Rock Mechanics

Lecture 4

MECHANICAL PROPERTIES OF THE ROCK

Dr. Azealdeen Salih Al-Jawadi

Introduction

- For the purpose of design and to evaluate the stability of underground structure, <u>mechanical properties of the rock</u> <u>must be known</u>.
- It provides the knowledge of material <u>deform or fail</u>, under the action of applied force.
- The mechanical properties are tensile strength, compressive strength, shear strength, creep or time properties and strain or deformation properties.
- The mechanical properties can be determined by <u>static testing</u> which includes uniaxial (unconfined) compressive, tensile, shear and flexural strength, triaxial compressive etc. and also <u>elastic constants</u>, i.e., modulus of elasticity and Poisson's ratio obtained from uniaxial, triaxial stress-strain relationship.

Rate of stress application

a) <u>steadily increasing</u>: zero to failure in a few minutes, e.g. as in a laboratory test.

b) <u>permanent or static</u>: constant with time, e.g. the self weight of the upper part of a structure acting on the lower part.

c) <u>impact or dynamic</u>: very fast, lasting a few microseconds, e.g. the impact of a vehicle on a crash barrier, or an explosion.

d) <u>cyclic</u>: variable with load reversals, e.g. earthquake loading – a few cycles in a few minutes, and wave loading on an offshore structure – many cycles over many years.

Uniaxial compressive test (UCS)

Universal testing machine (UTM)

Determination of the Uniaxial compressive strength of cylindrical intact rock specimens (load up 2000kN). The load rate is kept constant using a servo-hydraulic control unit.

Before failure

After failure

Basically, there are four main factors that control the test results other than the intact rock properties themselves.

- Friction between the platen and the end surface
- Specimen geometry (shape, height to diameter ratio and size)
- Rate of loading
- Water content

A height to diameter ratio of 2 (54 mm in diameter and 108 mm in height) had been employed and the testing procedure will strictly follow the Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials (ISRM, 1981).

Co is the compressive strength of a specimen of the same material having 1:1 length to diameter ratio. Cp is compressive strength of specimen for which 2 > (L/D) > (1/3). D is the diameter of cylindrical samples.

L is the length or height of the sample.

Sample preparing

Uniaxial compressive test (UCS)

Rock sample cutting

Coring from rock mass sample

Uniaxial compressive test (UCS)

$\sigma_c = \frac{P}{A}$ (Failure load) $\sigma_c = \frac{A}{A}$ (Specimen cross sectional area)

No.	Diameter (m)	Height (m)	Load (kN)	Uniaxial compressive strength (MPa)
1	0.05	0.1	48.446	24.67
2	0.05	0.1	50.566	25.75
3	0.05	0.1	52.746	26.86
Average				25.76

Which factors affecting to the UCS test?

- •The flatness of bearing surface,
- •specimen size and shape,
- •moisture content in the specimen,
- •the effect of friction between the bearing platens and the specimen,
- the alignment of a swivel head andrate of loading

What are the characteristics of the specimen for UCS?

The specimen generally must be cylindrical or cubical in shape.
The cylindrical samples are cut to the size by a diamond saw and surface irregularities are smoothened by a surface polishing machine.
The length of the specimen is generally <u>2.5</u> times the diameter.
The ends of the specimen should be <u>parallel</u> to each other and <u>normal</u> to

the axes of the specimen.

Why the compressive strength of rock is a vital parameter? This character is useful in underground mining, pillars and columns support the roof rock. For the stability of pillars and columns.

Which parameters in UCS are dependent or independent? The axial stress σ is the controlled, independent variable, and the axial strain is the dependent variable.

How many methods the engineers can test rocks to determine and estimate the UCS?

The direct method by testing a cylindrical or cubic rock specimen, Point load test,

Schmidt hammer and

Geological hammer.

Describe the effects of porosity and water content on the compressive strength?

The compressive strength of the rock decreases with an increase in its porosity. Water in rock pores reduces the magnitude of internal friction of rock thereby reducing the rock strength. Usually, a wet sample has its strength 1/3 of that of dry one.

Explain how you can measure the strain, Young's modulus and UCS of the rock sample in the laboratory?

The longitudinal strain can be measured by a strain gauge glued to the lateral surface of the rock. Alternatively, the total shortening of the core in the direction of loading can be measured by an extensometer that monitors the change in the vertical distance between the platens. In this case, the longitudinal strain is calculated from the relative shortening of the core, that is, $\varepsilon =$ $-\Delta L/L$. If the stress state were indeed uniaxial, then Young's modulus of the rock could be estimated from $E = \sigma/\epsilon$. The stress can be increased slowly until failure occurs. The stress at which the rock fails is known as the unconfined, or uniaxial compressive strength of the rock.

Strain Gauge as force Sensor

Strain gauge glued to the lateral surface of the rock

The structure of the strain gauge

Point load test

Point load testing machine

Determination of point load strength based on the application of axial load on rock specimens having a cylindrical or irregular shape.

Before failure

After failure

Point load test

Point load testing machine

Determination of point load strength based on the application of axial load on rock specimens having a cylindrical or irregular shape.

Before failure

After failure

Point load test – shape requirements

Diametric test

Axial test

Point load test – shape requirements

Block test

Irregular lump test

Point load test – shape requirements

Valid diametric test

Valid axial test

Point load test – mode of failure

Valid block test

Invalid core and axial test

Point load test

A rock core is loaded diametrically between the tips of two hardened steel cones, causing failure through the development of tensile cracks parallel to the loading direction.

No.	Diameter (m)	Height (m)	Load (kN)	ls ₍₅₀₎ (MPa)
1	0.05	0.075	2.685	1.07
2	0.05	0.075	2.680	1.07
3	0.05	0.075	3.185	1.27
	1.14			

Correlation between UCS and PL

$$UCS = 24I_{s(50)}$$

Sample	Point load index	UCS Estimated	USC value
1	1.07	25.68	24.67
2	1.07	25.68	25.75
3	1.27	30.48	26.86
	Average	27.28	25.76

What is the meaning of the Is(50)?

This test method is performed to determine the point load strength index Is(50) of rock specimens, and the point load strength anisotropy index Ia(50) that is the ratio of point load strengths on different axes that result in the greatest and least values.

Correlation between UCS and PL

Classes of rock excavatability

Correlation between UCS and PL

Field estimates of intact rock based on Uniaxial compressive strength and point load index

G	Term	UCS	PLI	Field estimate of strength	Examples
		(MPa)	(MPa)		
R6	Extremely strong	>250	>10	Specimen can only be chipped with a geological hammer	Fresh basalt, chert, diabase, gneiss, granite, quartzite
R5	Very strong	100-250		ammer	Amphibolite, sandstone, basalt, gabbro, gneiss, granodiorite, peridotite, rhyolite, tuff
R4	Strong	50-100		ogical	Limestone, marble, sandstone, schist
R3	Medium strong	25-50		m a	Concrete, phyllite, schist, siltstone
R2	Weak	5-25		, int of	Chalk, claystone, potash, marl, siltstone, shale, rocksalt
R1	Very weak	1-5	**	hammer, can be peeled by a pocket knife	Highly weathered or altered rock, shale
R0	Extremely weak	0.25-1	**	Indented by thumbnail	Stiff fault gouge

**Point load tests on rocks with Uniaxial compressive strength below 25 MPa are likely to yield highly ambiguous results

Index test

Schmidt test hammer

Non-destructive inspection

Rebound number & rock properties

Figure2.Relationship between Schmidt number and UCS for the roof rock of North-Eastern collieries of Iran.

Rebound number & rock properties

Schmidt test hammer measurement in tunnel

Tensile Strength of Rock

For a rectangular sample under a load in a three-point bending setup

$$\sigma = rac{3FL}{2bd^2}$$

- F is the load (force) at the fracture point (N)
- *L* is the length of the support span
- b is width
- d is thickness

F L L If the loading span is neither 1/3 nor 1/2 the support span for the 4 pt bend setup

$$\sigma = rac{3F(L-L_i)}{2bd^2}$$

. Li is the length of the loading (inner) span

Splitting tension test (Brazilian test)

Load

Brazilian test machine

Brazilian test apparatus are used for indirect measurement of tensile strength of rocks

flexural strength or bending test

3 Unconfined Shear Strength

1. For single shear test, the shear strength So is

2. For Double Shear test, the shear strength S_0 is

$$S_o = \frac{F_c}{2A}$$

Fc is the force in the direction of the plane 'A' necessary to cause failure. A = cross-sectional area of specimen

Double Shear test

Single shear test

3. For Punch Shear test, the shear strength S_0 is

$$S_o = \frac{F_c}{2\pi ra}$$

a = thickness of the specimen and r = radius of punch

4. For Torsional Shear test, the shear strength S_0 is

$$S_o = \frac{16 M_c}{\pi D^3}$$

Mc = applied torque at the failure D = Diameter of the cylinder

Punch Shear test

Torsional Shear test

Portable direct shear test

Shear test on rock discontinuities

Shear of rock discontinuity

Determination of the shear strength of natural and artificial rock discontinuities.

Direct single shear test

4 Triaxial Compressive and Shear Strength

A is the end area of the specimen

Mohr's Circle

- the angle internal friction formed by tangent to the circle at p and the direction of the τ axis.
- θ = Angle of failure plane with respect to axial direction
- μ = the coefficient of internal friction can be calculated from tan2Q = 1/μ

 $\sigma_{\rm r}$ and $\sigma_{\rm s}$ relationship is approximately linear for many rocks.

$$\tau_{\theta} = + (S_o - \sigma_{\theta} \tan \phi)$$

 S_{n} is the shear strength of the rock.

tan
 is the slope of the envelope curves.

Triaxial test

Triaxial rock testing system

Determination of the compressive strength of intact rock specimens with simultaneous application of confining pressure (up to 70MPa) using the Hoek cell.

Before failure

After failure

