
CHAPTER I CRYSTAL STRUCTURES AND
INTERATOMIC FORCES

l.l Introduction
1.2 The crystalline state
1.3 Basic definitions
1.4 The fourteen Bravais lattices and the seven crystal

systems
1.5 Elements of symmetry
1.6 Nomenclature of crystal directions and crystal planes;

Miller indices
1.7 Examples of simple crystal structures
1.8 Amorphous solids and liquids
1.9 Interatomic forces

l.l0 Types of bonding

Good order is the foundation of all good things.
Edmund Burke



I.1 INTRODUCTION

To the naked eye, a solid appears as a continuoas rigid body. Experiments have
proved, however, that all solids are composed of discrete basic units-atoms.
These atoms are not distributed randomly, but are arranged in a highly ordered
manner relative to each other. Such a group of ordered atoms is referred to as a
crystal. There are several types ofcrystalline structure, depending on the geometry
of the atomic arrangement; a knowledge of these is important in solid-state physics
because these structures usually influence the physical properties of solids. This
statement will be amply illustrated in the following chapters.

In the first part of this chapter, we shall expand on the meaning of the
crystalline structure, and introduce some of the basic mathematical definitions
employed in describing it. We shall then enumerate the various structures
possible, and introduce the concept of Miller indices. We shall also present a
few examples.

The atoms in some solids appear to be randomly arranged, i.e., the
crystalline structure is absent. Such noncrystalline-or amorphous-solids will
also be described briefly.

The chapter closes with an account of the interatomic forces that cause
bonding in crystals.

Chapter 2 will discuss the experimental determination of crystal structure
by x-rays.

1.2 THE CRYSTALLINE STATE

A solid is said to be a crystal if the atoms are arranged in such a way that their
positions are exactly periodic. Figure 1.1 illustrates the concept. The distance
between any two nearest neighbors along the x direction is a, and along the
y direction is D (the x and / axes are not necessarily orthogonal). A perfect
crystal maintains this periodicity (or repetitivity) in both the x and y directions
from -oo to oo. It follows from the periodicity that the atoms A, B, C, etc., are
equiualent.In other words, to an observer located at any of these atomic sites,
the crystal appears exactly the same.

ABU

Fig. 1.1 A crystalline solid. All the atoms are aranged periodically.

The same idea is often expressed by saying that a crystal possesses a
translational symmetry, meaning that if the crystal is translated by any yector
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joining two atoms, say R in Fig. 1.1, the crystal appears exactly the same as it did

before the translation. In other words, the crystal remains inrtariant under any

such translation. The consequences of this translational symmetry or invariance

are many, and a great portion of this book will be concerned with them.

Strictly speaking, one cannot prepare a perfect crystal. For example, even

the surface of a crystal is a kind of imperfectior because the periodicity is

interrupted there. The atoms near the surface see an environment different from

the environment seen by atoms deep within the crystal, and as a result behave

differently. Another example concerns the thermal vibrations of the atoms around

their equilibrium positions for any temperature T > 0"K. Because of these

vibrations, the crystal is always distorted, to a lesser or greater degree, depending

on T. As a third example, note that an actual crystal always contains some

foreign atoms, i.e., impurities. Even with the best crystal-growing techniques,

some impurities (= l012cm-3) remain, which spoils the perfect crystal structure.

Notwithstanding these difficulties, one can prepare crystals such that the

effects of imperfections on the phenomena being studied are extremely minor.

For example, one can isolate a sodium crystal so large (= I cm3) that the ratio

of surface atoms to all atoms is small, and the crystal is pure enough so that

impurities are negligible. At temperatures that are low enough, lattice vibrations

are weak, so weak that the effects of all these imperfections on, say, the optical

properties of the sodium sample are negligible. It is in this spirit that we speak

of a "perfect" crystal.
Imperfections themselves are often the main object of interest. Thus

thermal vibrations of the atoms are the main source of electrical resistivity in

metals. When this is the case, one does not abandon the crystal concept entirely,

but treats the imperfection(s) of interest as a small perturbation in the crystalline

structure.
Many of the most interesting phenomena in solids are associated with

imperfections. That is why we shall discuss them at some length in various

sections of this book.

1.3 BASIC DEFINITIONS

In order to talk precisely about crystal structures, we must introduce here a few

of the basic definitions which serve as a kind of crystallographic language. These

definitions are such that they apply to one-, two-, or three-dimensional crystals.

Although most of our illustrative examples will be two-dimensional, the results

will be restated later for the 3-D case.

The cr.',stal lattice

In crys-allography, only the geometrical properties of the crystal are of interest,

rather than those arising from the particular atoms constituting the crystal.

Therefcrre one replaces each atom by a geometrical point located at the
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equilibrium position of that atom. The result is a pattern of points having the
same geometrical properties as the crystal, but which is devoi&of any physical
contents. This geometrical pattern is the crystal lattice, or simply the lattice; all
the atomic sites have been replaced by lattice sites.

There are two classes of lattices: the Brauais and the non-Brauais. In a Bravais
Iattice, all lattice points are equivalent, and hence by necessity all atoms in the
crystal are of the same kind. On the other hand, in a non-Bravais lattice, some
of the lattice points are nonequivalent. Figure 1.2 shows this clearly. Here the
lattice sites A, B, C are equivalent to each other, and so are the sites A', B', C'
among themselves, but the two sites A and z4' are not equivalent to each other,
as can be seen by the fact that the lattice is not invariant under a translation by
AA'. This is so whether the atoms A and A'are of the same kind (for example, two
H atoms) or of different kinds (for example, H and Cl atoms). A non-Bravais
lattice is sometimes referred to as a lattice with a basis, the basis referring to the
set of atoms stationed near each site of a Bravais lattice. Thus, in Fig. 1.2, the
basis is the two atoms .,4 and A', or any other equivalent set.

B

Fig. 1.2 A non-Bravais lattice.

The non-Bravais lattice may be regarded as a combination of two or more
interpenetrating Bravais lattices with fixed orientations relative to each other.
Thus the points A, B, C, etc., form one Bravais lattice, while the points A,, 8,, C,,
etc., form another.

Basis vectors

Consider the lattice shown in Fig. 1.3. Let us choose the origin of coordinates
at a certain lattice point, say A. Now the position vector of any lattice point
can be written as

Rn:n1a*n2b, (l.l)

where a, b are the two vectors shown, and (rr, nr) is a pair of integers whose
values depend on the lattice point. Thus for the point D,(nr,nr): (0,2); for
B,(nr,nr) : (1,0), and for F,(nr,n2) : (0, - l).

The two vectors a and b (which must be noncolinear) form a set of Dasls
Dectors for the lattice, in terms of which the positions of all lattice points can be
conveniently expressed by the use of (1.1). The set of all vectors expressed by
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this eQuation is called the lattice uectors. We may also say that the lattice is

invariant under the group of all the translations expressed by (l.l). This is often
rephrased by saying that the lattice has a translational symmetry under all

displacements specified by the lattice vectors R,.

Fig. 1.3 Vectors a and b are basis vectors of the lattice. Vectors a and b' form another
set of basis vectors. Shaded and hatched areas are unit cells corresponding to first and
second set of basis vectors, respectively.

The choice of basis vectors is not unique. Thus one could equally well take

the vectors a and b'(: a + b) as a basis (Fig. 1.3). Other possibilities are algo

evident. The choice is usually dictated by convenience, but for all the lattices we

shall meet in this text, such a choice has already been made, and is now a matter

of convention.

The unit cell

The area of the parallelogram whose sides are the basis vectors a and b is called

a unit cell of the lattice (Fig. 1.3), in that, if such a cell is translated by all the

lattice vectors of (1.1), the area of the whole lattice is covered once and only

once. The unit cell is usually the smalle,s, area which produces this coverage.

Therefore the lattice may be viewed as composed of a large number of equivalent

unit cells placed side by side, like a mosaic pattern.

The choice of a unit cell for one and the same lattice is not unique, for the

same reason that the choice of basis vectors is not unique. Thus the parallelogram

formed by a and b'in Fig. 1.3 is also an acceptable unit cell; once again the

choice is dictated by convenience.
The following remarks may be helpful.

i) All unit cells have the same area. Thus the cell formed by a, b has the area

S : la x bl, while that formed by L, b' has the area 5' : la x b'l
: la x (a + b)l : la x bl : S,whereweusedtheresulta X 8:0' Therefore

the area of the unit cell is unique, even though the particular shape is not.

ii) If you are interested in how many lattice points belong to a unit cell, refer

to Fig. 1.3. The unit cell formed by a x b has four points at its corners, but
each of these points is shared by four adjacent cells. Hence each unit cell

has only one lattice point.
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Primitive versus nonprimitive cells

The unit cell discussed above is called a primitiue cell. It is sometimes more
convenient, however, to deal with a unit cell which is larger, and which exhibits
the symmetry of the lattice more clearly. The idea is illustrated by the Bravais
lattice in Fig. 1.4. Clearly, the vectors at, az can be chosen as a basis set, in which
case the unit cell is the parallelogram S,. However, the lattice may also be
regarded as a set of adjacent rectangles, where we take the vectors a and b as basis
vectors. The unit cell is then the area S, formed by these vectors. It has one
lattice point at its center, in addition to the points at the corner. This cell is a
nonprimitiue unit cell.

Fig. 1.4 Area S, is a primitive unit cell; area S, is a nonprimitive unit cell.

The reason for the choice of the nonprimitive cell S, is that it shows the
rectangular symmetry most clearly. Although this symmetry is also present in
the primitive cell S, (as it must be, since both refer to the same lattice), the
choice of the cell somehow obscures this fact.

Note the following points.

i) The area of the nonprimitive cell is an integral multiple of the primitive
cell. In Fig. 1.4, the multiplication factor is two.

ii) No connection should be drawn between nonprimitive cells and non-Bravais
lattices. The former refers to the particular (and somewhat arbitrary)
choice of basis vectors in a Bravais lattice, while the latter refers to the
physical fact of nonequivalent sites.

Three dimensions

All the previous statements can be extended to three dimensions in a straight-
forward manner. when we do so, the lattice vectors become three-dimensional,
and are expressed by

Rr:nra*n2b*nrc, (1.2)

where a, b, and c are three noncoplanar vectors joining the lattice point at the
origin to its near neighbors (Fig. 1.5); and nr, n2, n3 are a triplet of integers
0, +1, ]-2, etc., whose values depend on the particular lattice point.

The vector triplet a, b, and c.is the basis vector, and the parallelepipedwhose
sides are these vectors is a unit cell. Here again the choice of primitive cell is not

1.3
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unique, although all primitive cells have equal volumes. Also, it is sometimes

convenient to deal with nonprimitive cells, ones which have additional points
either inside the cell or on its surface. Finally, non-Bravais lattices in three

dimensions are possible, and are made up of two or more interpenetrating
Bravais lattices.

Fig. 1.5 A three-dimensional lattice. Vectors a, b, c are basis vectors.

I.4 THE FOURTEEN BRAVAIS
LATTICES AND THE SEVEN CRYSTAL SYSTEMS

There are only l4 different Bravais lattices. This reduction to what is a relatively
small number is a consequence of the translational-symmetry condition demanded

of a lattice. To appreciate how this comes about, consider the two-dimensional
case, in which the reader can readily convince himself, for example, that it is not
possible to construct a lattice whose unit cell is a regular pentagon. A regular
pentagon can be drawn as an isolated figure, but one cannot place many such
pentagons side by side so that they fit tightly and cover the whole area. In fact,
it can be demonstrated that the requirernent of translational symmetry in two
dimensions restricts the number of possible lattices to only five (see the problem

section at the end of this chapter).
In three dimensions, as we said before, the number of Bravais lattices is 14.

The number of non-Bravais lattices is much larger (230), but it also is finite.

Fig. 1.6 Unit cell specified by the lengths of basis vectors a, b, and c; also by the angles
between the vectors.
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1.4 The Fourteen Bravais Lattices and the Seven Crystal Systems

The 14 lattices (or crystal classes) are grouped into seven crystal systems,

each specified by the shape and symmetry of the unit cell. These systems are the
triclinic, monoclinic, orthorhombic, tetragonal, cubic, hexagonal, and the
trigonal (or rhombohedral). In every case the cell is a parallelepiped whose sides

are the bases a, b, c. The opposite angles are called a, B, and 7, as shown in Fig. 1.6.

Figure 1.7 shows the 14 lattices, and Table l.l enumerates the systems, lattices,

and the appropriate values for a, b, c, and a, B, and y. Both Fig. 1.7 and Table l.l
should be studied carefully, and their contents mastered. The column referring
to symmetry elements in the table will be discussed shortly.

Table 1.1

The Seven Crystal Systems Divided into Fourteen Bravais Lattices

System
Characteristic

Bravais lattice Unit cell characteristics symmetry elements

Triclinic

Monoclinic

Orthorhombic

Tetragonal

Cubic

Trigonal
(rhombohedral)

Hexagonal

Simple

Simple
Base-centered

Simple
Base-centered
Body-centered
Face-centered

Simple
Body-centered

Simple
Body-centered
Face-centered

Simple

Simple

a* b* c
a* 0*y+ 90"

a*b*c
a: f:90'+ y

a* b* c
o: fr:!:90"

a: b* c
q,:0:1r:90"

a: b: c
a: 0: 1l: 90"

a: b: c
a:9:y+90"

a: b* c
a: fr:9o"

T : 120"

None

One 2-fold rotation axis

Three mutually orthogonal
2-fold rotation axes

One 4-fold rotation
axis

Four 3-fold rotation axes

(along cube diagonal)

One 3-fold rotation
axis

One 3-fold rotation
axis

Note that a simple lattice has points only at the corners, a body-centered
lattice has one additional point at the center of the cell, and a face-centered
lattice has six additional points, one on each face. Let us again point out that
in all the nonsimple lattices the unit cells are nonprimitive.
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The 14 lattices enumerated in Table l.l exhaust all possible Bravais lattices,
although a complete mathematical proof of this statement is quite lengthy. It
may be thought, for example, that a base-centered tetragonal should also be
included in the table, but it can readily be seen that such a lattice reduces to the
simple tetragonal by a new choice of a unit cell (Fig. 1.8). other cases
can be treated similarly.

Fig. I.8 A base-centered tetragonal is identical to a simple tetragonal of a different unit
cell. Shaded areas are the basis oi the simple tetragonal cell.

The system we shall encounter most frequently in this text is the cubic one,
particularly the face-centered cubic (fcc) and the body-centered cubic (bcc). The
hexagonal system will also appear from time to time.

1.5 ELEMENTS OF SYMMETRY

Each of the unit cells of the 14 Bravais lattices has one or more types of
symmetry properties, such as inversion, reflection, or rotation. Let us consider
the meanings of these terms.

Inuersion center. A cell has an inversion center if there is a point at which the
cell remains invariant when the mathematical transformation r + -r is
performed on it. All Bravais lattices are inversion symmetric, a fact which can be
seen either by referring to Fig. 1.7 or by noting that, with every lattice vector
R, : n rr * nrb * nrc, there is associated an inverse lattice vector
R, = -R, : - nrt - nzb - n3c. A non-Bravais lattice may or may not have
an inversion center, depending on the symmetry of the basis.

Refiection plane. A plane in a cell such that, when a mirror reflection in this
plane is performed, the cell remains invariant. Referring to Fig. 1.7, we see that
the triclinic has no reflection plane, the monoclinic has one plane midway
between and parallel to the bases, and so forth. The cubic cell has nine

1.5
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reflection planes: three parallel to the faces, and six others, each of which passes

through two opposite edges.

Rotation axu. This is an axis such that, if the cell is rotated around it through
some angle, the cell remains invariant. The axis is called r-fold if the angle of
rotation is 2nln. When we look at Fig. 1.7 again, we see that the triclinic has

no axis of rotation (save the trivial l-fold axis), and the monoclinic has a 2-fold
axis (0 : 2nl2: z) normal to the base. The cubic unit cell has three 4-fold axes

normal to the faces, and four 3-fold axes, each passing through two opposite

corners.

We have discussed the simplest symmetry elements, the ones which we shall

encounter most frequently. More complicated elements also exist, such as

rotation-reflection axes, glide planes, etc., but we shall not pursue these at this
stage, as they will not be needed in this text.

You may have noticed that the symmetry elements may not all be independent.
As a simple example, one can show that an inversion center plus a reflection
plane imply the existence of a 2-fold axis passing through the center and normal
to the plane. Many similar interesting theorems can be proved, but we shall

not do so here.

Point groups, space groups, and non-Bravais lattices

A non-Bravais lattice is one in which, with each lattice site, there is associated

a cluster of atoms called the basls. Therefore one describes the symmetry of such

a lattice by specifying the symmetry of the basis in addition to the symmetry
of the Bravais lattice on which this basis is superimposed.

The symmetry of the basis, called point-group symmetry, refers to all possible

rotations (including inversion and reflection) which leave the basis invariant,
keeping in mind that in all these operations one point in the basis must remain
fixed (which is the reason for referring to this as point-group symmetry). A close

examination of the problem reveals that only 32 different point groups can

exist which are consistent with the requirements of translational symmetry for
the lattice as a whole. One can appreciate the limitation on the number of point
groups by the following physical argument: The shape or structure of the basis

cannot be arbitrarily complex, e.g., like the shape of a potato. This would be

incompatible with the symmetry of the interatomic forces operating between the
basis and other bases on nearby lattice sites. After all, it is these forces which
determine the crystal structure in the first place. Thus the rotation symmetries
possible for the basis must be essentially the same as the rotational sym-
metries of the unit cells of the 14 Bravais lattices which were enumerated in
Section 1.4.

When we combine the rotation symmetries of the point groups with the

translational symmetries, we obtain a space-group symmetry. In this manner
one generates a large number of space groups, 72 to be exact. It appears that there
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are also in addition some space groups which cannot be composed of simple
point groups plus translation groups; such groups involve symmetry elements
such as screw axes, glide planes, etc. When one adds these to the 72 space groups,
one obtains 230 different space groups in all (Buerger, 1963). Figure 1.9 shows a
tetragonal Drn space group. However, further discussion of these groups lies
outside the scope of this book.

Fig. 1.9 (a) A basis which has a Dropoint group symmetry (two horizontal 2-fold axes
plus two vertical reflection planes). (b) A simple tetragonal lattice with a basis having
the Dro point group.

1.6 NOMENCLATURE OF CRYSTAL
DIRECTIONS AND CRYSTAL PLANES; MILLER INDICES

In describing physical phenomena in crystals, we must often specify certain
directions or crystal planes, because a crystal is usually anisotropic. Certain
standard rules have evolved which are used in these specifications.

Crystal directions

Considerthestraightlinepassingthroughthelatticepoints,,4, B,C,etc.,inFig. 1.10.
To specify its direction, we proceed as follows: we choose one lattice point on
the line as an origin, say the point .,4. Then we choose the lattice vector joining ,,4.

to any point on the line, say point B. This vector can be written as

R:nra*nrb+nrc.
The direction is now specified by the integral triplet fnrnrnr). If the numbers
nl,nbn3 have a common factor, this factor is removed, i.e., the tripletlnrn2nsf
is the smallest integer of the same relative ratios. Thus in Fig. l.l0 the direction
shown is the I I l] direction.

1.6

T
,b

(a)



1.6 Nomenclature of Crystal Directions and Crystal Planes; Miller Indices

Note that, when we speak of a direction, we do not mean one particular
straight line, but a whole set of parallel straight lines (Fig. 1.10) which are
completely equivalent by virtue of the translational symmetry.

Fig. 1.10 The [ll] direction in a cubic lattice.

When the unit cell has some rotational symmetry, then there may exist several
nonparallel directions which are equivalent by virtue of this symmetry. Thus in a

cubic crystal the directions [00], [010], and [001] are equivalent. When this is
the case, one may indicate collectively all the directions equivalent to the

lnrn2n3f direction by (nrnrn.r), using angular brackets. Thus in a cubic system
the symbol (100) indicates all six directions: U001, [010], [001], [100], [010],
and [001]. The negative sign over a number indicates a negative value. Similarly
the symbol (l1l) refers to all the body diagonals of the cube. Of course the
directions (100) and (1ll) are not equivalent.

Note that a direction with large indices, e.g., [57], has fewer atoms per unit
length than one with a smaller set of indices, such as [ll].
Crystal planes and Miller indices

The orientation of a plane in a lattice is specified by giving its Miller indices,
which are defined as follows: To determine the indices for the plane P in
Fig. I .1 I (a), we find its intercepts with the axes along the basis vectors a, b, and c.

Let these intercepts be x,y, and z. Usually x is a fractional multiple of a, y L
fractional multiple of D, and so forth. We form the fractional triplet

(+'
invert it to obtain the triplet

(:

+,+),

+,+),
and then reduce this set to a similar one having the smallest integers by
multiplying by a common factor. This last set is called the Miller indices of the
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plane and is indicated by (hkl). Let us

intercepts are x : 2a, y : |b, and z : lc.

1.6

take an example: Suppose that the
We first form the set

: (2, t, r),

then invert it (1,3, l), and finally multiply by the common denominator, which
is 6, to obtain the Miller indices (346) (pronounced as "three four six").

(l l0) planes

(120) planes

Fig. 1.11 (a) The (122) plane. (b) Some equivalent, parallel planes represented by the
Miller indices. (c) Some of the planes in a cubic crystal. (d) Finding the interplanar
spacing.

We note that the Miller indices are so defined that all equivalent, parallel
planes are represented by the same set of indices. Thus the planes whose intercepts
are x,y,z;2x,2y,22; -3x, -3y, -32, etc., are all represented by the same set
of Miller indices. we can prove this by following the above procedure for
determining the indices. Therefore a set of Miller indices specifies not just one
plane, but an infinite set of equivalent planes, as indicated in Fig. l.ll(b). There

l+,+,+l

(d)(c)

z (lll)
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is a good reason for using such notation, as we shall see when we study x-ray
diffraction from crystal lattices. A diffracted beam is the result of scattering from
large numbers of equivalent parallel planes, which act collectively to diflract the
beam. Figure l.l1(c) shows several important planes in a cubic crystal.

[The reason for inverting the intercepts in defining the Miller indices is more
subtle, and has to do with the fact that the most concise, and mathematically
convenient, method of representing lattice planes is by using the so-called
reciprocal lattice. We shall discuss this in Chapter 2, where we shall clarify the
connection.]

Sometimes, when the unit cell has rotational symmetry, several nonparallel
planes may be equivalent by virtue of this symmetry, in which case it is

convenient to lump all these planes in the same Miller indices, but with curly
brackets. Thus the indices {ftkl} represent all the planes equivalent to the
plane (hkl) through rotational symmetry. As an example, in the cubic system

the indices {100} refer to the six planes (100), (010). (001). (T00), (0I0), and
(oo1).

Spacing between planes of the same l\{iller indices

In connection with x-ray diffraction from a crystal (see Chapter 2), one needs to
know the interplanar distance between planes labeled by the same Miller indices,
say (hkl). Let us call this distance dr1,. The actual formula depends on the
crystal structure, and we confine ourselves to the case in which the axes are

orthogonal. We can calculate this by referring to Fig. l.ll(d), visualizing
another plane parallel to the one shown and passing through the origin. The
distance between these planes, d111, is simply the length of the normal line drawn
from the origin to the plane shown. Suppose that the angles which the normal
line makes with the axes are a, fi,and y, and that the intercepts of the plane (ftkl)
with the axes are x, y, and z. Then it is evident from the figure that

d1,y1 : xcoSd, YcosB: zcosY'

But there is a relation between the directional cosines cos 4, cos p, and cos 7.
That is, cos2a+cos2B+cos27:1. If we solve for cosd, cosB, and cosT
from the previous equation, substitute into the one immediately above, and
solve for drorin terms of x, y, and z, we find that

dnu:
* ))''

(1.3)

Now x, y, and z are related to the Miller indices h, k, and /. If one reviews the
process of defining these indices, one readily obtains the relations

h:n!, k:n!, l:nL,

lt I

\;*F

(1.4)
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common factor used to reduce the indices
Solving for x, y, and z from (1.4) and

where r is the
integers possible.
(1.3), one obtains

1.7

to the smallest
substituting into

( t.s))-nuhkt - l h2 k2 l\ u2'

lt***a)
which is the req.uired formula. Thus the interplanar distance of the (lll) planes
in a simple cubic crystal is d : nalt/3, where a is the cubic edge.

1.7 EXAMPLES OF SIMPLE CRYSTAL STRUCTURES

In order to gain an appreciation of actual crystals, let us familiarize ourselves
with a few of the better-known structures, and with the sizes of their unit cells.
The cumulative knowledge obtained over the years on the structures of various
crystals is truly enormous, but here we shall touch on only the few simple and
better-known examples which we shall meet repeatedly in this book.

Face-centered and body-centered cubic

Many of the common metals crystallize in one or the other of these two lattices.
Thus the most familar metals-Ag, AI, Au, Cu, Co(B), Fe(7), Ni(B), Pb, and

Pt-all crystallize in the fcc structure (Fig. l.l2a). The unit cell contains four
atoms: one from the eight corner atoms which it shares with other cells, and three
from the six surface atoms it shares with other cells.

Fig. 1.12 (a) An fcc unit cell. (b) A bcc unit cell.

Some of the metals which crystallize in the bcc structure are: Fe(c), and the
alkalis Li, Na, K, Rb, and Cs (Fig. Ll2b). Here the unit cell has two atoms.
One is from the shared corner atoms and the other is the central atom, which
is not shared.

The sodium chloride structure

This is the structure assumed by ordinary table salt, NaCI. The structure is
cubic, and is such that, along the three principal directions (axes), there is an
alternation of Na and CI atoms, as shown in Fig. l.l3(a). In three dimensions the
unit cell appears as shown in Fig. l.l3(b). That is, the cell is a face-centered cubic
one. The positions of the four Na atoms are 000, ++0, +O+, O++, while those of
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Fig. 1.13 (a) A two-dimensional view of the NaCl structure. (b) The NaCl structure
in three dimensions. The Na atoms form an fcc structure which is interlocked with
another fcc structure composed of the Cl atoms. (c) The NaCl structure drawn close
to scale, with the ions nearly touching. The sodium atoms, small solid spheres, reside
in the octahedral voids between the chlorine atoms.

the four Cl atoms are located at #,00+, +00, OIO (the numbers refer to coordinates
given in fractions ofthe cubic edge).

We summarize this by saying that NaCl is a non-Bravais structure composed
of two interpenetrating fcc sublattices; one made up of Na atoms and the other
of Cl atoms, and the two sublattices are displaced relative to each other by ]a.

Many ionic crystals such as KCI and PbS also have this structure. For a
more complete list, including the lattice constants, refer to Table 1.2.

The cesium chloride structure

This again is a cubic crystal, but here the cesium and chlorine atoms alternate
on lines directed along the four diagonals of the cube. Thus the unit cell is a
bcc one, as shown in Fig. 1.14. There are, per unit cell, one Cs atom located
at the point 000 and one Cl atom located at +++. Therefore this is a non-Bravais
lattice composed of two sc (simple cubic) lattices which are displaced relative
to each other along the diagonal by an amount equal to one-half the diagonal.
For a list of certain ionic compounds crystallizing in this structure, see Table 1.2.

(a)
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Fig. 1.14 Structure of cesium chloride. The Cs atoms form an sc lattice interlocked with
another sc lattice formed by the Cl ions.

Table 1.2

Structures and Cell Dimensions of Some Elements and Compounds

Element or
compound Structure a,A c,A

AI
Be

Ca
C
Cr
Co
Cu
Ge
Au
Fe
Pt
Si
Ag
Na
Zn
LiH
NaCl
AgBr
MnO
CsCl
TlBr
CuZn (p-brass)

CuF
AgI
ZnS
CdS

fcc
hcp
fcc
Diamond
bcc
hcp
fcc
Diamond
fcc
bcc
fcc
Diamond
fcc
bcc
hcp
Sodium chloride
Sodium chloride
Sodium chloride
Sodium chloride
Cesium chloride
Cesium chloride
Cesium chloride
Zincblende
Zincblende
Zincblende
Zincblende

4.04
2.27 3.59
5.56
3.56

2.88
2.51 4.07
3.61

5.65
4.07

2.86

3.92

5.43
4.08

4.28
2.66 4.94
4.08

5.63
5.77
4.43

4.1 I

3.97
2.94

4.26
6.47

5.4r
5.82
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The diamond structure

The unit cell for this structure is an fcc cell with a basis, where the basis is made

up of two carbon atoms associated with each lattice site. The positions of the

two basis atoms are 000 and +++ A two-dimensional view of the cell is shown in
Fig. l.l5(a), and the whole cell in three dimensions is shown in Fig. l.l5(b).
There are eight atoms per unit cell. 'l

I
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Fig. 1.15 The diamond structure. (a) Projection of the atoms on the base of the cube.
One dark circle plus an adjacent white circle form a basis for the structure. (b) A
simplified three-dimensional view. Only one of the 4 white spheres is shown, together
with the tetrahedral coordination.

-._tt,t,0,rF
Note that tlie present structure is such that each atom finds itself surrounded

by four nearest atoms, which form a regular tetrahedron whose center is the

atom in question. Such a configuration is common in semiconductors, and is

referred to as a tetrahedral bond. This structure occurs in many semiconductors,
for example, Ge, Si, etc. Table 1.2 contains a few examples, with appropriate
numerical values.

The zinc sulfidei (ZnS) structure

This structure, named after the compound ZnS, is closely related to the diamond
structure discussed above, the only difference being that the two atoms forming
the basis are of different kinds, e.g., Zn and S atoms. Here each unit cell contains

four ZnS molecules, and each Zn (or S) atom finds itself at the center of a

tetrahedron formed by atoms of the opposite kind.
Many of the compound semiconductors-such as InSb, GaSb, GaAs, etc.-do

crystallize in this structure (Table 1.2).

The hexagonal close-packed structure

This is another structure that is common, particularly in metals. Figure l.16
demonstrates this structure. In addition to the two layers of atoms which form

a

(b)(a)

tl (n
I

),'1 .
'." a

t Also known as the zincblerde structure.
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the base and upper face of the hexagon, there is also an intervening layer of
atoms arranged such that each of these atoms rests over a depression between
three atoms in the base. The atoms in a hexagonal close-packed (hcp) structure
are thus packed tightly together, which explains why this structure is so common
in metals, where the atoms tend to assemble very close to each other. Examples
of hcp crystals are Be, Mg, Ca, Zn, and Hg-all divalent metals.

1.8

I

(a)

Fig. 1.16 (a) Hexagonal close-packed structure.
touching, as in the actual situation.

1.8 AMORPHOUS SOLIDS AND LIQUIDS

(b)

(b) The hcp when the atoms are nearly

Amorphous solids have received increasing attention in recent years, particularly
as a result of the discovery of the electrical properties of amorphous semiconductors
(Section 13.2). It behooves us, therefore, to glance at least briefly at the
structure of these solids.

The most familiar example of an amorphous solid is ordinary window glass.

Chemically the substance is a silicon oxide. Structurally it has no crystal
structure at all ; the silicon and oxygen are simply distributed in what appears to
be a random fashion.

Another familiar case of an amorphous structure is that of a liquid. Here
again the system has no crystal structure, and the atoms appear to have a random
distribution. As time passes, the atoms in the liquid drift from one region to
another, but their random distribution persists.

This suggests a strong similarity between liquids and amorphous solids,
even though the atoms in the latter are fixed in space and do not drift as they do
in liquids. This is why amorphous solids, such as glass, are sometimes referred to
as supercooled liquids. In fact, if one could take an instantaneous picture of
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the atoms in a liquid, the result would be the same as, and indistinguishable
from, that of an amorphous solid. The same mathematical formalism may
therefore be employed to describe both types of substance.

Even a liquid does actually have a certain kind of "order" or structure, even

though this structure is not crystalline. Consider the case of mercury, for
instance. This metal crystallizes in the hcp structure. When the substance is in
the solid state, below the melting point, all the atoms are in their regular positions,
and each atom is surrounded by a certain number of nearest neighbors, next-
nearest neighbors, etc., all of which are positioned at exactly defined distances

from the central atom. When the metal is heated and melts, the atoms no longer
hold to their regular positions, and the crystal structure as such is destroyed.

Yet as we view the system from the vantage point of the original atom, we discover
that insofar as the number of nearest and next-nearest neighbors and their
distances is concerned, the situation in the liquid state remains substantially the

same as it was in the solid state. Of course, when we speak of the "number of
nearest neighbors" in the liquid state, we actually mean the average number,
since the actual number is constantly changing as a result of the motion of the
atoms.

It is apparent, therefore, that a liquid has a structure, and that this structure
is quite evident from x-ray diffraction pictures of liquids. The important point,
however, is that the order in a liquid is restricted only to the few shells of
neighbors surrounding the central atom. As one goes to farther and farther
atoms, their distribution relative to the central atom becomes entirely random.
This is why we say that a liquid has only a short-range order. Long-range order is
absent. Contrast this with the case of a crystal. In a crystal, the positions of all
atoms, even the farthest ones, are exactly known once the position of the central
atom is given. A crystal therefore has both short-range and long-range orders,

i.e., perfect order.
It is not surprising that some order should exist, even in the liquid state.

After all, the interatomic forces responsible for the crystallinity of a solid remain
operative even after the solid melts and becomes a liquid. Furthermore, since

the expansion of volume that is concomitant with melting is usually small, the

average interatomic distances and hence the forces remain of the same magnitude
as before. The new element now entering the problem is that the thermal kinetic
energy of the atoms, resulting from heating, prevents them from holding to their
regular positions, but the interatomic forces are still strong enough to impart
a certain partial order to the liquid.

To turn now to the mathematical treatment: We take a typical atom and use

it as a central atom in order to study the distribution of other atoms in the
system relative to it. We draw a spherical shell of radius R and thickness AR

around this atom. The number of atoms in this shell is given by

AN(R) : r(R)4rR2 AR, (1.6)
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where r(R) is the concentration of atoms in the system. Note that the quantity
4nR2 LR is the volume of the spherical shell, which, when we multiply it by the
concentration, yields the number of particles. Note also that, since a liquid is

isotropic, we need not be concerned with any angular variation of the
concentration. Only the radial dependence is relevant here.

The structural properties of the liquid are now contained entirely in the
concentration r(R). Once this quantity and its variation with the radial distance
R are determined, the strLlcture of the liquid is completely known.

The concentration r(R) versus R in liquid mercury as revealed by x-ray
diffraction is shown in Fig. 1.17. The curve has a primary peak at R - 3A, beyond
which it oscillates a few times before reaching a certain constant value. The
concentration vanishes for R ( 2.2 4,.

Fig. 1.17 The atomic concentration n(R) in liquid mercury.
the atomic distribution in crystalline mercury.

A

Vertical lines indicate

These features can be made quite plausible on the basis of interatomic forces.
The vanishing of r(R) at small values of R is readily understandable; as other atoms
approach the central one very closely, strong repulsive forces arise which push
these atoms away (see the following two sections). These repulsive forces
therefore prevent the other atoms from overlapping the central atom, which
explains why n(R) : 0 at small R. One expects the value of R where r(R) : 0
to be nearly equal to the diameter of the atom.

The reason for the major peak (Fig. l.17) is closely related to the attractive
interatomic force. We shall explain below that, except at very short distances,
atoms attract each other. This force therefore tends to pull other atoms toward
the center, resulting in a particularly large density at a certain specific distance.
The other oscillations in the curve arise from an interplay between the force of
the central atom and the forces of the near neighbors acting on neighbors still
farther away.

At large values of R, the concentration r(R) approaches a constant value
ro, which is actually equal to the average concentration in the system. We
expect this result because we have seen that a liquid does not have a long-range

1.8
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order; thus at large R the distribution of the atoms is completely random, and

independent of the position of the central atom, i.e., independent of R.
Instead of n(R), it is customary to express the correlation between atoms by

introducing the so-called pair distribution function g(R). This is defined as

n(R)
e(R): ----

no

Thus this function has the meaning of a relative density, or probability. Since

ro is a constant, the shape of g(R) is the same as that of r(R), that is, the same as

in Fig. 1.17. Note in particular that g(R)- I as R + oo, which is the situation
corresponding to the absence of correlation between atoms.

As alluded to above, the pair function 9(R) is determined by x-ray
diffraction. We shall discuss this in Section 2.8.

1.9 INTERATOMIC FORCES

Solids are stable structures, e.9., a crystal of NaCl is more stable than a

collection of free Na and Cl atoms. Similarly, a Ge crystal is more stable than
a collection of free Ge atoms. This implies that the Ge atoms attract each other
when they get close to each other, i.e., an attractive interatomic force exists

which holds the atoms together. This is the force responsible for crystal
formation.

This also means that the energy of the crystal is lower than that of the free

atoms by an amount equal to the energy required to pull the crystal apart into a set

of free atoms. This is called the binding energy (also the cohesive energy) of the

crystal.

Fig. 1.18 Interatomic potential Z(R) versus interatomic distance.

The potential energy representing the interaction between two a,toms varies
greatly with the distance between the atoms. A typical curve of this pair
potential, shown in Fig. 1.18, has a minimum at some distance Ro. For * = *o,

(1.7)

V(R)
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the potential increases gradually, approaching 0 as r - oo, while for R < Ro the
potential increases very rapidly, approaching @ at small radius.

Because the system-the atom pair-tends to have the lowest possible energy,
it is most stable at the minimum point .4, which therefore represents the
equilibrium position; the equilibrium interatomic distance is Ro, and the binding
energy - Izo. Note that, since Vo 10, the system is stable, inasmuch as its energy
is lower than that state in which two atoms are infinitely far apart (free atoms).

A typical value for the equilibrium radius Ro is a few angstroms, so the
forces under consideration are, in fact, rather short-range. The decay of the
potential with distance is so rapid that once this exceeds a value of, say, l0 or
l5A, the force may be disregarded altogether, and the atoms may then be

treated as free, noninteracting particles. This explains why the free-atom model
holds so well in gases, in which the average interatomic distance is large.

The interatomic force F(R) may be derived from the potential I/(R). It is

well known from elementary physics that

AV (RI
F(R): - -7^ (1.8)

That is, the force is the negative of the potential gradient. If we apply this to the
curve of Fig. 1.18, we see that F(R) < 0 for Ro < R. This means that in the
range Ro < R the force is attractiue, tending to pull the atoms together. On the
other hand, the force f(R) > 0 for R0 > R. That is, when R < Ro, the force is
repulsioe, and tends to push the atoms apart.

It follows from this discussion that the interatomic force is composed of
two parts: an attractive force, which is the dominant one at large distances, and
a repulsive one, which dominates at small distances. These forces cancel each

other exactly at the point Ro, which is the point of equilibrium.
We shall discuss the nature of the attractive and repulsive forces in the following

section.

1.10 TYPES OF BONDING

The presence of attractive interatomic forces leads to the bonding of solids.
In chemist's language, one may say that these forces formbonds between atoms in
solids, and it is these bonds which are responsible for the stability of the crystal.

There are several types of bonding, depending on the physical origin and
nature of the bonding force involved. The three main types are: ionic bonding,
coualent bonding, and metallic bonding. Let us now take these up one by one,
and also consider secondary types of bonding which are important in certain
special cases.

The ionic bond

The most easily understood type of bond is the ionic bond. Take the case of
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NaCl as a typical example. [n the crystalline state, each Na atom loses its single
valence electron to a neighboring Cl atom, resulting in an ionic crystal
containing both positive and negative ions. Thus each Na* ion is surrounded
by six Cl- ions, and vice versa, as pointed out in Section 7.

If we examine a pair of Na and Cl ions, it is clear that an attractive electrostatic
coulomb force, e2f4rroR2, exists between the pairs of oppositelycharged ions. It
is this force which is responsible for the bonding of NaCl and other ionic
crystals.

It is more difficult, however, to understand the origin of the repulsive force at

small distances. Suppose the ions in NaCl were brought together very closely by

a (hypothetical) decrease of the lattice constant. Then a repulsive force would
begin to operate at some point. Otherwise the ions would continue to attract
each other, and the crystal would simply collapse-which is, of course, not in

agreement with experiment. We cannot explain this repulsive force on the basis

of coulomb attraction; therefore it must be due to a new type of interaction.
A qualitative picture of the origin of the repulsive force may be drawn as

follows: When the Na+ and Cl- ions approach each other closely enough
so that the orbits of the electrons in the ions begin to overlap each other, then
the electrons begin to repel each other by virtue of the repulsive electrostatic
coulomb force (recall that electrons are all negatively charged). Of course, the
closer together the ions are, the greater the repulsive force, which is in qualitative
agreement with Fig. l.l8 in the region R < Ro.

There is yet another equally important source which contributes to the
repulsive force: the Pauli exclusion principle. As ions approach each other, the
orbits of the electrons begin to overlap, i.e., some electrons attempt to occupy
orbits already occupied by others. But this is forbidden by the exclusion principle,
inasmuch as both the Na+ and Cl - ions have outermost shells that are completely
full. To prevent a violation of the exclusion principle, the potential energy of the
system increases very rapidly, again in agreement with Fig. 1.18, in the range
R<Ro.

The ionic bond is strong when compared with other bonds, a typical value
for the binding energy of a pair of atoms being about 5 eV. This strength is

attributed to the strength of the coulomb force responsible for the bonding.
Experimentally, this strength is characterized by the high melting temperatures
associated with ionic crystals. Thus the melting temperature for the ionic crystal
NaCl is 801'C, while the melting temperatures for the Na and K metals are
97.8'C and 63"C, respectively.

Ionic bonding is most likely to exist when the elements involved are of widely
differing electronegativities. Example: an electropositive alkali atom plus an

electronegative halogen atom, as in NaCl.

The covalent bond

To introduce this bond, we consider a well-known covalent solid: diamond.
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Recall from Section 7 that this crystal is formed from carbon atoms arranged
in a certain type of fcc structure in which each atom is surrounded by four others,
forming a regular tetrahedron. We cannot invoke the ionic bond to explain the
bonding in diamond, because here each atom retains its own electrons, i.e.,
there is no transfer of electrons between the atoms, and in consequence no ions are
formed. This is evident from the fact that all the atoms are identical. Hence no
reason exists for an electron to transfer from one atom to another.

Instead, the bonding in diamond takes place in the following manner: Each
atom has four valence electrons, and it forms four bonds with its four nearest
neighbors (Fig. l.l9). The bond here is composed of two electrons, one
contributed by each of the two atoms. This double-electron bond is well known
in chemistry and physics. It is referred to as a coualent bond. As an indication
of the appropriateness of this bond in the case of diamond, we note that as a
result of electron sharing, each C atom now has 8 electrons surrounding it,
resulting in a complete-and hence stable-shell structure for the valence shell at
hand (in this case the familiar p shell).

Fig. 1.19 The tetrahedral covalent
represents the charge distribution of
bond.

diamond. Each elongated region
electrons forming the corresponding

bond in
the two

This plausible account still does not explain just why a double-electron
arrangement produces a bond, i.e., an attractive interatomic force. The explanation
of the covalent bond can be given only through quantum mechanics. The simplest
known example of the covalent bond occurs in the hydrogen molecule (Hr), in
which the two atoms are held together by just this bond, i.e., they share their
two electrons. We discuss the quantum explanation of bonding in H, in Section
A.7, and its adaptation to the tetrahedral bond (as in diamond) in Section A.8.
Refer to these sections for further details.

The covalent bond is also strong, as attested to by the unusual hardness of
diamond, and its high melting point (> 3000'C). A typical value for covalent-bond
binding energy is a few electron volts per bond.

The covalent bond is particularly important for those elements in column IV
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of the periodic table. We have already mentioned diamond (C). Other elements

are Si, Ge, and Sn, all of which crystallize in the diamond structure and are
covalent crystals. The elements silicon (Si) and germanium (Ge) hold special
interest, since both are among the best known semiconductors. We shall study them
in considerable detail in Chapters 6 and 7, which concern the semiconducting
properties of solids.

Covalent crystals tend to be hard and brittle, and incapable of appreciable
bending. These facts are understandable in terms of the underlying atomic
forces. Since the bonds have well-defined directions in space, attempts to alter
them are strongly resisted by the crystal.

In our discussion of bonding, we have considered only pure ionic or pure
covalent bonds. There are, however, many crystals in which the bond is not
pure, but a mixture of ionic and covalent. A good example is the case of the

semiconductor GaAs. Here a charge transfer does take place, but the transfer
is not complete; only about 0.46 of an electron is transferred on the average
from the Ga to the As atom. This transfer accounts for part of the binding force
in GaAs, but the major part is due to a covalent-or electron-sharing-bond
between the Ga and neighboring As atoms.

The metallic bond

Most elements are metals. Metals are characterized by high electrical conductivity
and mechanical strength, and also by the property of being highly ductile. We are
particularly interested here in the bonding mechanism, but the model we shall
invoke for this purpose is capable of accounting for the above-mentioned
properties as well. (These properties will be the subject of ample discussions
later; see Chapters 4, 5, and 11.)

To understand the metallic bond, let us consider a typical simple metal:
sodium. How can an assembly of Na atoms, brought together to form a crystal,
attract each other and form a stable solid? Quick reflection tells us that neither the
ionic nor the covalent bond can account for the interatomic attraction in sodium
(why not?). The correct explanation is this: Each free Na atom has a single valence
electron which is only loosely bound to the atom. When a crystal is formed, the
valence electron detaches from its own atom and becomes an essentially free
electron, capable of moving throughout the crystal. This picture of free valence
electrons (in metals these are referred to as ualence or conduclion electrons) is

drastically different from the valence electrons in ionic and covalent solids, in
which the electrons are tightly bound to their atoms; it is, in fact, the primary
feature distinguishing metals from these latter crystals.

The model we now have of sodium metal is an assemblage of positive Na+
ions forming a bcc lattice, immersed in a gas of free electrons. The question
confronting us now is: Why is the energy of such a system lower than that of free
Na atoms? First, it is clear that the Na* ions would tend to repel each other
as a result of the electrostatic coulomb force. But this force, which acts against
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stability, is largely ineffective, because free electrons strongly screen ions from
each other, resulting in essentially neutralized noninteracting ions, much as in the
case of free atoms. But the great reduction in energy needed'for the bonding
can be explained only in quantum terms: It follows from quantum considerations
that when a particle is restricted to move in a small volume, it must by necessity
have a large kinetic energy. This energy is proportional to V-213, where I/ is
the volume of confinement (see Section A.3). The origin of this energy is entirely
quantum in nature, and is intimately related to the Heisenberg uncertainty
principle.

We now apply this interesting idea to the case of metals. When the Na atoms
are in the gaseous state, their valence electrons have large kinetic energies because
they are restricted to move in the very small atomic volumes. But, in the crystalline
state, the electrons are free to wander throughout the volume of the crystal, which
is very large. This results in a drastic decrease of their kinetic energies, and thus
an appreciable diminution in the total energy of the system, which is the source of
the metallic bonding. (Figuratively speaking, the free electrons, which are of
course negative, act as a glue that holds the positive ions together.)

The metallic bond is somewhat weaker than the ionic and covalent bonds
(for instance, the melting point of Na is only 97.8'C), but is still far from being
small or negligible.

To account briefly for the other metallic properties listed earlier, we note that
the high electical conductiuity is due to the ability of the valence electrons to
move readily under the influence of an electric field, resulting in a net electrical
current in the field direction. A similar explanation may be given for the high
thermal conductiuity. The high density is due to the fact that the metallic ions may
be packed together tightly, even though the free electrons produce a strong and
effective screening between them. The high ductility is a consequence of the fact
that the metallic bond is nondirectional, so that if an external bending torque is
applied and the ions change positions to accommodate this torque, the electrons,
being very small and highly mobile, readily adapt themselves to the new deformed
situation.

This metallic bonding model works well in the simple metals, particularly
the alkalis. More complicated metals-especially the transition elements such as
Fe, Ni, etc.-require more complex models, as one would expect. Thus in Fe and
Ni the 3d electrons have well-localized properties, and hence they tend to form
covalent bonds with their neighbors. This covalent bonding is in addition to the
contribution of the 4s valence electrons, which produce a metallic bonding.

Secondary bonds

In addition to the three primary bonds discussed above (ionic, covalent, and
metallic), there are other, weaker bonds which often play important roles in
explaining some of the "fine-scale" bonding properties. For example, the ice
crystal (HzO). First, consider the bonding in a single water molecule. A covalent
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bond is formed between the oxygen atom and each of the two hydrogen atoms
(Fig. 1.20a);the electron sharing makes it possible for the oxygen atom to have

8 valence electrons, i.e., a stable shell structure. Thus the atoms in an HrO
molecule are stongly bonded.
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Fig. 1.20 (a) Water molecule. (b) Arrangement of ice molecule as a result of hydrogen
bond. Arrows represent electric dipole moments of the molecules.

But when we consider the bonding between the water molecules themselves

to form ice, we find that the bonding strength is much weaker, e.9., the melting
point of ice is only 0'C. The explanation of this is that, although each H2O
molecule is, on the whole, electrically neutral, the distribution of internal charge
is such as to produce an interaction between the molecules. Thus in describing
the electron sharing in the H-O bond, we should also mention the fact that the

electrons are actually pulled more strongly toward the oxygen atom, resulting in
a net negative charge on the oxygen atom and a corresponding positive charge
on the hydrogen atom (Fig. 1.20b). This produces a so-called electric dipole in
the water molecule, as indicated by the vector in the figure. Now electric dipoles
attract each other. Thus water molecules are attracted to each other, forming
a crystal (Fig. 1.20b). (We can also appreciate the dipole attraction on a more
elementary level by noting that the negative oxygen atom in one water molecule
is attracted toward that corner in another water molecule which contains a
positive hydrogen atom.)

The bond described here is referred to as the hydrogen bond-sometimes also
known as the hydrogen bridge-because of the important role played by the small
hydrogen nucleus (which is a proton).

Another bond which plays an especially important role in inert-gas solids
isthe uan der Waals bond. You undoubtedly recall from basic chemistry that the
inert-gas elements-i.e., those that occur in column VIII of the periodic table
(He, Ne, Ar, etc.)-display extremely small attraction toward each other, or
other elements. So these elements do not usually participate in chemical reactions
(hence the name inert), and they form monatomic gases rather than diatomic ones

such as Hr, Or, or other polyatomic gases. The weakness of the interatomic forces
in the inert-gas solids is also illustrated by their low melting points:. -272.2, -248.7



Crystal Structures and Interatomic Forces

and -189.2'C for He, Ne, and Ar, respectively. In other words, He remains in
the liquid state down to a temperature of only about one degree from absolute
zeror I

If one uses the principles of quantum theory, it is not difficult to explain the
weakness of interatomic forces in the inert gases. In each of these gases, the atom
has an outer shell that is completely full. consequently an atom has very little
predilection to exchange or share electrons with other atoms. This rules out any
ionic and covalent forces, and likewise rules out any metallic-bonding forces in
inert-gas crystals.

Yet even the inert-gas atoms exhibit interatomic forces, albeit very weak ones.
The fact that Ne, for instance, solidifies at -248.7'C indicates clearly that some
interatomic forces are present, which are responsible for the freezing; by contrast,
a system of truly noninteracting atoms would remain gaseous down to the lowest
temperature. So our problem is not so much to explain the weakness of the
forces, but rather to account for their presence in the first place.

Without becoming embroiled in physical and mathematical complexities,
we may present the following model for the attraction in inert-gas elements.
Consider two such atoms. Each contains a number of orbital electrons, which
are in a continuous state of rotation around the nucleus. If their motion were such
that their charge was always symmetric around the nucleus, then the effect would
be to screen the nucleus completely from an adjacent atom, and the two atoms
would not interact. This supposition is not quite correct, however. Although
the distribution of the electrons is essentially symmetric, and is certainly so on the
average, as time passes there are small fluctuations, whose effect is to produce a
fluctuating electric dipole on each of the atoms. The dipoles tend to attract each
other (as mentioned in connection with the hydrogen bond), and this is the source
of the van der Waals force. The resulting potential is found to decrease with
distance as l/R6, far more rapidly than the ionic potential, which decreases only
as l/R.

Two reasons may be given to account for the smallness of the van der Waals
force (also known as the London force): (a) The fluctuating atomic dipoles are
small, and (b) the dipoles on the different atoms are not synchronized with each
other, a fact which tends to cancel their attractive effects. Following the various
steps in detail, however, one arrives at a net attractive force.
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QUESTIONS

l. What is the reason for the fact that the tetrahedral bond is the dominant bond in
carbon compounds?

2. Estimate the strength of the hydrogen bond in water (in electron volts per

bond).
3. Show that two parallel electric dipoles attract each other.
4. Estimate the strength of the van der Waals bond for neon.

PROBLEMS

l. Given that the primitive basis vectors of a lattice are a: (al2)(i + j), b: (a/z)(i + k)'
and c : (alz)(k + i), where i, j, and k are the usual three unit vectors along cartesian

coordinates, what is the Bravais lattice?
2. Using Table 1.2 and the data below, calculate the densities of the following solids:

Al, Fe, Zn, and Si, whose atomic weights are respectively 26.98,55.85, 65.37, and

28.09.
l.ZSnow that in an ideal hexagonal-close-packed (hcp) structure, where the atomic

\-/ spheres touch each other, the ratio cfa is given by

c / 8\rl2
;:(') :r633'

(The hcp structure is discussed in Section 7.)

47The packing ratio is defined as the fraction of the total volume of the cell that is

' filled by atoms. Determine the maximum values of this ratio for equal spheres

located at the points of simple-cubic, body-centered-cubic, and face-centered-cubic

crystals.
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5. Repeat Problem 4 for simple hexagonal, and rhombohedral lattices.
6. Repeat Problem 4 for an hcp structure.
7. Consider a face-centered-cubic cell. Construct a primitive cell within this larger

cell, and compare the two. How many atoms are in the primitive cell, and how
does this compare with the number in the original cell?

8. a) show that a two-dimensional lattice may not possess a S-fold symmerry.
b) Establish the fact that the number of two-dimensional Bravais lattices is five:

oblique, square, hexagonal, simple rectangular, and body-centered rectangular.
('The proof is given in Kittel, 1970.)

9. I)emonstrate the fact that if an object has two reflection planes intersecting at nf4,
it also possesses a 4-fold axis lying at their intersection.

10. Sketch the following planes and directions in a cubic unit cell: (122), U2z), (l1z),
UT2),

11. a) Determine which planes in an fcc structure have the highest density of atoms.
b) Evaluate this density in atoms/cm2 for Cu.

12. Repeat Problem 11 for Fe, which has a bcc structure.
13. show that the maximum packing ratio in the diamond structure is rJll16. lHint:

The structure may be viewed as two interpenetrating fcc lattices, arranged such
that each atom is surrounded by four other atoms, forming a regular tetrahedron.]

14. A quantitative theory of bonding in ionic crystals was developed by Born and
Meyer along the following lines: The total potential energy of the system is taken
to be

A ae2E:^/--,V
F" 

- 
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where N is the number of positive-negative ion pairs. The first term on the right
represents the repulsive potential, where I and n arc constants determined from
experiments. The second term represents the attractive coulomb potential, where
d, known as the Madelung constant, depends only on the crystal structure of the
solid.
a) Show that the equilibrium interatomic distance is given by the expression

RJ-' : on'nn 
n'

b) Establish that the bonding energy at 
"q,rliu.iu- 

i,
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c) calculate the constant n for Nacl, using the data in Table 1.2 and the fact that
the measured binding energy for this crystal is 1.83 kcal/mole (or 7.95 ev/mole-
cule). The constant q for NaCl is 1.75.


