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In the design of structural elements or machine components, the deformations experienced 

by the body because of applied loads often represent a design consideration equally as 

 important as stress. For this reason, the nature of the deformations experienced by a real 

deformable body as a result of internal stress will be studied, and methods to measure or 

compute deformations will be established.

Displacement

When a system of loads is applied to a machine component or structural element, 

individual points of the body generally move. This movement of a point with re-

spect to some convenient reference system of axes is a vector quantity known as a 

displacement. In some instances, displacements are associated with a translation 

and/or rotation of the body as a whole. The size and shape of the body are not 

changed by this type of displacement, which is termed a rigid-body displacement. 
In Figure 2.1a, consider points H and K on a solid body. If the body is 

displaced (both translated and rotated), points H and K will move to new locations 

H � and K �. The position vector between H � and K�, however, has the same length 

2.1  Displacement, Deformation, and 
the Concept of Strain

Strain

CHAPTER 2

FIGURE 2.1a Rigid-body displacement.
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STRAIN as the position vector between H and K. In other words, the orientation of H and K relative to 

each other does not change when a body undergoes a displacement.

Deformation

When displacements are caused by an applied load or a change in temperature, indi-

vidual points of the body move relative to each other. The change in any dimension 

associated with these load- or temperature-induced displacements is known 

as deformation. Figure 2.1b shows a body both before and after a deforma-

tion. For  simplicity, the deformation shown in the fi gure is such that point H 

does not change location; however, point K on the undeformed body moves to 

location K� after the deformation. Because of the deformation, the position 

vector between H and K� is much longer than the HK vector in the unde-

formed body. Also, notice that the grid squares shown on the body before 

deformation (Figure 2.1a) are no longer squares after the deformation. Con-

sequently, both the size and the shape of the body have been altered by the 

deformation.

Under general conditions of loading, deformations will not be uniform 

throughout the body. Some line segments will experience extensions, while 

 others will experience contractions. Different segments (of the same length) 

along the same line may experience different amounts of extension or contrac-

tion.  Similarly, angle changes between line segments may vary with position and  orientation 

in the body. This nonuniform nature of load-induced deformations will be investigated in 

more detail in Chapter 13.

Strain

Strain is a quantity used to provide a measure of the intensity of a deformation (deforma-

tion per unit length) just as stress is used to provide a measure of the intensity of an internal 

force (force per unit area). In Sections 1.2 and 1.3, two types of stresses were defi ned: nor-

mal stresses and shear stresses. The same classifi cation is used for strains. Normal strain, 

designated by the Greek letter � (epsilon), is used to provide a measure of the elongation 

or contraction of an arbitrary line segment in a body during deformation. Shear strain, 

designated by the Greek letter � (gamma), is used to provide a measure of angular distor-

tion (change in angle between two lines that are orthogonal in the undeformed state). The 

deformation, or strain, may be the result of a change in temperature, of a stress, or of some 

other physical phenomenon such as grain growth or shrinkage. In this book, only strains 

resulting from changes in temperature or stress are considered.

FIGURE 2.1b Deformation of a body.
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FIGURE 2.2 Normal strain.
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O

Average Normal Strain

The deformation (change in length and width) of a simple bar under an axial load (see 

Figure 2.2) can be used to illustrate the idea of a normal strain. The average normal strain 

�avg over the length of the bar is obtained by dividing the axial deformation � of the bar by 

its initial length L; thus,

 �
�

avg �
L  (2.1)

The symbol � is used to denote the deformation in the axial member.

2.2 Normal Strain
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NORMAL STRAIN

Normal Strain at a Point

In those cases in which the deformation is nonuniform along the length of the bar (e.g., a 

long bar hanging under its own weight), the average normal strain given by Equation (2.1) 

may be signifi cantly different from the normal strain at an arbitrary point O along the bar. 

The normal strain at a point can be determined by decreasing the length over which the 

actual deformation is measured. In the limit, a quantity defi ned as the normal strain at the 

point �(O) is obtained. This limit process is indicated by the expression

 �( ) liO
L

d
dLL

� �
�

m
0

�

�

� �
 (2.2)

Strain Units

Equations (2.1) and (2.2) indicate that normal strain is a dimensionless quantity; however, 

normal strains are frequently expressed in units of in./in., mm/mm, m/m, �in./in., �m/m, 

or ��. The symbol � in the context of strain is spoken as “micro,” and it denotes a factor of 

10�6. The conversion from dimensionless quantities such as in./in. or m/m to units of 

 “microstrain” (such as �in./in., �m/m, or ��) is

1 �� � 1 � 10     in./in. � 1 � 10     m/m�6 �6

Since normal strains are small, dimensionless numbers, it is also convenient to express 

strains in terms of percent. For most engineered objects made from metals and alloys, 

 normal strains seldom exceed values of 0.2%, which is equivalent to 0.002 m/m.

Measuring Normal Strains Experimentally

Normal strains can be measured with a simple component called a strain gage. The 

 common strain gage (Figure 2.3) consists of a thin metal-foil grid that is bonded to the 

 surface of a machine part or a structural element. When loads (and also temperature 

changes) are applied, the object being tested elongates or contracts, creating normal strains. 

Since the strain gage is bonded to the object, it undergoes the same strain as the object. As 

the strain gage elongates or contracts, the electrical resistance of the metal-foil grid changes 

 proportionately. The relationship between strain in the gage and its corresponding resis-

tance change is predetermined by the strain gage manufacturer through a calibration pro-

cedure for each type of gage. Consequently, precise measurement of resistance change in 

the gage serves as an indirect measure of strain. Strain gages are accurate and extremely 

sensitive, enabling normal strains as small as 1 �� to be measured. Applications involving 

strain gages will be discussed in more detail in Chapter 13.

Sign Conventions for Normal Strains

From the defi nitions given by Equation (2.1) and Equation (2.2), normal strain is positive 

when the  object elongates and negative when the object contracts. In general, elongation 

will occur if the axial stress in the object is tension. Therefore, positive normal strains are 

referred to as tensile strains. The opposite will be true for compressive axial stresses; there-

fore, negative normal strains are referred to as compressive strains.

Accordingly, a positive value of � indicates that the axial member gets longer, and a 

negative value of � indicates that the axial member gets shorter (termed contraction).

A normal strain in an axial 

member is also termed an 

axial strain.

FIGURE 2.3
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STRAIN

In developing the concept of normal strain through example problems and exercises, it 

is convenient to use the notion of a rigid bar. A rigid bar is meant to represent an object 

that undergoes no deformation of any kind. Depending on how it is supported, the rigid 

bar may translate (i.e., move up/down or left/right) or rotate about a support location 

(see Example 2.1), but it does not bend or deform in any way regardless of the loads 

acting on it. If a rigid bar is straight before loads are applied, then it will be straight after 

loads are applied. The bar may translate or rotate, but it will remain straight.

EXAMPLE 2.1

A rigid bar ABCD is pinned at A and supported by two 

steel rods connected at B and C, as shown. There is no 

strain in the vertical rods before load P is applied. 

After load P is applied, the normal strain in rod (2) is 

800 ��. Determine

(a) the axial normal strain in rod (1).

(b)  the axial normal strain in rod (1) if there is a 

1-mm gap in the connection between the rigid 

bar and rod (2) before the load is applied.

Plan the Solution
For this problem, the defi nition of normal strain will 

be used to relate strain and elongation for each rod. 

Since the rigid bar is pinned at A, it will rotate about 

the  support; however, it will remain straight. The 

 defl ections at points B, C, and D along the rigid bar 

can be determined by similar triangles. In part (b), the 1-mm gap will cause an increased 

rigid bar defl ection at C, and this will in turn lead to increased strain in rod (1).

SOLUTION
(a)  The normal strain is given for rod (2); therefore, the deformation in the rod can be 

computed as follows:

�
�

� �2
2

2
2 2 2 800

mm/mm

1,000,000
2,700 mm� � � � �   �

L
L �ε

�ε
1

2.16 mm�  � �

To compute the deformation, note that the given strain value �2 must be converted from units 

of �� into dimensionless units (i.e., mm/mm). Since the strain is positive, rod (2) elongates.

Since rod (2) is connected to the rigid bar and since rod (2) elongates, the rigid bar 

must defl ect 2.16 mm downward at joint C. However, rigid bar ABCD is supported by a 

pin at joint A, and defl ection is prevented at its left end. Therefore, rigid bar ABCD rotates 

about pin A. Sketch the confi guration of the rotated rigid bar, showing the defl ection that 

takes place at C. Sketches of this type are known as deformation diagrams.

Although the defl ections are very small, they have been greatly exaggerated here for 

clarity in the sketch. For problems of this type, a small-defl ection approximation is used:

sin tan� � �� �

where � is the rotation angle of the rigid bar in radians.

(1)

(2)

2.0 m 2.5 m

0.5 m

A

P

B C D

2.7 m

1.5 m

Rigid bar
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To clearly distinguish bet ween elongations 

that  occur in the rods and defl ections at locations 

along the rigid bar, rigid bar transverse defl ections 

(i.e., defl ections up or down in this case) will be 

denoted by the symbol v. Therefore, the rigid bar 

defl ection at joint C is  designated vC.

We will assume that there is a perfect fi t in the 

pin connection at joint C; therefore, the rigid bar 

defl ection at C is equal to the elongation that occurs 

in rod (2) (vC � �2).

From the deformation diagram of the rigid bar geometry, the rigid bar defl ection at 

joint B (vB) can be determined from similar triangles:

v v
vB C

B2 0 4 5

2 0

4 5
2 16 0 96

. .

.

.
. .

m m

m

m
mm mm� � � � � �

If there is a perfect fi t in the connection between rod (1) and the rigid bar at joint B, rod 

(1) elongates by an amount equal to the rigid bar defl ection at B; hence, � 1 � vB. Knowing 

the deformation produced in rod (1), we can now compute its strain:

 �
�

1
1

1

0.96 mm

1,500 mm
mm/mm 640� � � �

L
0 000640. �ε Ans.

(b) As in part (a), the deformation in the rod can be computed from

 �
�

� �2
2

2
2 2 2 (800 )

mm/mm

1,000,000
(� � = =

L
L �ε

�ε
1

22,700 mm) 2.16 mm�

Sketch the confi guration of the  rotated 

 rigid bar for case (b). In this case, there is 

a  1-mm gap between rod (2) and the rigid 

bar at C. This means that the rigid bar 

defl ects 1 mm downward at C before it 

begins to stretch rod (2). The total defl ec-

tion of C is made up of the 1-mm gap plus 

the elongation that occurs in rod (2); hence, 

vC � 2.16 mm � 1 mm � 3.16 mm.
As before, the rigid bar defl ection at 

joint B (vB) can be determined from  similar 

triangles:

v v
vB C

B2 0 4 5

2 0

4 5
3 16 1 404

. .

.

.
. .

m m

m

m
mm mm� � � � � �

Since there is a perfect fi t in the connection between rod (1) and the rigid bar at joint B, 

�1 � vB, and the strain in rod (1) can be computed:

 �
�

1
1

1

1.404 mm

1,500 mm
mm/mm 936� � � �

L
0 000936. �ε  Ans.

Compare the rod (1) strains for cases (a) and (b). Notice that a very small gap at C caused 

the strain in rod (1) to increase markedly.

vC = �2

A B C D

2.0 m

4.5 m

vB = �1

A B C D

2.0 m

4.5 m

vB
�2

1 mm

= �1

+vC = �2 1 mm
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A rigid steel bar ABC is supported by three rods. There is no strain in the 

rods before load P is applied. After load P is applied, the axial strain in rod 

(1) is 1,200 ��.

(a) Determine the axial strain in rods (2).

(b)  Determine the axial strain in rods (2) if there is a 0.5-mm gap in the 

connections between rods (2) and the rigid bar before the load is 

 applied.

 MecMovies Example M2.1 

A rigid steel bar ABC is pinned at B and supported by two rods at A and C. 

There is no strain in the rods before load P is applied. After load P is applied, 

the axial strain in rod (1) is �910 ��. Determine the axial strain in rod (2).

 MecMovies Example M2.2 

The load P produces an axial strain of �1,800 �� in post (2). 

 Determine the axial strain in rod (1).

 MecMovies Example M2.4 

c02Strain.indd Page 36  1/27/12  9:54 AM f-535c02Strain.indd Page 36  1/27/12  9:54 AM f-535 /Users/f-535/Desktop/Users/f-535/Desktop



37

M2.1 A rigid horizontal bar ABC is supported by three vertical 

rods. There is no strain in the rods before load P is applied. After 

load P is applied, the axial strain is a specifi ed value. Determine the 

defl ection of the rigid bar at B and the normal strain in rods (2) if 

there is a specifi ed gap between rod (1) and the rigid bar before the 

load is applied.

M2.2 A rigid steel bar AB is pinned at A and supported by two 

rods. There is no strain in the rods before load P is applied. After 

load P is applied, the axial strain in rod (1) is a specifi ed value. 

Determine the axial strain in rod (2) and the downward defl ection 

of the rigid bar at B.

M2.3 Use normal strain concepts for four introductory problems 

using these two structural confi gurations.

 MecMovies ExercisesMM

FIGURE M2.1

FIGURE M2.3

FIGURE M2.2
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PROBLEMSPROBLEMS
P2.1 When an axial load is applied to the ends of the bar shown 

in Figure P2.1, the total elongation of the bar between joints A and 

C is 0.15 in. In segment (2), the normal strain is measured as 

1,300 �in./in. Determine

(a) the elongation of segment (2).

(b) the normal strain in segment (1) of the bar.

P2.4 A rigid bar ABCD is supported by two bars, as shown in Fig-

ure P2.4. There is no strain in the vertical bars before load P is  applied. 

After load P is applied, the normal strain in rod (1) is �570 �m/m. 

Determine

(a) the normal strain in rod (2).

(b)  the normal strain in rod (2) if there is a 1-mm gap in the 

 connection at pin C before the load is applied.

(c)  the normal strain in rod (2) if there is a 1-mm gap in the 

 connection at pin B before the load is applied.

FIGURE P2.1

40 in. 90 in.

(2)(1)

A B C

PP

FIGURE P2.2

b

h

a

P

y

x

A

B

C

FIGURE P2.3

(1)

(2)

(1)

A B C

P

1L

2L

Rigid bar

FIGURE P2.4

1,500 mm

900 mm

240 mm 360 mm 140 mm

A B C D

P(1)

(2)

Rigid bar

P2.2 The two bars shown in Figure P2.2 are used to support a 

load P. When unloaded, joint B has coordinates (0, 0). After load 

P is applied, joint B moves to the coordinate position (0.35 in., 

�0.60 in.). Assume a � 11 ft, b � 6 ft, and h � 8 ft. Determine 

the normal strain in each bar.

P2.3 A rigid steel bar is supported by three rods, as shown in 

Figure P2.3. There is no strain in the rods before the load P is 

applied. After load P is applied, the normal strain in rods 

(1) is 860 �m/m. Assume initial rod lengths of L1 � 2,400 mm and 

L2 � 1,800 mm. Determine

(a) the normal strain in rod (2).

(b)  the normal strain in rod (2) if there is a 2-mm gap in the 

 connections between the rigid bar and rods (1) at joints A and 

C before the load is applied.

(c)  the normal strain in rod (2) if there is a 2-mm gap in the 

 connection between the rigid bar and rod (2) at joint B before 

the load is applied.

P2.5 In Figure P2.5, rigid bar ABC is supported by a pin con-

nection at B and two axial members. A slot in member (1) allows 

the pin at A to slide 0.25 in. before it contacts the axial member. 

If the load P produces a compression normal strain in member (1) 

of �1,300 �in./in., determine the normal strain in member (2).
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FIGURE P2.5

20 in.

32 in. 0.25 in.

9 in.

A

B
C

P

(1)

(2)

160 in.

12 in.
FIGURE P2.6

D

Sanding sleeve

Mandrel

P2.6 The sanding-drum mandrel shown in Figure P2.6 is 

made for use with a hand drill. The mandrel is made from a 

rubber-like material that expands when the nut is tightened to 

secure the sanding sleeve placed over the outside surface. If the 

diameter D of the mandrel increases from 2.00 in. to 2.15 in. as 

the nut is tightened, determine

(a) the average normal strain along a diameter of the mandrel.

(b)  the circumferential strain at the outside surface of 

the mandrel.

P2.7 The normal strain in a suspended bar of material of vary-

ing cross section due to its own weight is given by the expression 

� y�3E, where � is the specifi c weight of the material, y is the dis-

tance from the free (i.e., bottom) end of the bar, and E is a material 

constant. Determine, in terms of �, L, and E the following:

(a) the change in length of the bar due to its own weight

(b) the average normal strain over the length L of the bar

(c) the maximum normal strain in the bar

P2.8 A steel cable is used to support an elevator cage at the 

bottom of a 2,000-ft-deep mineshaft. A uniform normal strain of 

250 �in./in. is produced in the cable by the weight of the cage. At 

each point, the weight of the cable produces an additional normal 

strain that is proportional to the length of the cable below the point. 

If the total normal strain in the cable at the cable drum (upper end 

of the cable) is 700 �in./in., determine

(a) the strain in the cable at a depth of 500 ft.

(b) the total elongation of the cable.

FIGURE 2.4 Shear strain.

x

y
�xy

�x

� �

L

O

A deformation involving a change in shape (distortion) can be used to illustrate a shear 

strain. An average shear strain �avg associated with two reference lines that are orthogonal 

in the undeformed state (two edges of the element shown in Figure 2.4) can be obtained by 

dividing the shear deformation � x (displacement of the top edge of the element with respect 

to the bottom edge) by the perpendicular distance L between these two edges. If the defor-

mation is small, meaning that sin � � tan � � � and cos � � 1, then shear strain can be 

defi ned as

 �
�

avg � x

L  (2.3)

For those cases in which the deformation is nonuniform, the shear strain at a point, �xy(O), 

associated with two orthogonal reference lines x and y is obtained by measuring the shear 

deformation as the size of the element is made smaller and smaller. In the limit,

 �
� �

xy
x xO

L
d
dLL

( ) lim�
�

�
�

� 0
 (2.4)

2.3  Shear Strain
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Since shear strain is defi ned as the tangent of the angle of distortion, which is equal to the 

angle in radians for small angles, an equivalent expression for shear strain that is  sometimes 

useful for calculations is

 �
�

�xy O( ) � � �
2

 (2.5)

In this expression, � � is the angle in the deformed state between two initially orthogonal 

reference lines.

Strain Units

Equations (2.3) through (2.5) indicate that shear strains are dimensionless angular quanti-

ties, expressed in radians (rad) or microradians (�rad). The conversion from radians, a 

dimensionless quantity, to microradians is 1 �rad � 1 × 10�6 rad.

Measuring Shear Strains Experimentally

Shear strain is an angular measure, and it is not possible to directly measure the extremely 

small angular changes typical of engineered structures. However, shear strain can be deter-

mined experimentally by using an array of three strain gages called a strain rosette. Strain 

rosettes will be discussed in more detail in Chapter 13.

Sign Conventions for Shear Strains

Equation (2.5) shows that shear strains will be positive if the angle � � between the x and y 

axes decreases. If the angle �� increases, the shear strain is negative. To state this another 

way, Equation (2.5) can be rearranged to give the angle �� in the deformed state between 

two reference lines that are initially 90° apart:

� � ��
�

�
2 xy  

If the value of �xy is positive, then the angle � � in the deformed state will be less than 90° 

(i.e., ��2 rad) (Figure 2.5a). If the value of �xy is negative, then the angle � � in the de-

formed state will be greater than 90° (Figure 2.5b). Positive and negative shear strains are 

not given special or distinctive names.

FIGURE 2.5a A positive value 

for the shear strain �xy means that 

the angle �� between the x and y 

axes decreases in the deformed 

object.

x

y

�xy–
2
�

FIGURE 2.5b The angle 

between the x and y axes 

increases when the shear 

strain �xy has a negative value.

x

y

�xy–
2
�

EXAMPLE 2.2

The shear force V shown causes side QS of the thin rectangular plate to displace 

 downward 0.0625 in. Determine the shear strain �xy at P.

Plan the Solution
Shear strain is an angular measure. Determine the angle between the x axis and side PQ 

of the deformed plate.

SOLUTION
Determine the angles created by the 0.0625-in. deformation. Note: The small angle 

 approximation will be used here; therefore, sin � � tan � � �.

� � �
0.0625 in.

8 in.
0.0078125 rad

x

y

P Q

R S

8 in.

0.0625 in.

V12 in.

40
STRAIN
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In the undeformed plate, the angle at P is ��2 rad. After the plate is deformed, the angle 

at P increases. Since the angle after deformation is equal to (��2) � � , the shear strain 

at P must be a negative value. Therefore, the shear strain at P is

 � � �0 00781. rad Ans.

x

y

P Q

R S

8 in.

0.0625 in.

V12 in.

�

�–
2
�

A thin triangular plate is uniformly deformed. Determine 

the shearing strain at P after point P has been displaced 

1 mm downward.

 MecMovies Example M2.5MM

A thin rectangular plate is uniformly deformed as shown. Determine the shear strain �xy at P.

Plan the Solution
Shear strain is an angular measure. Determine the two angles created by the 0.25-mm 

defl ection and the 0.50-mm defl ection. Add these two angles to determine the shear 

strain at P.

SOLUTION
Determine the angles created by each deformation. Note: The small angle approxima-

tion will be used here; therefore, sin � � tan � � �.

�1
0 50
720

0 000694� �
.

.
mm
mm

rad

�2
0 25
480

0 000521� �
.

.
mm
mm

rad

The shear strain at P is simply the sum of these two angles:

             
� � �� � � � �

�

1 2 0 000694 0 000521 0 001215. . .rad rad rad

1,2115 rad�  Ans.

Note: The angle at P in the deformed plate is less than ��2, as it should be for a posi-

tive shear strain. Although not asked for in the problem, the shear strain at corners Q 

and R will be negative, having the same magnitude as the shear strain at corner P.

EXAMPLE 2.3

x

y

P

Q

R

S

480 mm

0.25 mm

720 mm

0.50 mm

x

y

P

Q

R
S

480 mm

0.25 mm

720 mm

0.50 mm

�
1

�
2

�–
2
�
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P2.9 The 16-mm by 22-mm by 25-mm rubber blocks shown in 

Figure P2.9 are used in a double-U shear mount to isolate the vibra-

tion of a machine from its supports. An applied load of P � 690 N 

causes the upper frame to be defl ected downward by 7 mm. Deter-

mine the average shear strain and the shear stress in the rubber 

blocks.

Double U
anti-vibration
shear mount

Shear deformation
of blocks

P

16

25

22

Rubber block
dimensions

FIGURE P2.9

P2.10 A thin polymer plate PQR is deformed such that corner Q 

is displaced downward 1/16-in. to new position Q � as shown in 

Figure P2.10. Determine the shear strain at Q� associated with the 

two edges (PQ and QR).

25 in. 4 in.

in.

10 in.

P

Q

Q�

R
x

y

16
1—

FIGURE P2.10

PROBLEMSPROBLEMS
P2.11 A thin polymer plate PQR is deformed so that corner Q 

is displaced downward 1.0 mm to new position Q � as shown in 

Figure P2.11. Determine the shear strain at Q � associated with the 

two edges (PQ and QR).

300 mm

1.0 mm

120 mm 750 mm

P

Q

Q�

R
x

y

FIGURE P2.11

P2.12 A thin square plate is uniformly deformed as 

shown in Figure P2.12. Determine the shear strain �xy after 

deformations

(a) at corner P, and

(b) at corner Q.

100 mm

75 mm

100 mm110 mm

25 mm
y

x
P Q

R S

FIGURE P2.12
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P2.13 A thin square plate is uniformly deformed as shown in 

Figure P2.13. Determine the shear strain �xy after deformations

(a) at corner R, and

(b) at corner S.

100 mm

75 mm
100 mm

120 mm

25 mm

y

x

R

S

P

Q

FIGURE P2.13

P2.14 A thin square plate PQRS is symmetrically deformed into 

the shape shown by the dashed lines in Figure P2.14. For the de-

formed plate, determine

(a) the normal strain of diagonal QS.

(a) the shear strain �xy at corner P.

251.2 mm

249.7 mm

250 mm

y

x

S

R

Q

P

Undeformed

Deformed

FIGURE P2.14

When unrestrained, most engineering materials expand when heated and contract when 

cooled. The thermal strain caused by a one-degree (1°) change in temperature is designated 

by the Greek letter � (alpha) and is known as the coeffi cient of thermal expansion. The 

strain due to a temperature change of �T is

 � �T T� �  (2.6)

The coeffi cient of thermal expansion is approximately constant for a considerable range of 

temperatures. (In general, the coeffi cient increases with an increase of temperature.) For a 

uniform material (termed a homogeneous material) that has the same mechanical 

 properties in every direction (termed an isotropic material), the coeffi cient applies to all 

dimensions (i.e., all directions). Values of the coeffi cient of expansion for common materi-

als are included in Appendix D.

Total Strains

Strains caused by temperature changes and strains caused by applied loads are essentially 

independent. The total normal strain in a body acted on by both temperature changes and 

applied load is given by

 ���total � �	 T  (2.7)

Since homogeneous, isotropic materials, when unrestrained, expand uniformly in all  direc-

tions when heated (and contract uniformly when cooled), neither the shape of the body nor 

the shear stresses and shear strains are affected by temperature changes.

2.4 Thermal Strain

A material of uniform 

composition is called a 

homogeneous material. In 

materials of this type, local 

variations in composition 

can be considered negligible 

for engineering purposes. 

Furthermore, homogeneous 

materials cannot be 

mechanically separated 

into different materials 

(e.g., carbon fibers in a 

polymer matrix). Common 

homogeneous materials are 

metals, alloys, ceramics, 

glass, and some types 

of plastics.

An isotropic material has the 

same mechanical properties in 

all directions.
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Cutting tools such as mills and drills are connected to machining equipment by means of 

tool holders. The cutting tool must be fi rmly clamped by the tool holder to achieve pre-

cise machining, and shrink-fi t tool holders take advantage of thermal expansion proper-

ties to achieve this strong, concentric clamping force. To insert a cutting tool, the shrink-

fi t holder is rapidly heated while the cutting tool remains at room temperature. When the 

holder has expanded suffi ciently, the cutting tool drops into the holder. The holder is 

then cooled, clamping the cutting tool with a very large force directly on the tool shank.

At 20°C, the cutting tool shank has an outside diameter of 18.000 � 0.005 mm, and 

the tool holder has an inside diameter of 17.950 � 0.005 mm. If the tool shank is held at 

20°C, what is the minimum temperature to which the tool holder must be heated in order to 

insert the cutting tool shank? Assume the coeffi cient of thermal expansion for the tool 

holder is 11.9 � 10�6�°C.

Plan the Solution
Use the diameters and tolerances to compute the maximum outside diameter of the 

shank and the minimum inside diameter of the holder. The difference between these 

two diameters is the amount of expansion that must occur in the holder. For the tool 

shank to drop into the holder, the inside diameter of the holder must equal or exceed the 

shank diameter.

EXAMPLE 2.5

Cutting
tool

Shrink-fit
tool holder

A steel bridge beam has a total length of 150 m. Over the course 

of a year, the bridge is subjected to temperatures from �40°C to 

�40°C, and these temperature changes cause the beam to expand 

and contract. Expansion joints between the bridge beam and the 

supports at the ends of the bridge (called abutments) are installed to 

allow this length change to take place without restraint.  Determine 

the change in length that must be accommodated by the expan-

sion joints. Assume the coeffi cient of thermal expansion for steel 

is 11.9 � 10�6�°C.

Plan the Solution
Determine the thermal strain from Equation (2.6) for the total tem-

perature variation. The change in length is the product of the ther-

mal strain and the beam length.

SOLUTION
The thermal strain for a temperature variation of 80°C is

� �T T� � � �� � ��� 11 9 10 80 0 000952. ( ) .6 °C C m/m°

The total change in the beam length is, therefore,

 � �T L� � � �( . ) ( ) .0 000952 150 0 1428m/m m m 142.8 mm  Ans.

The expansion joint must accommodate at least 142.8 mm of horizontal movement.

EXAMPLE 2.4

Bridge
beam

Abutment

Expansion permitted

Typical “fi nger-type” expansion joint for bridges.
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SOLUTION
The maximum shank outside diameter is 18.000 � 0.005 mm � 18.005 mm. The mini-

mum holder inside diameter is 17.950 � 0.005 mm � 17.945 mm. Therefore, the inside 

diameter of the holder must be increased by 18.005 � 17.945 mm � 0.060 mm. To 

expand the holder by this amount requires a temperature increase:

� �T Td T� � � � �
� �� ��

0 060
0 060

10 17 945
.

.

( .
mm

mm

11.9 C6
�

° mmm
C

)
� 281°

Therefore, the tool holder must attain a minimum temperature of

 20 281° ° °C C 301 C� �  Ans.

P2.15 An airplane has a half-wingspan of 33 m. Determine the 

change in length of the aluminum alloy [�A � 22.5 � 10�6�°C] 

wing spar if the plane leaves the ground at a temperature of 15°C 

and climbs to an altitude where the temperature is �55°C.

P2.16 A square 2014-T4 aluminum alloy plate 400 mm on a side 

has a 75-mm-diameter circular hole at its center. The plate is heated 

from 20°C to 45°C. Determine the fi nal diameter of the hole.

P2.17 A cast iron pipe has an inside diameter of d � 208 mm 

and an outside diameter of D � 236 mm. The length of the pipe 

is L � 3.0 m. The coeffi cient of thermal expansion for cast iron 

is �I � 12.1 � 10�6�°C. Determine the dimension changes 

caused by an increase in temperature of 70°C.

P2.18 At a temperature of 40°F, a 0.08-in. gap exists between 

the ends of the two bars shown in Figure P2.18. Bar (1) is an alumi-

num alloy [� � 12.5 � 10�6�°F], and bar (2) is stainless steel 

[�  � 9.6 � 10�6�°F]. The supports at A and C are rigid. Determine 

the lowest temperature at which the two bars contact each other.

(1) (2)

A
B C

0.08-in. gap

40 in. 55 in.

FIGURE P2.18

P2.19 At a temperature of 5°C, a 3-mm gap exists between two poly-

mer bars and a rigid support, as shown in Figure P2.19. Bars (1) and (2) 

have coeffi cients of thermal expansion of �1 � 140 � 10�6�°C and 

�2 � 67 � 10�6�°C, respectively. The supports at A and C are rigid. 

Determine the lowest temperature at which the 3-mm gap is closed.

PROBLEMSPROBLEMS

540 mm 360 mm

(1) (2)

A B C

3-mm gap

FIGURE P2.19

P2.20 An aluminum pipe has a length of 60 m at a temperature of 

10°C. An adjacent steel pipe at the same temperature is 5 mm lon-

ger. At what temperature will the aluminum pipe be 15 mm longer 

than the steel pipe? Assume that the coeffi cient of thermal expan-

sion for the aluminum is 22.5 � 10�6�°C and that the coeffi cient of 

thermal expansion for the steel is 12.5 � 10�6�°C. 

P2.21 Determine the movement of the pointer of Figure P2.21 

with respect to the scale zero in response to a temperature increase 

of 60°F. The coeffi cients of thermal expansion are 6.6 � 10�6�°F 

for the steel and 12.5 � 10�6�°F for the aluminum. 

Smooth pins

1.5 in.7.0 in.

12 in.

+

–

0

Steel SteelAluminum

FIGURE P2.21
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dB � 299.75 mm and an outside diameter of DB � 310 mm. The 

sleeve is to be placed on a steel [�S � 11.9 � 10�6�°C] shaft with 

an outside diameter of DS � 300 mm. If the temperatures of the 

sleeve and the shaft remain the same, determine the temperature at 

which the sleeve will slip over the shaft with a gap of 0.05 mm.

P2.24 For the assembly shown in Figure P2.24, bars (1) and 

(2) each have cross-sectional areas of A � 1.6 in.2, elastic moduli 

of E � 15.2 � 106 psi, and coeffi cients of thermal expansion of 

� � 12.2 � 10�6�°F. If the temperature of the assembly is in-

creased by 80°F from its initial temperature, determine the result-

ing displacement of pin B. Assume h � 54 in. and � � 55°.

A

B

C

(1) (2)

h

FIGURE P2.24

P2.22 Determine the horizontal movement of point A of Figure 

P2.22 due to a temperature increase of 75°C. Assume that member 

AE has a negligible coeffi cient of thermal expansion. The coeffi -

cients of thermal expansion are 11.9 � 10�6�°C for the steel and 

22.5 � 10�6�°C for the aluminum alloy.

300 mm

25 mm

250 mm

Steel

Aluminum

A

B C

D E

FIGURE P2.22

P2.23 At a temperature of 25°C, a cold-rolled red brass 

[�B � 17.6 � 10�6�°C] sleeve has an inside diameter of 
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