful.
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EXAMPLE [12:11 u

A sack slides off the ramp, shown in Fig. 12-21, with a horizontal
velocity of 12 m/s. If the height of the ramp is 6 m from the floor,
determine the time needed for the sack to strike the floor and the
range R where sacks begin to pile up.

Fig. 12-21

SOLUTION

Coordinate System. The origin of coordinates is established at the
beginning of the path, point A, Fig. 12-21. The initial velocity of a sack
has components (v,), = 12 m/s and (v,), = 0. Also, between points A
and Btheaccelerationisa, = —9.81 m/s” Since (vp), = (vy), = 12m/s,
the three unknowns are (vp),, R, and the time of flight #,5. Here we do
not need to determine (vg), .

Vertical Motion. The vertical distance from A to B is known, and
therefore we can obtain a direct solution for #45 by using the equation

+1 YB = Ya + (Ua)yap + 7aL5p
—6m =0+ 0 + 5(—9.81 m/s?)ip
tag = 1.11s Ans.

Horizontal Motion. Since t45 has been calculated, R is determined
as follows:
(5) xXg = xa t (Va)idap

R=0+ 12m/s (1.115)

R =133m Ans.

NOTE: The calculation for t45 also indicates that if a sack were released
from rest at A, it would take the same amount of time to strike the
floor at C, Fig. 12-21.
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The chipping machine is designed to eject wood chips at v, = 25 ft/s
as shown in Fig. 12-22.If the tube is oriented at 30° from the horizontal,
determine how high, 4, the chips strike the pile if at this instant they
land on the pile 20 ft from the tube.

Fig. 12-22

SOLUTION

Coordinate System. When the motion is analyzed between points O
and A, the three unknowns are the height 4, time of flight 7,,, and
vertical component of velocity (v,),. [Note that (vs), = (vo),.] With
the origin of coordinates at O, Fig. 12-22, the initial velocity of a chip
has components of

(Vo) = (25 cos 30°) ft/s = 21.65 ft/s —
(Do), = (25 sin 30°) ft/s = 12.5 fit/s

Also, (vy), = (vg), = 21.65ft/s and a, = —32.2 ft/s% Since we do
not need to determine (v,),, we have

Horizontal Motion.

() X4 = X0 T (Vo)loa
20t = 0 + (21.65t/s)igy
tOA = 0.9238 s

Vertical Motion. Relating 7, to the initial and final elevations of a
chip, we have

(+1) ya = o + Wo)toa + 20:154
(h— 4f) = 0 + (125 ft/s)(0.9238 5) + 4(—32.2 ft/s))(0.9238 5)?
h = 1.81ft Ans.

NOTE: We can determine (v4), by using (v4), = (vo), + actoa.
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EXAMPLE [[12:13 u

The track for this racing event was designed so that riders jump off the
slope at 30°, from a height of 1 m. During a race it was observed that
the rider shown in Fig. 12-23a remained in mid air for 1.5 s. Determine
the speed at which he was traveling off the ramp, the horizontal
distance he travels before striking the ground, and the maximum
height he attains. Neglect the size of the bike and rider.

(© R.C. Hibbeler)

SOLUTION y

Coordinate System. As shown in Fig. 12-23b, the origin of the
coordinates is established at A. Between the end points of the path AB 30°

the three unknowns are the initial speed v,, range R, and the vertical
component of velocity (vg),. %A /
Vertical Motion. Since the time of flight and the vertical distance
between the ends of the path are known, we can determine v, . R
+h YB = Ya T (Ua)ylup + 3aL3p (b)
—1m = 0 + v,5in30°(1.55) + 3(—9.81 m/s>)(1.5 s)’

vy = 1338 m/s = 13.4m/s Ans.

Horizontal Motion. The range R can now be determined.

—>~-|—{ O

Fig. 12-23

(5) xg = X t (Va)idap
R =0 + 13.38 cos 30°m/s (1.5 s)
=174m Ans.
In order to find the maximum height & we will consider the path AC,
Fig. 12-23b. Here the three unknowns are the time of flight 74, the
horizontal distance from A to C, and the height 4. At the maximum
height (v¢), = 0, and since v, is known, we can determine £ directly
without considering 7, using the following equation.

(We)y = W)y + 2alyc — yal
0? = (13.38 5in 30° m/s)> + 2(—9.81 m/s?)[(h — 1 m) — 0]
h =328m Ans.

NOTE: Show that the bike will strike the ground at B with a velocity
having components of

(vp), = 11.6m/s—, (vg), = 8.02m/s|
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l . PRELIMINARY PROBLEMS

P12-3. Use the chain-rule and find y and y in terms of

x,x and X if
a) y=4x?
b) y=3e*

¢) y=6sinx

P12-4. The particle travels from A to B. Identify the
three unknowns, and write the three equations needed
to solve for them.

40 m/s

QB

20m }

Prob. P124

P12-5. The particle travels from A to B. Identify the
three unknowns, and write the three equations needed
to solve for them.

10 m/s

30°

8 m

Prob. P12-5

P12-6. The particle travels from A to B. Identify the
three unknowns, and write the three equations needed
to solve for them.

60 m/s

20°

tyg=35s

Prob. P12-6



. FUNDAMENTAL PROBLEMS

F12-15. If the x and y components of a particle’s velocity
are v, = (32r) m/s and v, = 8m/s, determine the equation
of the pathy = f(x),if x = 0and y = O whent = 0.

F12-16. A particle is traveling along the straight path. If
its position along the xaxis is x = (8/) m, where 7 is in
seconds, determine its speed when r = 2 s.

y = 0.75x

x = 8t —

4 m

Prob. F12-16

F12-17. A particle is constrained to travel along the path.
If x = @* m, where 7 is in seconds, determine the
magnitude of the particle’s velocity and acceleration when
t=05s.

_—
x= (4% m

Prob. F12-17
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F12-18. A particle travels along a straight-line path
y = 0.5x. If the x component of the particle’s velocity is
v, = (24 m /s, where ¢ is in seconds, determine the magnitude
of the particle’s velocity and acceleration whent = 4s.

«

y = 0.5x

Prob. F12-18

F12-19. A particle is traveling along the parabolic path
y =025 If x =8 m, v, = 8 m/s, and a, = 4 m/s> when
t =2 s, determine the magnitude of the particle’s velocity

and acceleration at this instant.
/ 0.25x2

Prob. F12-19

F12-20. The box slides down the slope described by the
equation y = (0.05x%) m, where x is in meters. If the box has
x components of velocity and acceleration of v, = =3 m/s
anda, = —1.5m/s? at x = 5 m,determine the y components
of the velocity and the acceleration of the box at this instant.

y = 0.05 x?

il

Prob. F12-20
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F12-21. The ball is kicked from point A with the initial
velocity v, = 10 m/s. Determine the maximum height 4 it
reaches.

F12-22. The ball is kicked from point A with the initial
velocity v, = 10 m/s. Determine the range R, and the
speed when the ball strikes the ground.

y
e Xgp—— >
=10
| V4 m/s
4300 c .

Prob. F12-21/22

F12-23. Determine the speed at which the basketball at A
must be thrown at the angle of 30° so that it makes it to the
basket at B.

10 m

Prob. F12-23

F12-24. Water is sprayed at an angle of 90° from the slope
at 20 m/s. Determine the range R.

Prob. F12-24

F12-25. A ball is thrown from A. If it is required to clear
the wall at B, determine the minimum magnitude of its
initial velocity v,.

12 ft

Prob. F12-25

F12-26. A projectile is fired with an initial velocity of
v, = 150 m/s off the roof of the building. Determine the
range R where it strikes the ground at B.

y
vy =150 m/s
A
Al? .
%i
 w—

R

Prob. F12-26
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| PROBLEMS

12-69. 1If the velocity of a particle is defined as v(¢) =
{0.8¢% + 121'/%j + 5k} m/s, determine the magnitude and
coordinate direction angles «, B, y of the particle’s
acceleration when =2 s.

12-70. The velocity of a particle is v= {3i+ (6 —20)j} m/s,
where ¢ is in seconds. If r = 0 whent = 0, determine the
displacement of the particle during the time interval
t=1stor=3s.

12-71. A particle, originally at rest and located at point
(3 ft, 2 ft, 5 ft), is subjected to an acceleration of
a = {6ri + 12/’k} ft/s%. Determine the particle’s position
(x,y,z)atr = 1s.

#12-72. The velocity of a particle is given by v = {16¢% +
4r% + (5t + 2)k} m/s, where ¢ is in seconds. If the particle
is at the origin when r = 0, determine the magnitude of the
particle’s acceleration when ¢ = 2's. Also, what is the x, y, z
coordinate position of the particle at this instant?

12-73. 'The water sprinkler, positioned at the base of a hill,
releases a stream of water with a velocity of 15 ft/s as
shown. Determine the point B(x, y) where the water strikes
the ground on the hill. Assume that the hill is defined by the
equation y = (0.05x?) ft and neglect the size of the sprinkler.

y = (0.05x2) ft

TR A W

Prob. 12-73

12-74. A particle, originally at rest and located at point (3 ft,
2 ft, 5 ft), is subjected to an acceleration a = {6¢i + 122k} ft/s%
Determine the particle’s position (x, y, z) when t=2s.

12-75. A particle travels along the curve from A to Bin2s.
It takes 4 s for it to go from B to C and then 3 s to go from C
to D. Determine its average speed when it goes from A to D.

y
D
Sm
‘ 15m
Bl
-Q
C
10m
A x
Prob. 12-75

*12-76. A particle travels along the curve from A to BinSs.
It takes 8 s for it to go from B to C and then 10 s to go from
C to A. Determine its average speed when it goes around
the closed path.

20 m

A 30m C

Prob. 12-76
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12-77. 'The position of a crate sliding down a ramp is given
by x = (0.25A4) m, y = (1.52) m, z = (6 — 0.75//2) m, where ¢
is in seconds. Determine the magnitude of the crate’s
velocity and acceleration when t =2s.

12-78. A rocket is fired from rest at x = 0 and travels
along a parabolic trajectory described by y> = [120(10%)x] m.

If the x component of acceleration is a, = n 2 ) m/s?,

where ¢ is in seconds, determine the magnitude of the
rocket’s velocity and acceleration when t=10s.

12-79. The particle travels along the path defined by the
parabola y = 0.5x% If the component of velocity along
the x axis is v, = (5¢) ft/s, where ¢ is in seconds, determine
the particle’s distance from the origin O and the magnitude
of its acceleration when t = 1s. Whenrs = 0,x = 0,y = 0.

y = 0.5x

Prob. 12-79

*12-80. The motorcycle travels with constant speed v,
along the path that, for a short distance, takes the form of a
sine curve. Determine the x and y components of its velocity
at any instant on the curve.

y = csin (%x)

C
BN

Prob. 12-80

12-81. A particle travels along the curve from A to B in
1 s. If it takes 3 s for it to go from A to C, determine its
average velocity when it goes from B to C.

y
N 30°
. 45° ¢
30m
B
A x
Prob. 12-81

12-82. 'The roller coaster car travels down the helical path
at constant speed such that the parametric equations that
define its position are x = ¢ sin kt, y = ¢ cos kt, z = h — bt,
where c, &, and b are constants. Determine the magnitudes
of its velocity and acceleration.

i

Prob. 12-82



