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Objectives:  

• What is Reservoir Simulation and why is it needed?  
• What are the application of Reservoir Simulation  
• How Reservoir Simulation can help to Manage Oil and Gas Reservoirs?  

Introduction  

Reservoir simulation in the oil industry has become the standard for solving reservoir 
engineering problems. Simulators for various recovery processes have been developed 
and continue to be developed for new oil recovery processes. Reservoir simulation is 
the art of combining physics, mathematics, reservoir engineering, and computer 
programming to develop a tool for predicting hydrocarbon reservoir performance 
under various operating strategies. There major steps involved in the development of 
a reservoir simulator: formulation, discretization, well representation, linearization, 
solution, and validation. Formulation: outlines the basic assumptions inherent to the 
simulator, states these assumptions in precise mathematical terms, and applies them to 
a control volume in the reservoir. The result of this step is a set of coupled, nonlinear 
partial differential equations (PDEs) that describes fluid flow through porous media. The 
PDEs derived during the formulation step, if solved analytically, would give reservoir 
pressure, fluid saturations, and well flow rates as continuous functions of space and time. 
Because of the highly nonlinear nature of the PDEs, however, analytical techniques 
cannot be used, and solutions must be obtained with numerical methods. In contrast to 
analytical solutions, numerical solutions give the values of pressure and fluid saturations 
only at discrete points in the reservoir and at discrete times. Discretization: is the process 
of converting PDEs into algebraic equations. Several numerical methods can be used to 
discretize the PDEs; however, the most common approach in the oil industry today is the 
finite difference method. The most commonly used finite-difference approach essentially 
builds on Taylor series expansion and neglects terms that are considered to be small 
when small difference in space parameters is considered. This expanded form is a set of 
algebraic equations. Finite element method, on the other hand, uses various functions to 
express variables in the governing equation. These functions lead to the development of 
an error function that is minimised in order to generate solutions to the governing 
equation. To carry out discretization, a PDEis written for a given point in space at a given 
time level. The choice of time level (oldtime level, current time level, intermediate 
timelevel) leads to the explicit, implicit, or Crank-Nicolson formulation method. The 
discretization process results in a system of nonlinear algebraic equations. These 
equations generally cannot be solved with linear equation solvers, and the linearization 
of such equations becomes a necessary step before solutions can be obtained. Well 
representation: is used to incorporate fluid production and injection into the nonlinear 
algebraic equations. Linearization: involves approximating nonlinear terms 
(transmissibilities, production and injection, and coefficients of unknowns in the 
accumulation terms) in both space and time. Linearization results in a set of linear 
algebraic equations. Any one of several linear equation solvers can then be used to 
obtain the solution, which comprises pressure and fluid saturation distributions in the 
reservoir and well flow rates. Validation: of a reservoir simulator is the last step in 
developing a simulator, after which the simulator can be used for practical field 



applications. The validation step is necessary to make sure that no errors were 
introduced in the various steps of development or in computer programming. This 
validation is distinct from the concept of conducting experiments in support of a 
mathematical model.  

 

 

Validation of a reservoir simulator merely involves testing the numerical code. 

 

 
Figure 1: Major steps used to develop reservoir simulator (modified from Odeh, A.S., 1982. 
An overview of mathematical modelling of the behaviour of hydrocarbon reservoirs. SIAM Rev. 

24(3), 263.).  
 
Milestones for the engineering approach 
The foundations for the engineering approach have been overlooked all these years. 
Traditionally, reservoir simulators were developed by first using a control volume (or 
elementary volume), such as that shown in below figure 2 for 1-D flow or in figure 3 for 3-
D flow that was visualized by mathematicians to develop fluid flow equations. Note that 
point x in 1-D and point (x, y, z) in 3-D fall on the edge of control volumes. The resulting 
flow equations are in the form of PDEs. Once the PDEs were derived, early pioneers of 
simulation looked to mathematicians to provide solution methods. These methods started 
with the description of the reservoir as a collection of gridblocks, represented by points 
that fall within them (or grid points representing blocks that surround them), followed by 
the replacement of the PDEs and boundary conditions by algebraic equations, and finally 
the solution of the resulting algebraic equations. Developers of simulators were all the time 
occupied by finding the solution and, perhaps, forgot that they were solving an engineering 
problem. The engineering approach can be realised should one try to relate the terms in 
the discretized flow equations for any block to the block itself and to all its neighboring 
blocks.  
 

 
Figure 2: Control volume used by mathematicians for 1-D flow. 
 



 
Figure 3: Control volume used by mathematicians for 3-D flow.  
 

 
There were observations that the flow terms in the discretized form of governing equations 
were nothing but Darcy’s law describing volumetric flow rate between any two 
neighbouring blocks. Making use of this observation coupled with an assumption related 
to the time level at which flow terms are evaluated, he developed the forward-central-
difference equation and the backward-central-difference equation without going through 
the rigour of the mathematical approach in teaching reservoir simulation to undergraduate 
students. Control volume represented by a point at its centre in the mathematical approach 
as shown in Figure 4 for 1-D flow and Figure 5 for 3-D flow. This control volume is closer 
to engineer’s thinking of representing blocks in reservoirs.  
 

 
Figure 4: Control volume for 1-D flow. 
 

 



 
Figure 5: Control volume for 3-D flow. 
 
Reservoir Simulation in simple words:  

• As most of the reservoirs are not homogenous, reservoir simulation plays an 
important role to mimic the real situation. For example, if we want to calculate the 
flow rate using Darcy law, we will divide the reservoir into different blocks and the 
permeability value is different from one place to another within the blocks. So to 
calculate the flow as per Darcy we will take the length of the block and pressure 
difference; however if we calculate as one block, we will make some errors 
because we do not know which permeability value should be considered. That way 
we divided the reservoir into different blocks. Then we build the model based on 
each cell/block properties.  

 
 

• Another example to consider in the reservoir simulation is the size of the reservoir. 
For example, if we deal with a 2 km square in size reservoir and we are calculating 
centminers of blocks we are distributing the results into the whole reservoir. For 
instance, plotting time vs. pressure over time as the calculated values using 
mathematical equations must be matched with the real values taken from the field 
(history matching).  

 

 
• Any reservoir simulation starts with building a model using  geological information 

using contouring maps  as a top surface then we put the logs information to build 
the subsurface model. Then we put the flow status in the reservoir using the well 
information in 2D and 3D figures. So to understand the variations in the pressures, 
permeability, porosity, saturation we need to solve it numerically using differential 
equations.  

• The reservoir simulation is always close to reality but not 100 real. For example, 
pressure vs time measured in reality is slightly different from the numerical model. 
So subtracting pressure taken from the field and pressure taken from the numerical 
model is the difference between them and it is close to reality.  

• Reservoir simulation includes different components including:  
• Numerical Model 
• Mathematical Model  
• Computer Model  
• Geometric  Model  



• The Geometric Model defines the shape, dimensions and status and layer 
distribution. 
Mathematical and numerical models using differential equations to solve the 
problems 
Computer model is a programmed simulators using all above equations 

• Main objectives of reservoir simulation 
1- To build a model of the reservoir and to examine its performance in terms of 
production and pressure  
2- To predict future performance.  
3- To find ways to increase ultimate recovery hydrocarbons more economically 

• Methodology of Reservoir Simulation  
1- The reservoir is divided into a number of blocks (or grid blocks)  
2- Basic geological and reservoir data is provided for each block  
3- Wells are positioned within the arrangement of blocks  
4- The target rate and well pressure are specific as a function of time 
5- The appropriate equations derived from Darcy's Law are solved to give the 
pressure and saturation of each block as well as production and injection for each 
well.  

Using the seismic and well logs information we can identify the horizons which have the 
same characterisitcs then divide them into blocks for all wells. Each block has its own 
properties so the simulation will distribute the properties into the whole reservoir.  

• Elements of a Reservoir Simulation Study 
1- Setting up study  
2- Defining the study’s objectives  
3- Formulating a model  
4- Data preparation  
5- Collecting rock and fluid data 
6- Reservoir description  
7- Collect well performance and completion data 
8- Defining producing conditions  
9- History matching  
10- Adjusting reservoir parameters to match past performance  
11- Predicting performance  
12- Running the simulator and analysing the outcome  
12- Sensitivity analysis 
13- Identify critical parameters  
14- Evaluation alternative strategies for development  
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DERIVATION OF FLUID FLOW EQUATIONS 

 

Review of basic steps 

Generally speaking, flow equations for flow in porous materials are based on a set of 

mass, momentum and energy conservation equations, and constitutive equations for 

the fluids and the porous material involved. For simplicity, we will in the following 

assume isothermal conditions, so that we not have to involve an energy conservation 

equation. However, in cases of changing reservoir temperature, such as in the case of 

cold water injection into a warmer reservoir, this may be of importance. 

 

Below, equations are initially described for single phase flow in linear, one- 

dimensional, horizontal systems, but are later on extended to multi-phase flow in two 

and three dimensions, and to other coordinate systems. 

 

Conservation of mass 

Consider the following one dimensional rod of porous material: 

 
Mass conservation may be formulated across a control element of the slab, with one 

fluid of density  is flowing through it at a velocity u: 
 

u 

 
 

 x 

The mass balance for the control element is then written as: 
 

Mass into the 
− 

Mass out of the  
= 

Rate of change of mass 
,
 

      

element at x  element at x + x inside the element  

or 

uA − uA 
 

x + x 
= 

 
Ax. 
t 

 

Dividing by x, and taking the limit as x approaches zero, we get the conservation of 

mass, or continuity equation: 
 

−
  

(Au) = 
 

(A). 

x t 
 

For constant cross sectional area, the continuity equation simplifies to: 
 

−
  

(u) = 
 

() . 
x t 

Next, we need to replace the velocity term by an equation relating it to pressure gradient 

and fluid and rock properties, and the density and porosity terms by appropriate pressure 

dependent functions. 
 

x 
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Conservation of momentum 

Conservation of momentum is goverened by the Navier-Stokes equations, but is 

normally simplified for low velocity flow in porous materials to be described by the 

semi-empirical Darcy's equation, which for single phase, one dimensional, horizontal 

flow is: 
 k P 

u = − 
 x 

. 

Alternative equations are the Forchheimer equation, for high velocity flow: 
 

− 
P  

= u
  

+ un , 

x k 
 

where n was proposed by Muscat to be 2, and the Brinkman equation, which applies to 
both porous and non-porous flow: 

 

P    2u 

− 
x 

= u 
k 

−  
x2 . 

Brinkman's equation reverts to Darcy's equation for flow in porous media, since the last 

term then normally is negligible, and to Stoke's equation for channel flow because the 

Darcy part of the equation then may be neglected. 

 

In the following, we assume that Darcy's equation is valid for flow in porous media. 

 

Constitutive equation for porous materials 

To include pressure dependency in the porosity, we use the following definition of rock 

compressibility, which for constant temperature is written: 
 

1  

cr = (
 

)(
P 

)T . 

Normally, we may assume that the bulk volume of the porous material is constant, i.e. 

the bulk compressibility is zero. This is not always true, as witnessed by the subsidence 

in the Ekofisk area. 

 

Constitutive equation for fluids 

Recall the familiar fluid compressibility definition, which applies to any fluid at 
constant temperature: 

 

c = −
 1

 V 
) .

 
( )( 

f V P T 

Equally familiar is the gas equation, which for an ideal gas is: 
 

pV = nRT , 

 
and for a real gas includes the deviation factor, Z: 
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pV = nZRT . 

These descriptive equations for the fluids are frequently used in reservoir engineering 

applications. However, for more general purposes, such as in reservoir simulation 

models, we normally use either so-called Black Oil fluid description, or compositional 

fluid description. Below, we will review the Black Oil model. 

The standard Black Oil model includes Formation Volume Factor, B, for each fluid, and 

Solution Gas-Oil Ratio, Rso, for the gas dissolved in oil, in addition to viscosity and 

density for each fluid. A modified model may also include oil dispersed in gas, rs, and 

gas dissolved in water, Rsw. The definitions of formation volume factors and solution 

gas-oil ratio are: 
 

volume at reservoir conditions 
B 

volume at standard conditions 
 

Rso = 
volume of gas evolved from oil at standard conditions 

volume of oil at standard conditions 
 

The density of oil at reservoir conditions is then, in terms of these parameters and the 

densities of oil and gas,  defined as: 
 

 = 
oS + gs Rso 

.
 

Bo 

 

Typical pressure dependencies of the standard Black Oil parameters are: 
 

B w Bg Bo Rso 

 

 

 

 

 
P P P P 

 w  g o 

 
 

 
P P P 

 

Simple form of the flow equation and analytical solutions 

In the following, we will briefly review the derivation of single phase, one 

dimensional, horizontal flow equation, based on continuity equation, Darcy's 

equation, and compressibility definitions for rock and fluid, assuming constant 

permeability and viscosity. 

 

Let us substitute Darcy´s equation into the continuity equation derived above: 
 

 

 

= 

o 
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   


 k P 
= 

 () 

x 

  x 


 t 

The right hand side (RHS) of the equation may be expanded as: 

 
( ) = 

  
() +  

 
() 

t t t 

Since porosity and density both are functions of pressure only (assuming temperature 

to be constant), we may write: 

 
() = 

d P 

t 
and 

dP t 

 () = d P 
.
 

t dP t 

From the compressibility expressions we may obtain the following relationships: 

d 
= c 

dP f 
and 

d 
= c . 

dP r 

By substituting these expressions into the equation, we obtain the following form of 

the right hand side of the flow equation: 

 
( ) = (c + c )P 

. 

The left hand side of the flow equation may be expanded as follows: 

   


 k P 
= 

   k P 
+

 k P  () = 
   k P 

+
 k P d P 

x  x 

 x 


  x 


  x x x 


  x 


  x dP x 

For now, let us assume that k=constant and =constant. Let us also substitute for 

d 
= c 

dP f 
. The LHS may now be written as: 

     k P k  2P  P 2  
 

x 

 
 

 x 

 

= 
  x2 

+ c f  x  
 .

 
Since c f is small, at least for liquids, and the pressure gradient is small for the low 

velocity flow we normally have in reservoirs, we make the following assumption: 
 

 P  
2
 

c f  x  

 2P 
 

x2 . 

 

Then, our LHS simplifies to: 
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   


 k P k  2P 
 

x 

  x 


 

= 
 x2 

.
 

The complete partial differential flow equation (PDE) for this simple rock-fluid 

system then becomes: 
 

 2P c P 

x2 
= ( 

k 
) 

t 
,
 

 

where c is the sum of the rock and fluid compressibilities. 

 

Assumptions made in the derivation of the above PDE: 

1. One dimensional flow 

2. Linear flow 

3. Horizontal flow 

4. One phase flow 

5. Darcy´s equation applies 

6. Small fluid compressibility (liquid) 

7. Permeability and viscosity are constants 

 

Initial and boundary conditions 

In order to solve the above equation, we need to specity one initial and two boundary 

conditions. The initial condition will normally specify a constant initial pressure, while 

the boundary conditions will either specify pressures or flow rates at two positions of 

the system. For our simple horizontal rod of porous material, these conditions may be 

specified as: 

 
x=0 

Initial condition (IC): 
 

P(x,t = 0) = Pi 

Normally, the initial pressure of a horizontal system such as the one above is constant, 

but in principle it could be a function of position (x). 
Boundary conditions (BC´s): 

Pressure conditions (Dirichlet conditions) would typically be specified as: 
 

P(x = 0,t) = PL 

P(x = L,t) = PR 

The other commonly used BC´s are rate specifications (Neumann conditions). Using 

Darcy´s equation, flow rates would typically be specified as: 
 

kA  P 
 

qL = − 


  x  x = 0 

 

 
 

x=L 
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kA  P 
 qR = − 

  x  x =L 

 

Analytical solution to the simple, linear PDE 

Using the following set of initial and boundary conditions: 
 

P(x,t = 0) = Pi , P(x = 0,t) = PL and P(x = L,t) = PR , 

we may obtain the following analytical solution of the transient pressure development in 

the porous rod above: 
 

 x 2  1 n2 2 k nx  
P(x,t) = PL + (PR − PL ) L 

+ 
 

 
  

exp(− 2 t)sin( ) 
   

 n =1 n L c L  
 

This solution is depicted graphically in the figure below. 
 

 

 

 

 

 

 

 

 

 

 

 

 

x 
 
 

Transient vs. steady state flow 

The partial differential equation above includes time dependency through the right hand 

side term. Thus, it can describe transient, or time dependent flow. In the figure 

illustrating the solution, the system will first have a time dependent, or transient, period, 

where the pressure will gradually penetrate the porous material. Then, after some time, 

the flow reaches a state where it is no longer time dependent, and the pressure 

distribution is described by the straight line denoted steady state solution. 

 

We could have reduced the partial differential equation directly to a steady state 

equation by setting the time dependent term on the right hand side to zero. Then the 

equation becomes an ordinary differential equation (ODE): 

 
d2P 

dx2 = 0 

By integrating this equation twice, and using the two boundary conditions to 

determine the integration constants, we obtain the steady state solution: 
 

P(x,t) = P + (P − P ) 
x 

. 
L R L    L 

 

P Left side 
pressure 

Transient 
solution  Initial and 

right side 
pressure 

Steady state 
solution 
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which is a straight line connecting the two end pressures. As can be seen, the transient 

solution will reduce to this steady state expression as time becomes large. 

 

General form of the one-phase, one-dimensional, horizontal PDE 

Above we derived and solved the simplest forms of the PDE, using fluid 

compressibility definition as a constitutive fluid equation, and assuming constant 

viscosity and permeability. Generally, the Black Oil form of the fluid model is used, 

and the two parameters are not constants. Recall the Black Oil definition of oil 

density: 

 = 
oS + gs Rso 

.
 

Bo 

 

For undersaturated oil, the solution gas-oil ratio, Rso , is constant. Thus, the oil density 

may be written: 
 

 = 
constant 

.
 

Bo 

 

Similar expressions may be written for single phase gas and single phase water. 

Substitution of this fluid model into the continuity equation with Darcy´s equation 

yields a general Black Oil form of the single phase, one-dimensional, horizontal flow 

equation: 

 
   k P 

= 
    

.
 

x 

 B x 


 t  B 

 

Multiphase flow 

A continuity equation may be written for each fluid phase flowing: 
 

−
  

( u ) = 
 

( S ), l = o,w,g , 

x l    l t l l 

 

and the corresponding Darcy equations for each phase are: 
 

u = − 
kkrl Pl , l = o,w,g , 

 

l 

 

where 

l  x 

Pcow = Po − Pw 

Pcog = Pg − Po 

 
l =o,w,g 

Sl = 1 . 

 

The continuity equation for gas has to be modified to include solution gas as well as free 

gas, and the one for oil to include dispersed oil in gas, if any. 

 

Non-horizontal flow 

For one-dimensional, inclined flow, as shown in the following figure: 
 
 

o 

o 



 

k    Pz 
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u 

x 

the Darcy equation becomes: 

k  P dD 
 

u = − 
  x 

− g 
dx  

, 

or, in terms of dip angle,  and hydrostatic gradient: 
 

k  P  
 

u = − 
  x 

−  sin()
 

, 

where  = g is the hydrostatic gradient of the fluid. 

 
Multidimensional flow 

The continuity equation for one-phase, three-dimensional flow in cartesian coordinates, 
is: 

−
  

(u ) −
  (u ) −  (u ) = 

 
(), 

x x y y z z t 
 

and the corresponding Darcy equations are: 
 

u = − 
kx  P 

−  
dD 

x   x dx  
ky  P D 

uy = − 
 


 y 

−  
y 


 

 
uz = − 

  z 
−  

D 
.
 

z  
 

Coordinate systems 

Normally, we use either a rectangular coordinate system, or a cylindrical coordinate 

system in reservoir engineering 

 

 

x r 

 
r 

 
 

z z 
Rectangular coordinates 

 

Cylindrical coordinates 

 

Spherical coordinates 

 

In operator form, the continuity and the Darcy equations for one-phase flow may be 

written: 
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 
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− (
→
) = 

 
() 

u 
t 

→ K 

u = − 
 

(P − D), 

where the operators are defined as: 

rectangular coordinates 
 

 ( ) =
  

( ) +
  

( ) +
  

( ) (divergence) 

x y z 

( ) = î
  

( ) + ĵ
  

( ) + k̂
  

( ) (gradient) 

x y z 
 

cylindrical coordinates 
 

 ( ) = 
1   

(r( )) + 
1  

( ) +
  

( ) 
r r r  z 

( ) = ˆi
  

( ) + 
 

( ) + k
 ̂  

( ) 
r  z 

 

spherical coordinates 
 

 ( ) = 
 1    

(r 
2( )) + 

    1   
(( )sin) + 

    1    
( ) 

r 2 r r sin  

( ) = ˆi
  

( ) + 
 

( ) + kˆ
  

( ) 
r sin  

r   
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Reservoir Discretization and Multidimensional flow in 
Cartesian coordinates 
 
2.1 Reservoir discretization  

Reservoir discretization means that the reservoir is described by a set of grid- 
blocks (or gridpoints) whose properties, dimensions, boundaries, and locations in 
the reservoir are well defined. It also deals with reservoirs discretized using a 
block-centered grid, and furthermore discusses reservoirs discretized using a 
point-distributed grid. Fig. 2.1 shows reservoir discretization in the x-direction 
as one focuses on block i. 

The figure shows how the blocksare related to each other—block i and its neigh- 
boring blocks (blocks i — 1 and i + 1)—block dimensions (Δxi, Δxi—1, Δxi+1), 
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FIG. 2.1 Relationships between block i and its neighboring blocks in 1-D flow. 
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FIG. 2.2 A block and its neighboring blocks in (a) 1-D, (b) 2-D, and (c) 3-D flow using engineer- 

ing notation. 

 

block boundaries (xi—1/2, xi+1/2), distances between the point that represents the 
block and block boundaries (δxi—,δxi+), and distances between the points represent- 

ing the blocks (Δxi—1/2, Δxi+1/2). The terminology presented in Fig. 2.1 is applicable 

to both block-centered and point-distributed grid systems in 1-D flow in the direc- 
tion of the x-axis. Reservoir discretization in the y- and z-directions uses similar 
terminology. In addition, each gridblock (or gridpoint) is assigned elevation and 
rock properties such as porosity and permeabilities in the x-, y-, and z-directions. 
The transfer of fluids from one block to the rest of reservoir takes place through 
the immediate neighboring blocks. When the whole reservoir is discretized, each 
block is surrounded bya set (group) of neighboring blocks. Fig. 2.2a showsthatthere 
are two neighboring blocks in 1-D flow along the x-axis, Fig. 2.2b shows that there 
are four neighboring blocks in 2-D flow in the x-y plane, and Fig. 2.2c shows that 
there are six neighboring blocks in 3-D flow in x-y-z space. 

It must be made clear that once the reservoir is discretized and rock prop- 
erties are assigned to gridblocks (or gridpoints), space is no longer a variable 
and functions that depend on space, such as interblock properties, become well  
defined. In other words, reservoir discretization removes space from being a 
variable in the formulation of the problem. More elaboration follows in 
Section 2.6.2. 

 

 

2.2 Basic engineering concepts 

The basic engineering concepts include mass conservation, equation of state, 
and constitutive equation. The principle of mass conservation states that the 
total mass of fluid entering minus the fluid leaving a volume element of the res- 
ervoir, shown in Fig. 2.3 as block i, must equal the net increase in the mass of the 
fluid in the reservoir volume element, that is, 

mi — mo + ms ¼ ma (2.6) 
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FIG. 2.3 Block i as a reservoir volume element in 1-D flow. 

where mi¼ the mass of fluid entering the reservoir volume element from other 
parts of the reservoir, mo ¼ the mass of fluid leaving the reservoir volume ele- 
ment to other parts of the reservoir, ms¼ the mass of fluid entering or leaving the 
reservoir volume element externally through wells, and ma the mass of excess fluid 
stored in or depleted from the reservoir volume element over a time interval. 

An equation of state describes the density of fluid as a function of pressure 
and temperature. For single-phase fluid, 

B ¼ ρsc=ρ (2.7a) 

for oil or water,  
ρgsc 

Bg ¼ 
α ρ

 

 

 
(2.7b) 

c  g 

for gas, where ρ and ρg fluid densities at reservoir conditions, ρsc and ρgsc 
fluid densities at standard conditions, and αc   the   volume conversion 
factor. 

A constitutive equation describes the rate of fluid movement into (or out of) 
the reservoir volume element. In reservoir simulation, Darcy’s law is used to 
relate fluid flow rate to potential gradient. The differential form of Darcy’s law 
in a 1-D inclined reservoir is 

kx ∂Φ 
ux ¼ qx=Ax ¼ —βc μ ∂x 

(2.8) 

where βc ¼ the transmissibility conversion factor, kx¼ absolute permeability of 

rock in the direction of the x-axis, μ ¼ fluid viscosity, Φ¼ potential, and ux ¼ 

volumetric (or superficial) velocity of fluid defined as fluid flow rate (qx) per 
unit cross-sectional area (Ax) normal to flow direction x. The potential is related 
to pressure through the following relationship: 

Φ— Φref ¼ p — pref   — γ Z — Zref (2.9) 

where Z ¼elevation from datum, with positive values downward. 
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∂Φ 
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∂p 

— γ 
∂Z

 

(2.10) 
 

and the potential differences between block i and its neighbors, block i 1 and 
block i + 1, are 

 

 
and 

Φi—1 — Φi ¼ ðpi—1 — piÞ — γi—1=2ðZi—1 — ZiÞ (2.11a) 

 
Φi +1 — Φi ¼ ðpi +1 — piÞ — γi + 1=2ðZi +1 — ZiÞ (2.11b) 

 
 
 

2.3 Multidimensional flow in Cartesian coordinates 

2.3.1 Block identification and block ordering 

Before writing the flow equation for a 1-D, 2-D, or 3-D reservoir, the blocks in the 
discretized reservoir must be identified and ordered. Any block in the reservoir 
can be identified either by engineering notation or by the number the block holds  
in a given orderingscheme. Engineering notation uses the order of the blockin the 
x-, y-, and z-directions, that is, it identifies a block as (i, j, k), where i, j, and k are 
the orders of the block in the three directions x, y, and z, respectively. The engi- 
neering notation for block identification is the most convenient for entering 
reservoir description (input) and for printing simulation results (output). Fig. 
2.4 shows the engineering notation for block identification in a 2-D reservoir 
consisting of 4 5 blocks. Block ordering not only serves to identify blocks in the 
reservoir but also minimizes matrix computations in obtaining the solution of 
linear equations. 

There are many block-ordering schemes, including natural ordering, zebra 
ordering, diagonal (D2) ordering, alternating diagonal (D4) ordering, cyclic 
ordering, and cyclic-2 ordering. If the reservoir has inactive blocks within its 
external boundaries, such blocks will be skipped, and ordering of active blocks 
will continue (Abou-Kassem and Ertekin, 1992). For multidimensional 
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FIG. 2.4 Engineering notation for block identification. 



 

reservoirs, natural ordering is the simplest to program but is the least efficient in 
solving linear equations, whereas D4 ordering requires complicated program- 
ming but is the most efficient in obtaining the solution when the number of 
blocks is large. If the number of blocks is very large, however, the zebra order- 
ing scheme becomes twice as efficient as D4 ordering in obtaining the solution 
(McDonald and Trimble, 1977). Fig. 2.5 shows the various block-ordering 
schemes for the 2-D reservoir shown in Fig. 2.4. Given the engineering notation for 
block identification, block ordering is generated internally in a simulator. Any 
ordering scheme becomes even more efficient computationally if the ordering 
is performed along the shortest direction, followed by the intermediate direction, 
and finally the longest direction (Abou-Kassem and Ertekin, 1992). 
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FIG. 2.5 Block-ordering schemes used in reservoir simulation. (a) Natural ordering, (b) zebra 
ordering, (c) diagonal (D2) ordering, (d) alternating diagonal (D4) ordering, (e) cyclic ordering, and 
(f) cyclic-2 ordering. 
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Details related to various ordering schemes and computational efficiency in 
solving linear equations are not discussed further in this book but can be found 
elsewhere (Woo et al., 1973; Price and Coats, 1974; McDonald and Trimble, 
1977). The natural ordering scheme is used throughout this book because it pro- 
duces equations that are readily solvable with handheld calculators and easily 
programmable for computer usage. The following three examples demonstrate 
the use of engineering notation and natural ordering to identify blocks in 
multidimensions. 

Example 2.1 Consider the 1-D reservoir shown in Fig. 2.6a. This reservoir is 
discretized using four blocks in the x-direction as shown in the figure. Order 
the blocks in this reservoir using natural ordering. 

Solution 
We first choose one of the corner blocks (say the left corner block), identify 

it as block 1, and then move along a given direction to the other blocks, one 
block at a time. The order of the next block is obtained by incrementing the 
order of the previous block by one. The process of block ordering (or number- 
ing) continues until the last block in that direction is numbered. The final order- 
ing of blocks in this reservoir is shown in Fig. 2.6b. 

Example 2.2 Consider the 2-D reservoir shown in Fig. 2.7a. This reservoir is 
discretized using 4 3 blocks as shown in the figure. Identify the blocks in this 
reservoir using the following: 

1. Engineering notation 
2. Natural ordering 
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FIG. 2.6 1-D reservoir representation in Example 2.1. (a) Reservoir representation and (b) natural 
ordering of blocks. 
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FIG. 2.7 2-D reservoir representation in Example 2.2. (a) Reservoir representation, (b) engineer- 
ing notation, and (c) natural ordering of blocks. 
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FIG. 2.8 3-D reservoir representation in Example 2.3. (a) Reservoir representation, (b) engineer- 
ing notation, and (c) natural ordering of blocks. 

Solution 
1. The engineering notation for block identification is shown in Fig. 2.7b. 
2. We start by choosing one of the corner blocks in the reservoir. In this example, 

we arbitrarily choose the lower-left corner block, block (1,1), and identify it 
as block 1. In addition, we choose to order blocks along rows. The rest of the 
blocks in the first row (j 1) are numbered as explained in Example 2.1. Block 
(1,2) in the first column (i  1) and second row (j  2) is numbered next as block 
5, and block numbering along this row continues as in Example 2.1. Block 
numbering continues row by row until all the blocks are numbered. The 
final ordering of blocks in this reservoir is shown in Fig. 2.7c. 

Example 2.3 Consider the 3-D reservoir shown in Fig. 2.8a. This reservoir is 
discretized into 4 3   3 blocks as shown in the figure. Identify the blocks in 
this reservoir using the following: 

1. Engineering notation 
2. Natural ordering. 

Solution 
1. The engineering notation for block identification in this reservoir is shown 

in Fig. 2.8b. 
2. We arbitrarily choose the bottom-lower-left corner block, block (1,1,1), and 

identify it as block 1. In addition, we choose to order blocks layer by layer 
and along rows. The blocks in the first (bottom) layer (k 1) are ordered as 
shown in Example 2.2. Next, block (1,1,2) is numbered as block 13, and the 
ordering of blocks in this second layer is carried out as in the first layer. 
Finally, block (1,1,3) is numbered as block 25, and the ordering of blocks
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