
INTRODUCTION TO STRUCTURE MOTION 

In a broad sense, what one attempts to do in rock engineering is to anticipate the 

motion of a proposed structure under a set of given conditions. The main design 

objective is to calculate displacements, and as a practical matter, to see whether the 

displacements are acceptable. Very often restrictions on displacements are implied 

rather than stated outright. This situation is almost always the case in elastic design 

where the displacements of the structure of interest are restricted only to the extent 

that they remain within the range of elastic behavior. In rock mechanics, the 

“structure” of interest is simply the rock mass adjacent to a proposed excavation. 

The proposed excavation may be started at the surface, or it may be a deepening of 

an existing surface excavation, a start of a new underground excavation, or an 

enlargement of an existing underground excavation. In any case, the excavation plan, 

if actually carried out, would cause changes in the forces acting in the neighborhood 

of the excavation and would therefore cause deformation of the adjacent rock mass. 

Of course, the rock mass may also move in response to other forces such as those 

associated with earthquakes, equipment vibration, blasting, filling or draining of an 

adjacent water reservoir, temperature changes, and so on. Regardless of the specific 

identity of the forces acting, the associated motion must always be consistent with 

basic physical laws such as the conservation of mass and the balance of linear 

momentum. In this respect, rock is no different from other materials. Any motion 

must also be consistent with the purely geometrical aspects of translation, rotation, 

change in shape, and change in volume, that is, with kinematics. However, physical 

laws such as Newton’s second law of motion (balance of linear momentum) and 

kinematics are generally not sufficient for the description of the motion of a 

deformable body. The number of unknowns generally exceeds the number of 

equations. This mathematical indeterminacy may be removed by adding to the 

system as many additional equations as needed without introducing additional 

unknowns. The general nature of such equations becomes evident following an 

examination of the internal mechanical reaction of a material body to the externally 

applied forces. The concepts of stress and strain arise in such inquiry and the 

additional equations needed to complete the system are equations that relate stress 

to strain. Stress-strain relationships represent a specific statement concerning the 

nature or “constitution” of material and are members of a general class of equations 

referred to as constitutive equations. Constitutive equations express material laws. 

Whereas physical laws and kinematics are common to all materials, constitutive 

equations serve to distinguish categories of material behavior. Hooke’s law, for 



example, characterizes materials that respond elastically to load. A system of 

equations that describes the motion of a deformable body necessarily includes all 

three types of equations: physical laws, kinematics, and material laws. In reality, a 

system describing the motion of a material body is only an approximation. 

Mathematical complexities often dictate additional simplification and idealization. 

Questions naturally arise as to what simplifications should be made and, once made, 

how well the idealized representation corresponds to reality. Questions of this type 

relate more to the art than to the science of engineering design and have no final 

answers. Experience can, of course, be a great aid in this regard, when such 

experience is informed by a clear understanding of the fundamental concepts. 

 

Figure 1 Position relative to the mass center of a body. 

Example 1. The mass center of a body is defined by  

 

where  and  are vectors shown in Figure 1. Differentiation twice with respect to 

time gives the interesting result 

 

that shows that the mass center moves as if it were a particle accelerating a according 

to Newton’s second law (resultant of external forces = time rate of change of linear 



momentum). Thus, even though one cannot determine the acceleration everywhere 

in the body of interest at this juncture, there is a possibility of at least following the 

motion of the center of mass of the body. This fact remains true even if the body 

disintegrates. Consider a mass M of rock in a landslide or avalanche and suppose 

that the external forces are: (i) the weight W of the slide mass and (ii) the contact 

force R acting between the slide mass and the parent rock mass from which the slide 

mass has become detached. The contact force R may be frictional, viscous, and 

displacement-dependent, that is, R = R0 + R1ds/dt - R2s. R increases with speed but 

decreases with a displacement of the mass center and resists the downhill component 

of weight D = D0. According to the previous result 

 

Hence 

 

describes the motion of the slide mass center. The coefficients in this equation may 

depend on time and position (except M). Over a short period of time, however, a 

reasonable assumption is that they are constant in which case the form of the solution 

is known. Reasonable initial conditions are that the slide mass is at rest or moving 

at a constant speed (steady creep). The logic followed in Example 1 illustrates in a 

very compact form how one proceeds from physical laws (conservation of mass, 

Newton’s second law) through problem simplification (look at mass center motion 

only, disregard deformation, disintegration, the motion of individual elements) and 

material idealization (assumptions concerning resistance) to a mathematically 

tractable representation of the original problem (landslide dynamics). Of course, 

simplification is a relative notion. Here simplification means one has progressed 

from an essentially hopeless situation to a situation where useful information may 

be extracted. In this example, useful information might refer to the estimation of 

slide mass travel in conjunction with zoning regulations for geologic hazards. The 

solution effort required may still be considerable. However, there may also be 

unexpected benefits. In this example, the “triggering” of catastrophic landslides 

under load level fluctuations that were formerly safe becomes understandable in 

relatively simple physical terms. 

 

A PRACTICAL DESIGN OBJECTIVE 



A tacit assumption in rock mechanics that is often made in the absence of inelastic 

behavior is that large displacements accompanying failure are precluded. Under 

these circumstances, design is essentially an analysis of safety and stability. A 

practical design objective is then to calculate a factor of safety appropriate for the 

problem at hand. An appropriate factor of safety depends on the problem and is an 

empirical index to “safety” or “stability.” Safety and stability are often used 

interchangeably in rock mechanics, although strictly speaking, they are not 

synonymous. Stability often connotes a possibility of fast failure or the onset of large 

displacements below the elastic limit. An example is strata buckling where kinks in 

thin laminations may form suddenly below the yield point. Safety typically relates 

to strength and nearness to the elastic limit or yield point. If forces are of primary 

concern, then a ratio of forces resisting the motion to forces that tend to drive the 

motion is an appropriate safety factor. If rotation is of primary concern, then a ratio 

of resisting to driving moments would be an appropriate safety factor. When yielding 

at a point is of interest, then a ratio of “strength” to “stress” defines a useful safety 

factor when measures of “strength” and “stress” are well defined. 

Example 2. Consider a rock mass high on a steep canyon wall that may pose a threat 

to the facilities below. A reasonable index to stability is a factor of safety FS defined 

as a ratio of forces tending to drive the slide mass downhill to forces resisting the 

motion. Show that a safety factor greater than one implies safety.  

Solution: By definition, FS = R/D. The mass center then moves according to 

F = D - R = D (1 - FS) = Ms¨ 

Hence, a safety factor less than one implies downhill acceleration, while a safety 

factor greater than one, implies stability (uphill acceleration is physically 

meaningless in this situation). 

Example 3. Stress concentration about vertical shaft results in compressive stress of 

8,650 psi (59.66 MPa) at the shaft wall where the rock mass has an unconfined 

compressive strength of 12,975 psi (89.48 MPa). Determine the shaft wall safety 

factor at the considered point. 

Solution: An appropriate safety factor at the shaft wall is the ratio of strength to 

stress. 

Thus, 



 

PROBLEM SOLVING 

This text has been written from the point of view that whenever the main physical 

features of a problem are well known, as they are in the determination of tunnel 

support requirements, for example, then the strength of materials background should 

be sufficient for the development of quantitative analysis procedures. The emphasis 

throughout is upon the time-tested engineering approach to problem-solving 

requiring (i) a brief statement as to what is being required; (ii) a listing of related 

known data; (iii) a sketch of the “structure” for analysis shows, in particular, the 

applied loads and reactions; (iv) the equations and assumptions used; and (v) an 

outline of the major calculation steps taken in obtaining the desired results. Some of 

these steps may be combined as conditions allow. 

Example 4. A large array of square support pillars is formed by excavating rooms 

in a horizontal stratum 5 m (16.4 ft) thick at a depth of 300 m (984 ft). The pillars 

are 15 m (49.2 ft) on edge and are spaced on 22 m (72.2 ft) centers. Determine the 

average vertical stress in the pillars. 

Solution: A large array implies that the pillars in the array are similar, so 

consideration of the equilibrium of one pillar should reveal the relationship of forces 

acting at equilibrium. The pillars are the materials that remain after the rooms have 

been excavated, and must carry the weight of the overburden that, prior to 

excavation, was supported by all materials in the seam. 

1 Sketch the geometry of the problem in plan view and vertical section. 

2 Apply force equilibrium in the vertical direction. Thus, W = Fp as shown in the 

sketch where W = (specific weight) (volume) and Fp = (average vertical pillar stress) 

(pillar area). One may estimate the overburden-specific weight as, say, 24.8 

kN/m3(158 pcf). 



3 Do calculations. (24.8) (300) (22) (22) = Sp (15) (15), so Sp = 16 kN/m2 (2,320 

psi). 

 

UNITS 

No one system of units is more “scientific” than another, many texts now use metric 

(SI) units and English engineering units. Both are also used in this text. 

Both view Newton’s second law of motion as F = ma where F is the result of external 

forces (pound-force, Newton), m is a mass (slug, kilogram) and a is acceleration 

(feet/second2, meter/second2). A 1-pound force results when 1 slug is accelerated 1 

ft/s2. Thus, 1 lbf = slug.ft/s2. (A slug is a 32.174 pound mass and 1 lbf = 1 lbm.ft/s2.) 

A 1 N force results when 1 kg is accelerated 1 m/s2, so 1 N = kg.m/s2. Sometimes 

both units are given with one in parentheses following the other (Example 4). Tables 

of data may be given in either system. Sometimes conversion factors are given with 



a table of data when both units are not presented, but not always. Some useful 

conversion factors are given in Table 1. 

Example 5. An estimate of pre-excavation vertical stress is 1 psi per foot of depth. 

This estimate is based on an assumed overburden-specific weight of 144 pcf. An 

improved estimate would use 158 pcf or 1.1 psi/ft, that is, Sv = 1.1h where Sv is the 

vertical stress in psi and h is depth in feet. Modify this last equation to give Sv in 

kN/m2 with h in meters. 

Solution: The estimate in detail is: 

Sv (kN/m2) = 1.1(psi/ft) 6894.9 (N/m2/psi) 3.281(ft/m) 10-3 (kN/N) h(m), that is, 

Sv (kN/m2) = 24.9h(m). 

 

Alternatively, from Table 1 and the given data (158 pcf) (157.09) = 24.8 (103) N/m3 

= 24.8 kPa/m within truncation and round off error. 

Example 6. Given the specific gravity (SG) of a rock sample as 2.67, determine the 

specific weight γ in lbf/ft3 and kN/m3. 



Solution: By definition, SG is the ratio of a given mass to the mass of water 

occupying the same volume at the same temperature. This definition is thus the ratio 

of the mass density of the given material ρ to the mass density of water ρw at the 

given temperature. Thus, SG = ρ/ρw. Also by definition specific weight γ is the 

weight of a unit volume of material, and weight is the force of gravity acting on the 

given mass, so that γ = ρg. Hence, γ = ρg = (SG) (ρw) g = (SG) (γw) where the last 

term is the specific weight of water which is 62.43 lbf/ft3. Thus, γ = 2.67(62.43) = 

167 lbf/ft3 and from the conversion factor in Table 1 γ = (167 lbf/ft3) (157.09) (10-3) 

= 26.2 kN/m3. 

 

 


