EXAMPLE 10.4

Determine the moment of inertia of the area shown in Fig. 10-8a about the x axis.

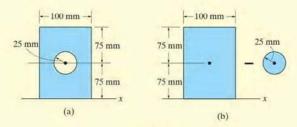


Fig. 10-8

SOLUTION

Composite Parts. The area can be obtained by *subtracting* the circle from the rectangle shown in Fig. 10–8b. The centroid of each area is located in the figure.

Parallel-Axis Theorem. The moments of inertia about the x axis are determined using the parallel-axis theorem and the data in the table on the inside back cover.

Circle

$$I_x = \overline{I}_{x'} + Ad_y^2$$

= $\frac{1}{4}\pi(25)^4 + \pi(25)^2(75)^2 = 11.4(10^6) \text{ mm}^4$

Rectangle

$$I_x = \overline{I}_{x'} + Ad_y^2$$

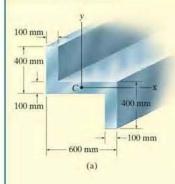
= $\frac{1}{12} (100)(150)^3 + (100)(150)(75)^2 = 112.5(10^6) \text{ mm}^4$

Summation. The moment of inertia for the area is therefore

$$I_x = -11.4(10^6) + 112.5(10^6)$$

= 101(10⁶) mm⁴ Ans.

EXAMPLE 10.5



Determine the moments of inertia for the cross-sectional area of the member shown in Fig. 10-9a about the x and y centroidal axes.

SOLUTION

Composite Parts. The cross section can be subdivided into the three rectangular areas A, B, and D shown in Fig. 10–9b. For the calculation, the centroid of each of these rectangles is located in the figure.

Parallel-Axis Theorem. From the table on the inside back cover, or Example 10.1, the moment of inertia of a rectangle about its centroidal axis is $\bar{I} = \frac{1}{12}bh^3$. Hence, using the parallel-axis theorem for rectangles A and D, the calculations are as follows:

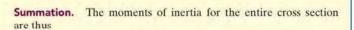
Rectangles A and D

$$I_x = \overline{I}_{x'} + Ad_y^2 = \frac{1}{12}(100)(300)^3 + (100)(300)(200)^2$$
$$= 1.425(10^9) \text{ mm}^4$$
$$I_y = \overline{I}_{y'} + Ad_x^2 = \frac{1}{12}(300)(100)^3 + (100)(300)(250)^2$$
$$= 1.90(10^9) \text{ mm}^4$$

Rectangle B

$$I_x = \frac{1}{12} (600)(100)^3 = 0.05(10^9) \text{ mm}^4$$

 $I_y = \frac{1}{12} (100)(600)^3 = 1.80(10^9) \text{ mm}^4$



$$I_x = 2[1.425(10^9)] + 0.05(10^9)$$

= 2.90(10⁹) mm⁴ Ans.
 $I_y = 2[1.90(10^9)] + 1.80(10^9)$
= 5.60(10⁹) mm⁴ Ans.

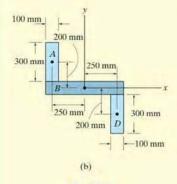
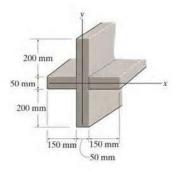


Fig. 10-9

FUNDAMENTAL PROBLEMS

F10–5. Determine the moment of inertia of the beam's cross-sectional area about the centroidal x and y axes.

F10-7. Determine the moment of inertia of the crosssectional area of the channel with respect to the y axis.



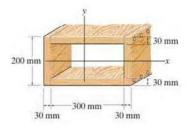
F10-5

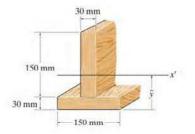


F10-7

F10–6. Determine the moment of inertia of the beam's cross-sectional area about the centroidal x and y axes.

F10-8. Determine the moment of inertia of the cross-sectional area of the T-beam with respect to the x' axis passing through the centroid of the cross section.

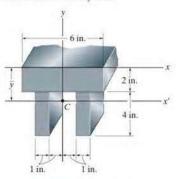




F10-8

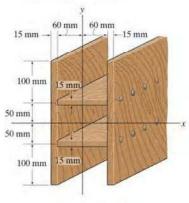
PROBLEMS

- **10–27.** Determine the distance \bar{y} to the centroid of the beam's cross-sectional area; then find the moment of inertia about the x' axis.
- *10-28. Determine the moment of inertia of the beam's cross-sectional area about the x axis.
- •10-29. Determine the moment of inertia of the beam's cross-sectional area about the y axis.



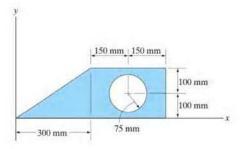
Probs. 10-27/28/29

- **10–30.** Determine the moment of inertia of the beam's cross-sectional area about the x axis.
- 10-31. Determine the moment of inertia of the beam's cross-sectional area about the y axis.



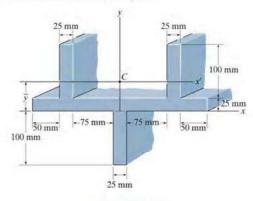
Probs. 10-30/31

- *10-32. Determine the moment of inertia of the composite area about the x axis.
- •10-33. Determine the moment of inertia of the composite area about the y axis.



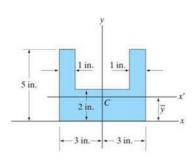
Probs. 10-32/33

- 10–34. Determine the distance \overline{y} to the centroid of the beam's cross-sectional area; then determine the moment of inertia about the x' axis.
- **10–35.** Determine the moment of inertia of the beam's cross-sectional area about the y axis.



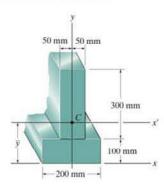
Probs. 10-34/35

- *10-36. Locate the centroid \overline{y} of the composite area, then determine the moment of inertia of this area about the centroidal x' axis.
- •10-37. Determine the moment of inertia of the composite area about the centroidal y axis.



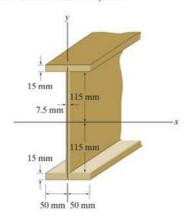
Probs. 10-36/37

- **10–38.** Determine the distance \bar{y} to the centroid of the beam's cross-sectional area; then find the moment of inertia about the x' axis.
- 10–39. Determine the moment of inertia of the beam's cross-sectional area about the x axis.
- *10-40. Determine the moment of inertia of the beam's cross-sectional area about the y axis.



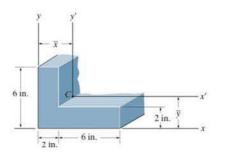
Probs. 10-38/39/40

- •10-41. Determine the moment of inertia of the beam's cross-sectional area about the x axis.
- 10-42. Determine the moment of inertia of the beam's cross-sectional area about the y axis.



Probs. 10-41/42

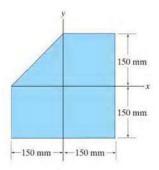
- **10–43.** Locate the centroid \overline{y} of the cross-sectional area for the angle. Then find the moment of inertia $I_{x'}$ about the x' centroidal axis.
- *10-44. Locate the centroid \bar{x} of the cross-sectional area for the angle. Then find the moment of inertia $I_{y'}$ about the y' centroidal axis.



Probs. 10-43/44

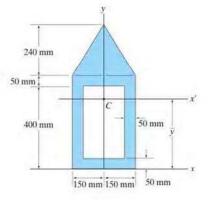
0

- •10–45. Determine the moment of inertia of the composite area about the x axis.
- 10–46. Determine the moment of inertia of the composite area about the y axis.



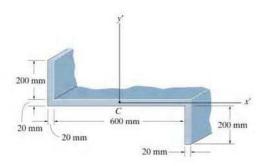
Probs. 10-45/46

- 10-47. Determine the moment of inertia of the composite area about the centroidal y axis.
- *10-48. Locate the centroid \bar{y} of the composite area, then determine the moment of inertia of this area about the x' axis.



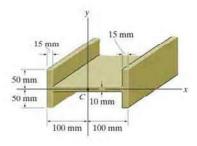
Probs. 10-47/48

- •10–49. Determine the moment of inertia $I_{x'}$ of the section. The origin of coordinates is at the centroid C.
- 10–50. Determine the moment of inertia I_{γ} of the section. The origin of coordinates is at the centroid C.



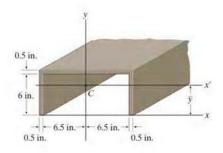
Probs. 10-49/50

- 10-51. Determine the beam's moment of inertia I_x about the centroidal x axis.
- *10-52. Determine the beam's moment of inertia I_y about the centroidal y axis.



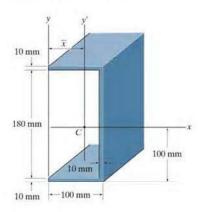
Probs. 10-51/52

- •10-53. Locate the centroid \bar{y} of the channel's cross-sectional area, then determine the moment of inertia of the area about the centroidal x' axis.
- 10-54. Determine the moment of inertia of the area of the channel about the y axis.



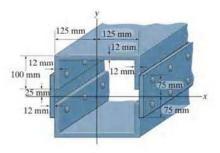
Probs. 10-53/54

- 10-55. Determine the moment of inertia of the cross-sectional area about the x axis.
- *10-56. Locate the centroid \bar{x} of the beam's cross-sectional area, and then determine the moment of inertia of the area about the centroidal y' axis.



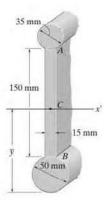
Probs. 10-55/56

- •10-57. Determine the moment of inertia of the beam's cross-sectional area about the x axis.
- **10–58.** Determine the moment of inertia of the beam's cross-sectional area about the y axis.



Probs. 10-57/58

10–59. Determine the moment of inertia of the beam's cross-sectional area with respect to the x' axis passing through the centroid C of the cross section. $\overline{y} = 104.3$ mm.



Prob. 10-59

0

This document was cr The unregistered vers	reated with Win2PDF a ion of Win2PDF is for e	vailable at http://www.daevaluation or non-comm	aneprairie.com. nercial use only.