LIQUEFIED GAS HANDLING

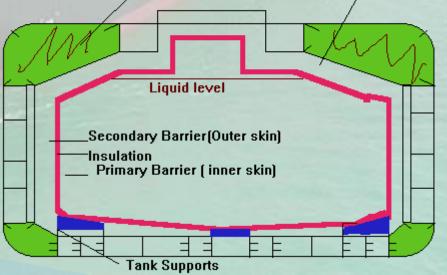
By Assistant lecturer: Omer H. Kanam College of Petroleum and Mining Engineering Mining Department-III-CLASS University of Mosul LEC. NO. 7 & 8

Liquefied Gas Handling

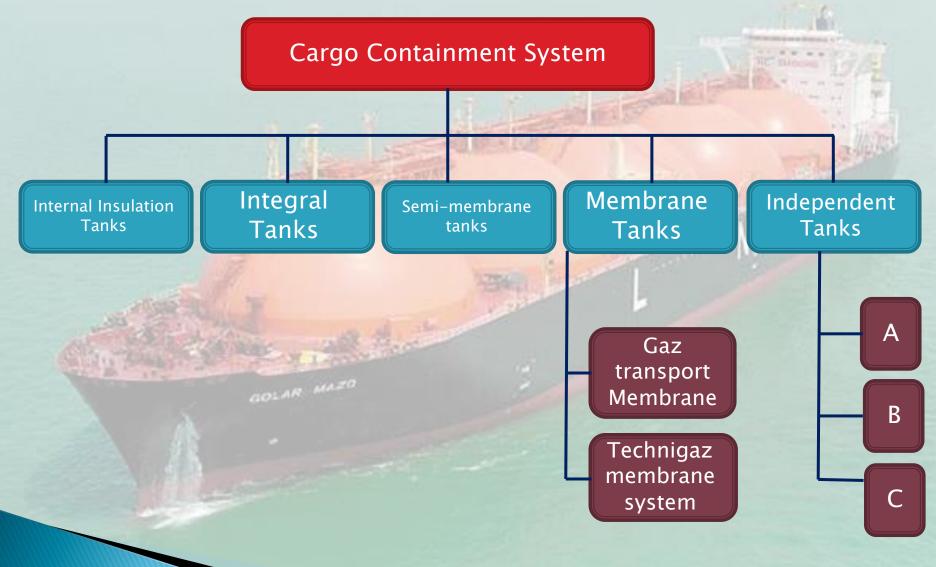
- What is L.G?
- Gas Codes?
- Gas carriers built after June 1986 (the IGC Code)
- Gas carriers built between 1976 and 1986 (the GC Code)
- Gas carriers built before 1977 (the Existing Ship Code)

Differences

LPG	LNG
Propane, Butane	Methane
C ₃ H ₈	CH ₄
Higher Energy Content (93MJ/m ³)	Lower Energy than LPG (38.7MJ/m ³)
Proper combustion Air/Gas=25:1	Air/Gas=10:1
Density = 1.5219 kg/m^3	Density = 0.5537 kg/m^3
Settle	Rises
Compressed into liquid at low pressure	Compressed into liquid at atm. pressure


Design Factors

- Types of cargo to be carried
- Condition of carriage (fully pressurised, semipressurised, fully refrigerated)
- Type of trade and cargo handling flexibility required by the ship
- Terminal facilities available when loading or discharging the ship

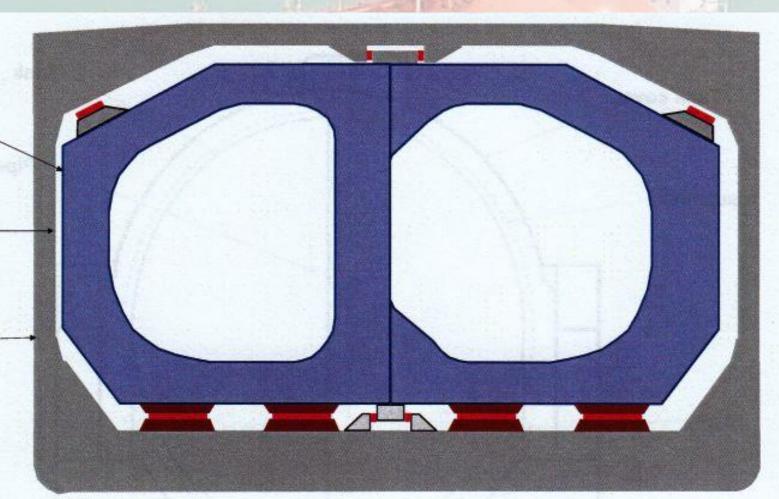

CARGO CONTAINMENT SYSTEMS

- A primary barrier (the cargo tank),
- Secondary barrier (if fitted),
- Associated thermal insulation,
- Any intervening spaces, and
- Adjacent structure, if necessary, for the support of these elements.
 Water ballast

Void space

CARGO CONTAINMENT TYPES

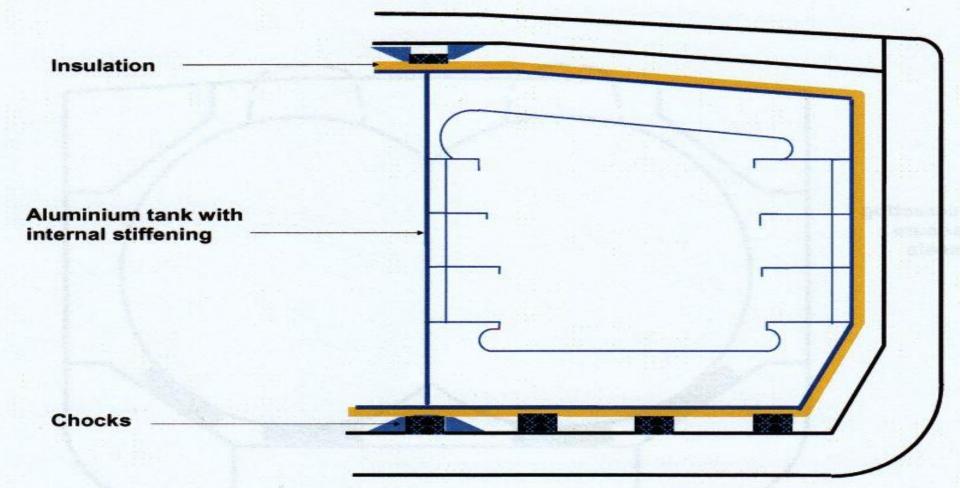
- Independent tanks (Type A,B, and C)
- Self Supporting (not a part of ship structure)
- Do not contribute to the hull strength of a ship
- Depends on the design pressure


- Independent tanks (Type A)
- Constructed of flat surfaces, prismatic tank
- MADP=0.7 bar
- Cargoes carries in a fully refrigerated Condition
- Self Supporting
- Hull space is filling with perlite insulation
- Need secondary barrier because it's material not crack propagation
- Secondary barrier prevent leakage for 15 days and to carry cargoes below -10
- Hold space must fill with inert gas to prevent flammable

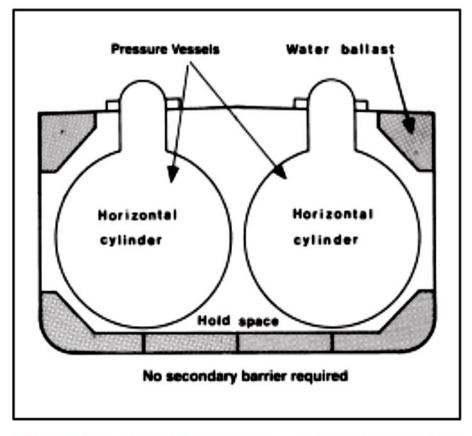
Independent tanks (Type A)

Primary barrier plating

Insulation on outside of tank


Hull secondary_ barrier

Independent tanks (Type B)


- Flat or Spherical Surfaces
- Depends on detailed stress analysis while designing (fatigue life & crack propagation analysis)
- Spherical tank required partial secondary barrier (drip tray)
- Hold space filled with dry inert gas
- Steel dome covers the primary barrier above deck level
- Insulation on the outside of the tank
- Spherical tank exclusively applied to LNG ships, seldom to LPG trade
- Prismatic shape has benefit of maximising ship hull volumetric efficiency
- MADP=0.7 bar

Independent tanks (Type B)

- Independent tanks (C)
- Spherical or Cylindrical
- Design stresses are kept low
- 1. Used for semi-pressurized, & for fully refrigerated carriage at low temp.
- MADP>2 bar, MWP=5~7 bar
- NO secondary barrier
- Hold space can be filled with inert gas or dry air
- Temp. of carrier Gas (-48C for LPG),& (-104C for ethylene)
- 2. Fully pressurized gas carriers
- MWP=18 bar
- Poor utilization of hull volume

Independent tanks (C)

Figure 3.3 Type 'C' tanks — fully pressurised gas carrier

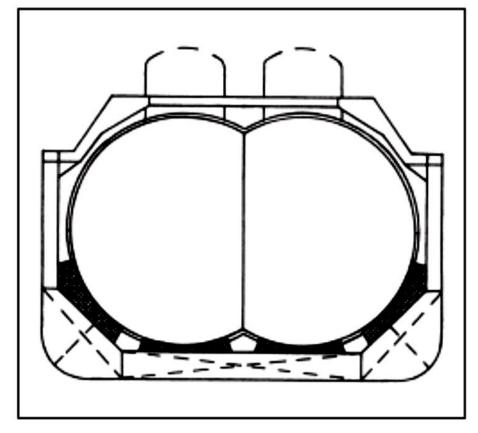
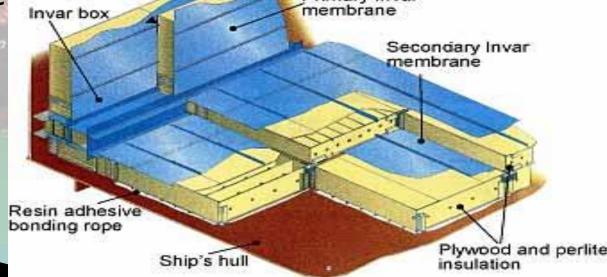
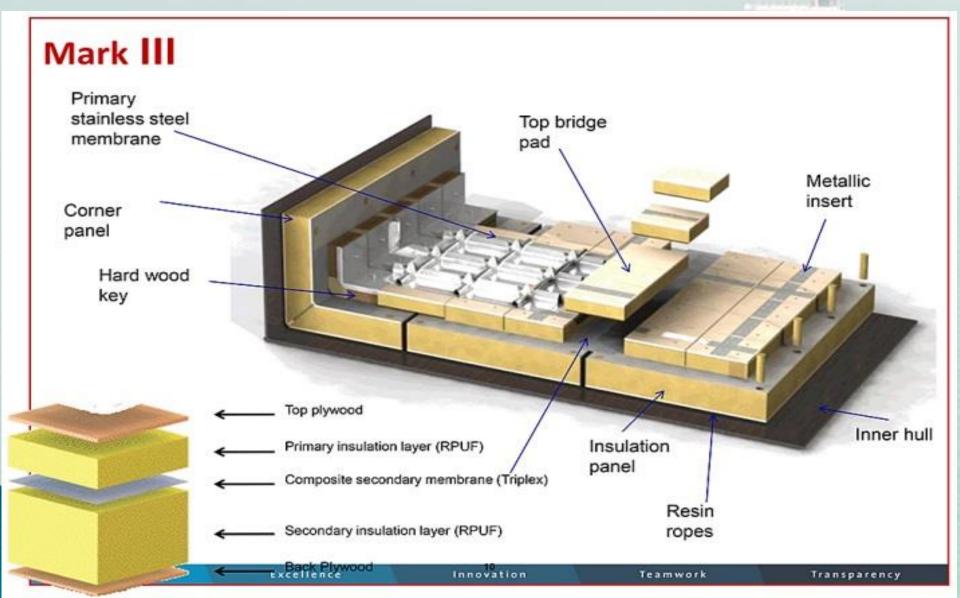



Figure 3.4 Type 'C' tanks — semipressurised gas carrier with bi-lobe tanks

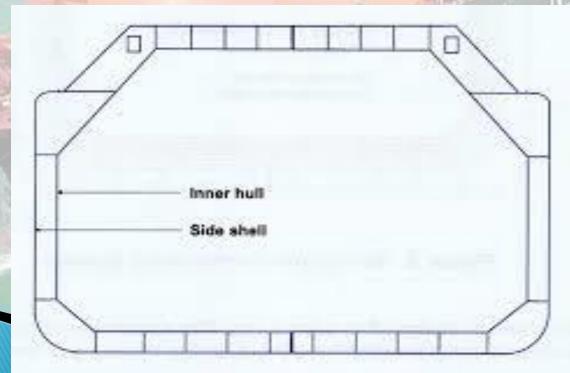
Membrane Tanks


- Very thin primary barrier (0.7 to 1.5 mm thick)
- Not self supporting
- Supported through insulation inner hull
- Always provided with secondary barrier (to integrate in case of leakage)
- Both Principle types of membrane carry LNG.
- Constructed from invar (36% nickel & 0.2% carbon)
 Perlite filled plywood boxes is a primary insulation (200-300 mm)

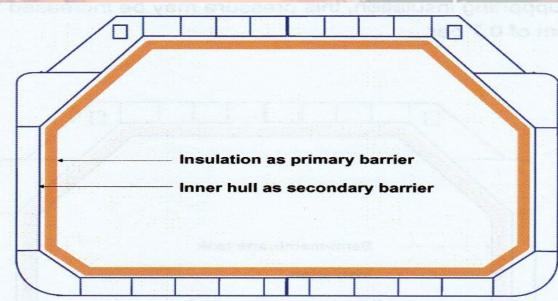
- Gaz Transport Membrane System
- Invar (0.7 mm thickness & 0.5 m width)
- Invar is used because it's low thermal coefficient of thermal expansion
- Plywood boxes to hold perlite insulation
- Perlite processed with a silicon to impervious to water or moisture

- Technigaz Membrane System
- Primary barrier of S.S. (1.2 mm thickness)
- Having raised corrugations to allow expansion and contraction
- Mark-I type design insulation consists of balsa wood panels held between two plywood layers
- Mark-III type design insulation replaced balsa wood by reinforced cellular foam
- A secondary barrier is a fiberglass aluminum laminate

Technigaz Membrane System


Semi-membrane tanks

- Primary barrier is much thicker
- Flat sides & Larger radiused corners
- Self-supporting when empty but not loaded
- Corners & edges are designed to accommodate expansion & contraction


Designed to carry LNG and fully refrigerated LPG

Integral Tanks

- It's part of ship's hull.
- influenced by the load which stress the ship's hull
- Not allowed to carriage of L.G. if cargo temp.<-10</p>

- Internal insulation tanks
- Similar to integral tanks in term of internally insulated cargo
- Not self supporting
- Carry L.G which is below –55 C
- Fully refrigerated LPG carrier

END OF PART-I

PART-II

MATERIALS OF CONSTRUCTION

- Minimum Service Temp.
- Low temp.-toughness (this is vital because metals become brittle below a certain temperature).
- Carbon steel, SS, INVAR (% Ni & % Iron), and aluminum is used to achieve low temperature characteristics.
- E.X. Ships carrying fully refrigerated LPG have tanks capable of withstanding temp. down to -55 C.
 Boiling point of liquid at atmospheric pressure.
 Fully refrigerated ethylene (B.P.T=-104C) OR LNG (B.P.T.=-162C)

TANK INSULATION

- <u>Thermal insulation must be fitted to refrigerated cargo</u> tanks for the following reasons:
- To minimize heat flow into cargo tanks, thus reducing boil-off.
- To protect the ship structure around the cargo tanks from the effects of low temperature.
- Characteristics of Insulation Material:
- Low thermal conductivity
- Ability to bear loads
- Ability to withstand mechanical damage
- Light weight
- Unaffected by cargo liquid or vapour

- Fully pressurised ships
- Semi-pressurised ships
- Ethylene ships
- Fully refrigerated LPG ships
 LNG ships

-smaller size shipment

Large size shipment

Fully Pressurised Ships

- Simplest type
- Fitted with Type C tanks (Design Pr=18 bar)
- No thermal insulation or reliquefaction plant is necessary for these ships and cargo can be discharged using either pumps or compressors
- Heavy because it's design pressure.
- Capacity (4000–6000 m³)
- Carry LPG & Ammonia
- No secondary barrier required because it's fitted with type C
- Hold Space ventilated with air.
- Discharging by pumps or compressors

Semi-pressurised ships

- Fitted with type C tanks (M.W.P=5~7 bar)
- Less weight because of reduction in Design Pr.
- Carry gases such as (LPG, vinyl chloride, propylene, butadiene)
- Capacity (3000–20,000 m³)
- No secondary barrier required because it's fitted with type C
- Suitable with temp.<-48 C if low temp steels used and -104 C if special alloyed steels or aluminum used
 Discharging/Loading through refrigerated or pressurised facilities

Ethylene ships

- Built for specific trades but will also operate carrying LPGs or Chemical Gases
- Normally Fitted with type C tanks also A, & B
- Capacities (1000–12000 m³)
- No secondary barrier is required for type C
- Thermal insulation required
- High-capacity reliquefaction is required
- Double hull is required for cargoes carried <-55</p>

Fully refrigerated ships

- Carry cargoes at atmospheric pressure
- Carry large quantities of LPG & Ammonia
- Fitted with (Independent, Integral, semi-membrane tanks) (M.W.P=0.7 bar)
- Low temp steel used to permit carriage temp<-48</p>
- Capacity (20,000–100,000 m³)
- It has 6 cargo Tanks
- Tanks supported on wooden chocks (Allow expansion & contraction & prevent movement of tanks under static & dynamic loads)

Fully refrigerated ships

- Tanks provided with anti-chocks to avoid lifting in case of ballast tank leakage
- Thermal insulation & reliquefaction is required
- Heaters & booster pumps are provided to allow discharging
- Secondary barrier required when type A used
- Hold space must inerted when carrying flammable cargoes

LNG ships

- Carry large volume of LNG at B.P.=-162 C
- Capacity (125,000–135,000 m³)
- Containment systems types are (Gaz Transport membrane, Technigaz membrane, Independent B, Prismatic)
- All LNG ships have double hull through cargo length
- Secondary barrier required
- cargo boil-off is burned as fuel.
- Hold spaces around the cargo tanks are continuously inerted, except spherical type B, it filled with dry air

LNG ships

- Continuous gas-monitoring of all hold spaces is required.
- Reliquefaction is required
- Most LNG carriers have steam turbine propulsion plants.

GAS CARRIER LAYOUT

- Pump room & pipelines should not be placed below the upper deck therefore, submersible pumps used for cargo discharge
- Pipelines to cargo tanks must be taken through a cargo tank dome which penetrates the deck
- Where ships are fitted with a reliquefaction plant, this is located in a compressor house on deck.
- Adjacent to the compressor house is an electric motor room which contains the machinery for driving the reliquefaction compressors.
- Electric motor and compressor rooms separated by a gas tight bulkhead

GAS CARRIER LAYOUT

- Pr+ ventilation for the electric motor room & Prventilation for the cargo compressor area.
- Airlock entrance provided to motor room with two gastight doors (1.5m apart)
- Doors should be self closing to ensure they are not open & alarms must provided
- A cofferdam required between cargo area & engine room & fuel tanks
- Fire protection system fitted on Gas tankers (water spray)

GAS CARRIER LAYOUT

- Cargo tank=evaporators
- Cargo=Refrigerant
- Seawater=coolant of the condenser
- The reliquefaction is boil off vapour to sufficient pressure to be liquefied against normally seawater
- The vapours created due to the ambient heat input (while maintaining constant pressure in the storage vessel) are called "boil-off".

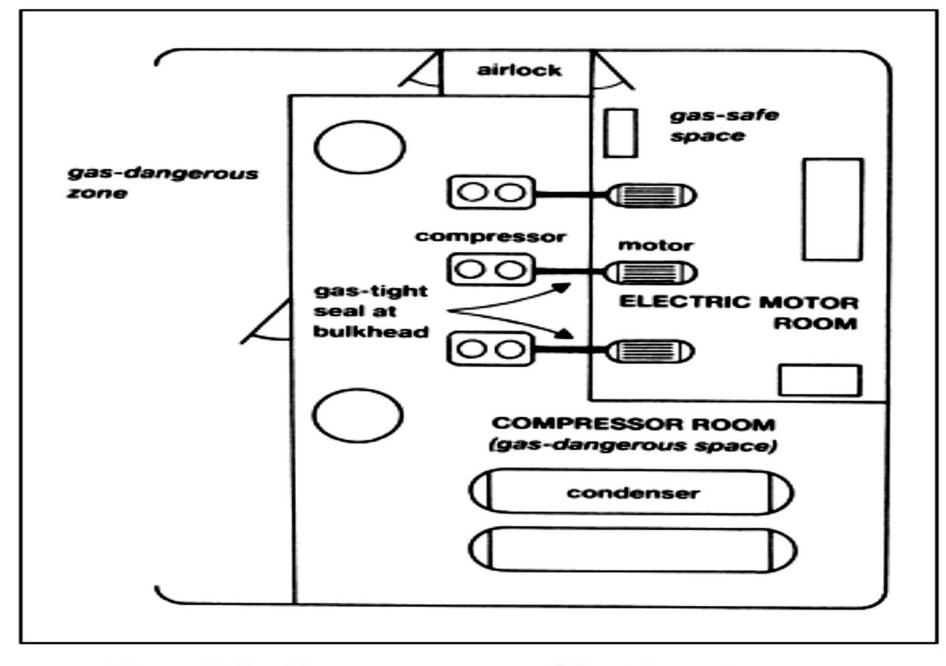


Figure 3.7 Compressor room/electric motor room on a gas carrier

Fire Protection System

- A water spray fitted on the following area:
- 1. Cargo tank domes
- 2. Cargo tank areas above deck
- 3. Cargo manifold areas
- 4. The front of the accommodation including lifeboat boarding areas
- 5. Control room bulkheads facing the cargo-deck
 Dry powder must fitted on Gas tankers too
 Dry powder installation is activated by nitrogen pressure which is stored in cylinders adjacent to the powder containers.

Questions?

Thank you

OLAR M