Inorganic Chemical Industries: Extractive Metallurgy

What is Extractive Metallurgy?

- Native Metals (Can occur as Pure Metals)
 - Silver-(Ag), Gold-(Au), Bismuth-(Bi), copper-(Cu), iridium-(Ir), Osmium-(Os), Paladium-(Pd), and platinum-(Pt)
- Carbonate Minerals
 - CaCO₃ (calcite), CaCO₃ MgCO₃ (dolomite), FeCO₃ (siderite), BaCO₃ (witherite)
- Halide Minerals
 - CaF, (fluorite), NaCl (halite)
- Oxide Minerals
 - Al₂O₃●2H₂O (bauxite), Cu₂O (cuprite), Fe₂O₃ (haematite), Fe₃O₄ (magnetite)
- Sulfide Minerals (Most abundant minerals on the earth's crust)
 - Cu₂S (chalcocite), CuFeS₂ (chalcopyrite), NiS (millerite), Fe₉Ni₉S₁₆ (pentlandite), FeS₂ (pyrite)

Iron ore	Aluminium ore (bauxite)
Hematite (Fe ₂ O ₃)	$Al_2O_3.xH_2O(x=1,3)$
SiO ₂ , Al ₂ O ₃ , P, S bearing minerals	Fe ₂ O ₃ , FeOOH, SiO ₂ , TiO ₂ , FeTiO ₃ (gangue
Copper Ore	
Chalcopyrite (Cu	FeS ₂)

Sulphides of metal such Fe, Pb, Zn and silicates

Lecture 3

: A copper ore contains 1.5% Cu. After ore dressing, 4.5 kg of concentrate with 30% Cu is produced from 100 kg of ore. Calculate (a) the concentration ratio (b) the recovery, and (c) the wt. and Cu % content of the discarded gangue (tailings).

Solution:

- (a) 4.5 kg of concentrate is obtained from 100 kg of ore. Hence **Concentration ratio** = 100 kg/4.5 kg = 22.2
- (b) The ore contains a total of $0.015 \times 100 = 1.5 \text{ kg Cu}$. The concentrate contains $0.30 \times 4.5 = 1.35 \text{ kg}$. Therefore, the **recovery** = $1.35/1.5 \times 100 = 90\%$.
- (c) The weight of the tailing (gangue) = 100 4.5 = 95.5 kg. The Cu content in kg = 1.5 1.35 = 0.15 kg. This should give a Cu percentage = $0.15/95.5 \times 100 = 0.157\%$