NUMERICAL ANALYSIS

College of Petroleum and Mining Engineering

Dr. Ibrahim Adil Ibrahim Al-Hafidh

Mining Engineering Department College of Petroleum and Mining Engineering University of Mosul

> 1 Engineering Analysis Dr. Ibrahim Al-Hafidh

College of Petroleum and Mining Engineering

CHAPETER TWO LINEAR DIFERENTIAL EQUATIONS OF SECEND ORDER

معادلات تفاضلية خطية من المرتبة الثانية

Linear differential Equations of Second Order

معادلات تفاضلية خطية من المرتبة الثانية

The general form of linear differential of second order in:

$$\frac{d^2y}{dx^2} + P \frac{dy}{dx} + Q y = R$$

Where P and Q are constants and R is a function of x or constant.

Differential operator. Symbol **D** stands for the operation of differential i.e.

$$D_y = \frac{dy}{dx}$$
 , $D_y^2 = \frac{d^2y}{dx^2}$

$\frac{1}{D}$ stands for the integration

$\frac{1}{D^2}$ stands for the integration twice

$$\frac{d^2y}{dx^2} + P \frac{dy}{dx} + Q y = R$$
, can be written from:

$$D_y^2 + P D_y + Q y = R$$

or

$$\left(D^2 + P D + Q\right) y = R$$

Complete Solution = Complementary Function + Particular Integral

y = C.F.+P.I.

Method for Finding the Complementary Function

1- In finding the complementary function of the given equation is replaced by zero

2- let
$$\frac{d^2y}{dx^2} + P \frac{dy}{dx} + Q y = 0$$
$$D_y^2 + P D_y + Q y = 0$$
$$(D^2 + P D + Q)_y = 0$$
$$m^2 + P m + Q = 0 \qquad is called Auxiliary equation$$
Email: iibrahim@uomosul.edu.iq

- **3-** Solve the Auxiliary equation
- Case I: Roots, Real and Different. If m_1 and m_2 are the roots, then C.F. is $y = C_1 e^{m_1 x} + C_2 e^{m_2 x}$ Case II: Roots, Real and Equal. If both the roots are m_1 , m_2 are the roots, then C.F. is

$$y = (C_1 + C_2 x) e^{m_1 x}$$

Case III: Roots, Imaginary. If the roots are $\alpha \pm i\beta$, then the solution will be

 $y = e^{\alpha x} [A \cos \beta x + B \sin \beta x]$

Example 1: Solve,

$$\frac{d^2y}{dx^2} - 8 \frac{dy}{dx} + 15 y = 0$$

Given equation van be written as

$$(D^{2} - 8 D + 15) y = 0$$

$$m^{2} - 8 m + 15 = 0$$

$$\rightarrow m_{1} = 3 , m_{2} = 5$$

$$y = C_{1} e^{3x} + C_{2} e^{5x}$$

Here auxiliary equation, (m-3)(m-5) = 0The required solution is

Example 2: Solve
$$\frac{d^2y}{dx^2} - 8 \frac{dy}{dx} + 16 y = 0$$

$$\begin{pmatrix} D^2 - 8 D + 16 \end{pmatrix} y = 0 \quad \rightarrow \quad m^2 - 8 m + 16 = 0 \\ (m - 4)(m - 4) = 0 \quad \rightarrow \quad m_1 = m_2 = 4 \\ \text{The required solution is} \quad y = (C_1 + x C_2) e^{4x}$$

Example 3: Solve,
$$\frac{d^2y}{dx^2} + 4 \frac{dy}{dx} + 5 y = 0$$

$$\left(D^2+4\ D+5\right)y=0 \qquad \rightarrow \qquad m^2+4\ m+5=0$$

$$m=\frac{-b \pm \sqrt{b^2-4ac}}{2a}$$

$$a=1$$
 , $b=4$, $c=5$

$$m = \frac{-4 \pm \sqrt{16 - 4 \times 1 \times 5}}{2 \times 1} = \frac{-4 \pm \sqrt{-4}}{2} = \frac{-4 \pm 2i}{2} = -2 \pm i$$

The complementary function is $y = e^{-2x}(A\cos x + B\sin x)$ (1) On putting y = 2 and x = 0 in (1), we get 2 = AOn putting A = 2 in (1), we have $y = e^{\alpha x} [A\cos\beta x + B\sin\beta x]$ $\alpha = -2$, $\beta = 1$ $y = e^{-2x} [2\cos x + B\sin x]$

divided all by 2

Example 4: Solve
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 5 y = 0$$

$$(D^2 + D - 1) y = 0 \quad \rightarrow \quad m^2 + m - 1 = 0$$

$$m = \frac{-1 \pm \sqrt{1-4}}{2} = \frac{-1}{2} \pm \frac{\sqrt{3}}{2}i$$

$$y = e^{\frac{-1}{2}x} \left[A \cos \frac{\sqrt{3}}{2} x + B \sin \frac{\sqrt{3}}{2} x \right]$$

Rules to Find Particular Integral (P. I.)

1)
$$\frac{1}{f(D)} e^{ax} = \frac{1}{f(a)} e^{ax}$$

If $f(a) = 0$, then $\frac{1}{f(D)} \cdot e^{ax} = x \cdot \frac{1}{\overline{f}(a)} \cdot e^{ax}$
If $\overline{f}(a) = 0$, then $\frac{1}{f(D)} \cdot e^{ax} = x^2 \cdot \frac{1}{\overline{f}(a)} \cdot e^{ax}$

Example 5: Solve $\frac{d^2y}{dx^2} + 6 \frac{dy}{dx} + 9 y = 5 e^{3x}$ $(D^2 + 6 D + 9) y = 5 e^{3x}$ $m^2 + 6 m + 9 = 0$ $(m+3)(m+3) = 0 \qquad \rightarrow \qquad m_1 = m_2 = -3$ $C.F. = (c_1 + x c_2) e^{-3x}$ $P.I. = \frac{1}{f(D)} \cdot 5 e^{3x} = \frac{1}{D^2 + 6D + 9} \cdot 5 e^{3x} = 5 \cdot \frac{e^{3x}}{(3)^2 + 6(3) + 9} = \frac{5 e^{3x}}{36}$ $\mathbf{y} = \mathbf{C} \cdot \mathbf{F} \cdot + \mathbf{P} \cdot \mathbf{I} \cdot$ $y = (c_1 + x c_2) e^{-3x} + \frac{5 e^{3x}}{2x}$

Example 6: Solve $\overline{\overline{y}} + 4 \overline{y} + 5 y = 2 e^x$

$$(D^{2} + 4D + 5)_{y} = 2e^{x}$$

$$m^{2} + 4m + 5 = 0$$

$$m = \frac{-4 \pm \sqrt{16 - 4 \times 1 \times 5}}{2 \times 1} = -2 \pm i$$

$$C.F. = e^{-2x} [A \cos x + B \sin x]$$

$$P.I. = \frac{1}{D^{2} + 4D + 5} \cdot 2e^{x} = \frac{1}{(1)^{2} + 4(1) + 5} \cdot 2e^{x} = \frac{2}{10}e^{x} = \frac{1}{5}e^{x}$$

$$y = e^{-2x} [A \cos x + B \sin x] + \frac{1}{5}e^{x}$$

College of Petroleum and Mining Engineering

Example 7: Solve $(D^2 - 1)_y = 5 e^x$ $m^2 - 1 = 0 \rightarrow m = \pm 1$ $C.F. = c_1 e^x + c_2 e^{-x}$ $P.I. = \frac{1}{D^2 - 1} \cdot 5e^x = \frac{1}{1 - 1} \cdot 5e^x = \frac{1}{2D} \cdot x \cdot 5e^x = \frac{5}{2} \cdot x \cdot e^x$ $y = c_1 e^x + c_2 e^{-x} + \frac{5}{2} \cdot x \cdot e^x$

Example 8: Solve
$$\frac{d^2y}{dx^2} - 6 \frac{dy}{dx} + 9 y = 6 e^{3x} + 7 e^{-2x} - \ln 2$$

$$(D^2 - 6 D + 9)_y = 6 e^{3x} + 7 e^{-2x} - \ln 2$$

$$m^2 - 6 m + 9 = 0$$

$$(m-3)(m-3) = 0 \quad \rightarrow \quad m_1 = m_2 = 3$$

$$C.F. = (c_1 + x c_2) e^{3x}$$

College of Petroleum and Mining Engineering

$$P.I. = \frac{1}{D^2 - 6D + 9} \ 6 \ e^{3x} + \frac{1}{D^2 - 6D + 9} \ 7 \ e^{-2x} - \frac{1}{D^2 - 6D + 9} \ ln \ 2$$

$$= x \frac{1}{2 - 6} \frac{6 e^{3x}}{6} + \frac{1}{4 + 12 + 9} 7 e^{-2x} - \ln 2 \frac{1}{0 - 0 + 9}$$

$$= x^{2} \cdot \frac{1}{2} \cdot 6 e^{3x} + \frac{7}{25} e^{-2x} - \ln 2 \cdot \frac{1}{9} = 3 x^{2} e^{3x} + \frac{7}{25} e^{-2x} - \frac{1}{9} \ln 2$$

$$y = (c_1 + x c_2) e^{3x} + 3 x^2 e^{3x} + \frac{7}{25} e^{-2x} - \frac{1}{9} \ln 2$$

