COAL HANDLING

By Assistant lecturer: Omer H. Kanam College of Petroleum and Mining Engineering Mining Department-III-CLASS University of Mosul LEC. NO. 5

INTRODUCTION

- What Is Coal?
- How Coal Forms?

Properties of Coal Mr. Omer Haitham Kanam				
	< Low	Rank>	< High Rank	>
Rank:	Lignite	Subbituminous	Bituminous	Anthracite
Age:	increases>			
% Carbon:	65-72	72-76	76-90	90-95
% Hydrogen:	~5 decreases ~2			
% Nitrogen:	<>			
% Oxygen:	~30 decreases ~1			
% Sulfur:	~0 increases ~4 decreases ~0			
%Water:	70-30	30-10	10-5	~5
Heating value (BTU/lb):	~7000	~10,000	12,000-15,000	~15,000

Coal Handling System

"Mechanical handling" of coal is preferred over "manual handling" due to the following reasons:

- Advantages:
- 1. Higher reliability.
- 2. Less labour required.
- 3. Economical for medium and large capacity plants.
- 4. Operation is easy and smooth.
- 5. Can be easily started.
- 6. With reduced labour, management and control of the plant becomes easy and smooth.
- 7. Losses in transport are minimized.
- Disadvantages:
- 1. Needs continuous maintenance and repair.
- 2. Capital cost of the plant is increased.
- 3. In mechanical handling some power generated is usually consumed, resulting in less net power available for supply to consumers.

Requirements of Good Coal Handling Pla

• It should :

- Need minimum maintenance.
- Be reliable.
- Be simple and sound.
- Require a minimum of operatives.
- Be able to deliver requisite quantity of coal at the destination during peak periods.
- Be minimum wear in running the equipment due to abrasive action of coal particles.

- Unloading equipment
- Car Shakers, Rotary car dampers, unloading towers and bridges, selfunloading boats, lifts trucks, cranes and buckets

- Preparing equipment
- Crushers, sizers, and driers

Screw conveyor

- Transfer Equipment
- Belt conveyor, screw conveyor, bucket elevator, skip hoist, flight conveyor

- Storage Equipment
- Bulldozer, scraper, tramways, cranes and conveyor systems

- Covered storage equipment
- Bins, bunkers, indicators, gates and values

- Weighing Devices
- Scales, coal meters and samplers

Coal Handling Plant

- What is CHP?
- Normally Thermal Power Station receives the coal by three modes of transportation:
- By Railway (80-90% of the requirement is fulfilled by this way)
- By Road (if required 5-10% of the requirement is fulfilled by this way)
- By Arial rope ways

Coal Handling Operation Plant

- Before crusher Belt Conveyor is provided by hanging magnet
- Coal is Conveyed to Primary Crusher (100mm size)
- Vibrating screen used to feed the secondary crusher (> 25mm size)
- Coal is crushed by 25mm size
- 25mm crushed coal send to bunkering belt then to bunkers (coal bunkering)
- In case bunkers are full, coal stored in stock yard. (stacking)
- When coal is not available in plant by (rail, rope ways), stacked coal diverted to the coal bunkers by reclaiming conveyor belts.
- Coal stored in bunkers and send to coal mill.

Mr. Omer Haitham Kanam General Layout

TRACK HOPPERS

HOPPER OPNNING

CONCRETE AND STEEL PLATE

Mr. Omer Haitham Kanam

BELT SUPPOTER

FEEDING

Mechanical Reduction Size Methods

Impact

CRUSHING

Attrition

Shear

Compression

CRUSHING

STACKING

METHODS OF COAL TRANSPORTING

- 1. SEA
- 2. ROAD
- 3. ROPWAYS
- 4. RAIL
- 5. PIPELINE
- Advantages of Pipeline Method
- Simplicity in installation and increased safety in operation.
- More economical when dealing with large volume of coal over long distances.
- It's not affected by climate and weather.
- High degree of reliability.
- No loss of Coal
- Manpower requirement is low.

Precautionary Measures before Transporting

- Weighing of Coal
- Coal Weight=Weight of Tripper with coal Weight of Tripper without coal
- Payment of Coal
- Stone shells (Manually or Special Devices)
- Chemical Analysis of Coal (Calculations of Calorific value)

General Problems faced in Coal Handling Plan

Design Problems

- Less cal. Value
- More ash
- Low Bunkering

Rainy Season Problems

 Problems with Electromagnetic feeder problems at input point because coal is muddy and wet

Other Misc. Problems

- Snapping of belts /ropes (damaged and more maintenance time)
- Derailment of coal wagons
- Oversized coal/Muddy Coal

Coal Storage / Types

• 1. Dead Storage

- Supplies the coal where there is a shortage of coal in plant due to failure of normal supply of coal.
- Requires Protection of weather
- 2. Live Storage
- Supplies coal to plant for day to day usage.
- Capacity of live storage is less than that of dead storage.
- Usually stored in vertical cylindrical bunkers

Characteristics of Coal Storage

- Coal Heaps Storage
- Keep coal at low temperature (max. 70°C)
- Prevention of air circulation from bottom of coal piles
- Proper drainage of rainy water to prevent weathering drainage should not be rapid to prevent washing away of coal.
- Underwater Storage
- Slow oxidation can be eliminated
- Spontaneous combustion can be eliminated

Site Selection for coal dead storage

- 1. Free from standing water.
- 2. Artificial drainage should be provided.
- 3. Free from all foreign materials like wood, paper rags, waste oil or material having low ignition temperature.
- 4. Handling cost should be minimum.
- 5. Pile should build up in successive layer and compact.
- 6. Pile should dress to prevent entry of rainy water.
- 7. Alternative drying and wetting should avoid.

Site Selection for coal dead storage

- 8. Stoker size coal should be oil treated to prevent absorption of water, O2, and compaction which is not needed.
- 9. Side of pile should not be steep.
- 10. Air may circulate freely through pile for proper ventilation to keep temperatures low.
- 11. Hot surfaces or boiler blow down or hot water or steam pipes and tanks should far from coal storage.
- 12. Hot bright days are to be avoided.
- 13. There should be provision for temperature measurement at different points.
- 14. Conical piling should be avoided.
- 15. Firefighting equipment should be easily available.

Questions?

Thank you