

University of Mosul College of Petroleum and Mining Engineering Department of Petroleum Reservoir Engineering

Course Descriptions

Fourth Stage / First Semester (Semester)

- Ro

Dr. Maha Muneeb Al-Dabbagh

Head of Department

Dr. Ayman Mahmoud Ahmed
Chairman of the Scientific Committee

Ministry of Higher Education and Scientific Research
University of Mosul
College of Petroleum and Mining Engineering
Department of Petroleum Reservoir Engineering

Course Descriptions Petroleum Reservoir Engineering Fourth Stage (Semester) 2024 – 2025

1. Course Name: E	1. Course Name: Enhance Oil Recovery1			
2. Course Code: PR	E411			
3. Semester / Year:	First / Fourth			
4. Description Prep	aration Date: 25 /9/2024			
5. Available Attenda	ince Forms: In person attendance			
6 Number of Credit	Hours (Total) / Number of Units (Total) 120/6			
o. Indiffer of Credit	Tiours (Total) / Trumber of Office (Total) 120/0			
7 Course administ	eratoria nama (mantian all. if mara than ana nama)			
Name: dr. Muhar	rator's name (mention all, if more than one name)			
	.aswad@uomosul.edu.iq			
	•			
8. Course Objectives	3			
Course Objectives • Identify natural (primary) and secondary methods of				
	extraction			
	Maintain reservoir pressure by adding secondary			
	processes			
	Study the types of secondary methods and their			
	importance in raising reservoir pressure			
	Distribute water and gas injection wells around			
	production			
	wells			
	Identify the most important problems that occur during			
injection operations and find appropriate solutions for them				
Use tertiary methods to achieve high oil recovery				
9. Teaching and Lea	arning Strategies			
Strategy	1- Direct classroom instruction, 6 hours per week +1 hour per week for tutoring.			
	2- Class discussions.			

3-Tests, quizzes, class participation, projects, homework, and presentations.

Student Assessment Methods:

- 1. Required exercises.
- 2. Termly exams.
- 3. Project discussions and assignments.

The overall assessment for this course is as follows: 40 points of the total grade are allocated for annual performance, which includes assignments, oral tests, termly exams, and presentations. 60 points are allocated for the final exam.

10. Course Structure

Week	Hours	Required Learning	Unit or	Learning	Evaluati
		Outcomes	subject name	method	on
					method
the 1 st	3	Main extraction methods	Enhance Oil Recovery1	Theoretical	General questions discussion
2 nd +3 rd	6	Natural extraction methods	Enhance Oil Recovery1	Theoretical+ practical	Short exam
fourth	3	Secondary extraction methods	Enhance Oil Recovery1	Theoretical	General questions a discussion
Fifth + sixth	6	Injection well distribution patterns	Enhance Oil Recovery1	Theoretical+ practical	General questions a discussion
Seventh +eighth	6	Physical properties of injecti wells	Enhance Oil Recovery1	Theoretical+ practical	homework
Ninth	3	Main types of injection	Enhance Oil Recovery1	Theoretical	Short exam
The tenth + eleventh	6	Water injection	Enhance Oil Recovery1	Theoretical+ practical	General questions a discussion
twelfth	3	Injection water sources	Enhance Oil Recovery1	Theoretical	classwork
Thirteenth+ fourteenth	6	Water injection patterns and methods	Enhance Oil Recovery1	Theoretical+ practical	General questions a discussion
fifteenth	3	Injection water treatment	Enhance Oil Recovery1	Theoretical	Short exam

11. Course Evaluation				
Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc				
12. Learning and Teaching Resources				
Required textbooks (curricular books, if any)	Introduction to Petrophysics of			
	Reservoir Rocks			
Main references (sources)	Petroleum Reservoir Engineering Handbo Tark Ahmad, 4 th edition 2010			
Recommended books and references (scientific journals,				
reports)				
Electronic References, Websites				

1. Course Name:

Reservoir Characterization / 4th Class / Dept. of Petroleum Reservoir Engineering

2. Course Code:

PRE412

3. Semester / Year:

First semester / 2024 - 2025

4. Description Preparation Date:

1/9/2024

5. Available Attendance Forms:

Classroom attendance for theoretical and practical material

- 6. Number of Credit Hours (Total) / Number of Units (Total)
 - 6 hours (2 theoretical + 3 practical) / 3.5 units
- 7. Course administrator's name (mention all, if more than one name)

Name: Dr. Ayman Mahmoud Ahmed (Lecturer)

Email: ayman.geology@uomosul.edu.iq

8. Course Objectives

Course Objectives

- This course aims to teach the student how to utilize temporal seismic sections to infer sedimentary facies and the likelihood of oil being present.
- Know the architecture of the reservoir.
- Inferring the geological history of the area to analyze the petroleum system of the reservoir and effective for exploration.

9. Teaching and Learning Strategies

Strategy

Developing study programs that link reservoir characterization with other disciplines within reservoir engineering that contribute to solving scientific issues.

Provide the local and regional community with an oil reservoir engineer with a broad theoretical and practical background, including oil reservoir characterization.

Emphasize the role of scientific field and laboratory research, modeling, and geophysical studies in solving issues.

10. Co	10. Course Structure				
Week	Hours	Required Learning	Unit or subject	Learning	Evaluation
		Outcomes	name	method	method
1	2 hrs.	The ability to identify, assess, and solve engineering problems using the basic knowledge acquired in engineering, science, and mathematics.	Seismo-Stratigraphic Interpretation Depositional Systems Its Role In Petrole Exploration Integra Expertise for Reser Characterization Unconventional Resou in the Hydrocar Industry Compartmentalization oil and gas reserv Scales and Styles Geologic Reser Heterogeneity Apply Reservoir Characterizat	Theoretical	General questic and discussion c real-time quiz
2	2 hrs.	The ability to identify, assess, and solve engineering problems using the basic knowledge acquired in engineering, science, and mathematics.	Geologic Significance Seismic Reflecti Amplitude variation v offset(lithologies, flu gases, porosities, pressures) understanding of the eff of lithology and spacing on reflec parameters amplit frequency, continuity reflections Parallelism reflection cycles to g bedding, and therefore physical surfaces separate older f younger sedim Reflection configuration		General questi nd discussion eal-time quiz
3	2 hrs.	The ability to identify, asses and solve engineering problems using the basic knowledge acquired in engineering, science, and mathematics.	Seismic Reflections Time-Stratigraphy	Theoretical	General question nd discussion eal-time quiz
4	2 hrs.	The ability to identify, assess, and solve engineering problems using the basic knowledge acquired in engineering, science, and mathematics.	The Seismic Stratigra Approaches Seis stratigraphy is o divided into several a areas Analysis of seis sequence Analysis seismic facies Analysis reflection character	Theoretical	General questind discussion eal-time quiz
5	2 hrs.	The ability to identify, ass and solve engineering probl using the basic knowle acquired in engineer science, and mathematics.	Recognition Discrimination Depositional Sequen Boundaries of Deposition Sequences, Definition Seismic Facies, Princ Types of Seismic Fac	Theoretical	General questic Discussion monthly exam

			Stratigraphic interpreta		
			of Seismic facies.		
6	2 hrs.	The ability to identify, assess, and solve engineering problems using the basic knowledge acquired in engineering, science, and mathematics.	Unconformities Recognized By Reflection Terminations, Factors Controlling Deposition of Cyclic Sequences. Chrono - stratigraphy construction & interpretation Chronostratigraphic significance of seismic reflections.	Theoretical	General questions and discussion or real-time quiz
7	2 hrs.		Geology and Geometry of Depositional Systems, sea level curves, accommodation space, and cycle orders	Th eor eti cal	General questions and discussion or real-time quiz
8	2 hrs.	The ability to acquire new engineering knowledge and skills in engineering fields.	Carbonate sequences.	Theoretical	General questions and discussion or real-time quiz
9	2 hrs.	The ability to acquire new engineering knowledge and skills in engineering fields.	Siliciclastic sequences	Theoretical	General questions and discussion or real-time quiz
10	2 hrs.	The ability to acquire new engineering knowledge and skills in engineering fields.	Seismic facies & Paleo-environmental analysis	Theoretical	General questions and discussion or real-time quiz
11	2 hrs.	The ability to acquire new engineering knowledge and skills in engineering fields.	Geo-history reconstruction	Theoretical	General questions and discussion or real-time quiz
12	2 hrs.	The ability to acquire new engineering knowledge and skills in engineering fields.	Optimizing exploration & development	Theoretical	General questions and discussion or real-time quiz
13	2 hrs.	The ability to acquire new engineering knowledge and skills in engineering fields.	Review of Seismic Stratigraphy	Theoretical	General questions and discussion or real-time quiz
14	2 hrs.	The ability to acquire new engineering knowledge and skills in engineering fields.	VSP.A measurement that transfer Geology To Geophysics	Theoretical	General questions and discussion or real-time quiz

15	2 hrs.	The ability to acquire new engineering knowledge and skills in engineering fields.	VSP.A measurement that transfer Geology To Geophysics	Theoretical	General questions and discussion + final of semester exam.
Week	Hours	Required Learning	Unit or subject	Learning	Evaluation
		Outcomes	name	method	method
1	3 hrs.	The ability to work within multidisciplinary teams to analyze problems, solve them, and meet deadlines.	Lab-1/ Preparation of stratigraphic columns	Practical	Solution with lab report
2	3 hrs.	• The ability to acquire new engineering knowledge and skills in engineering fields.	Lab-2/ preparation of stratigraphic columns	Practical	Solution with lab report
3	3 hrs.	• The ability to identify, assess, and solve engineering problems using the basic knowledge acquired in engineering, science, and mathematics.	Lab-3 / Seismic Stratigraphy termination	Practical	Solution with lab report
4	3 hrs.	The ability to acquire new engineering knowledge and skills in engineering fields.	Lab-4 / Seismic Stratigraphy termination	Practical	Solution with lab report
5	3 hrs.	• The ability to identify, assess, and solve engineering problems using the basic knowledge acquired in engineering, science, and mathematics.	Lab-5 / Principle reflection patterns	Practical	Solution with lab report
6	3 hrs.	• The ability to work within multidisciplinary teams to analyze problems, solve them, and meet deadlines.	Lab-6 / ABC technique The Classic Method - an Example	Practical	Solution with lab report + monthly exam
7	3 hrs.	• The ability to work within multidisciplinary teams to analyze problems, solve them, and meet deadlines.	Lab-6 / frequencies, wavelengths, velocities synthetic seismogram	Practical	Solution with lab report
8	3 hrs.	The ability to acquire new engineering knowledge and skills in engineering fields.	Lab-7 / frequencies, wavelengths, velocities synthetic seismogram	Practical	Solution with lab report
9	3 hrs.	• The ability to identify, assess, and solve engineering problems using the basic knowledge acquired in engineering, science, and mathematics.	Lab-8/ Map TDC using Average Velocity	Practical	Solution with lab report

10	3 hrs.	The ability to acquire new engineering knowledge and skills in engineering fields.	Lab-9/ Map TDC using Average Velocity	Practical	Solution with lab report
11	3 hrs.	The ability to work within multidisciplinary teams to analyze problems, solve them, and meet deadlines.	Lab-10 / Section TDC using Interval Velocity Layer- Cake Method	Practical	Solution with lab report
12	3 hrs.	• The ability to identify, assess, and solve engineering problems using the basic knowledge acquired in engineering, science, and mathematics.	Lab-11 / Section TDC using Interval Velocity Layer- Cake Method	Practical	Solution with lab report
13	3 hrs.	The ability to work within multidisciplinary teams to analyze problems, solve them, and meet deadlines.	Lab-12/ Identification of different types of sedimentary facies from seismic time sections.	Practical	Solution with lab report
14	3 hrs.	The ability to acquire new engineering knowledge and skills in engineering fields.	Lab-13/ Using printed time sections & Digital by software (Schlumberger Petrel).	Practical	Solution with lab report
15	3 hrs.	The ability to identify, assess, and solve engineering problems using the basic knowledge acquired in engineering, science, and mathematics.	Lab-14/ Practical Seismic Interpretation for Petroleum Exploration Seismic Lab Exercises with Solutions Find the oil and interpretation exercise.	Practical	Solution with lab report + final exam

11. Course Evaluation

Distribute the score out of 100 according to the tasks assigned to the student, such as daily preparation, daily, oral, monthly and written exams, reports, etc.

The semester grade is 50%, including 35% theoretical, including attendance, class discussions, quizzes, and lab reports, and 15% practical.

The end-of-semester grade is 50%, including 40% theory and 10% practical.

12. Learning and Teaching Resources

Required textbooks (curricular books, if a	Seismic stratigraphy, An Integrated Approach . By:
,	Berg,O.R.& Woolverton, D.G.,AAPG Memoir 39 (
	1985).
	Seismic Stratigraphic Interpretation And Petroleum
	Exploration ,1984 By Brown ,L.F. And Fisher ,W.L.,
	AAPG.

Main references (sources)	Seismic –Stratigraphic Interpretation Of Depositional Systems. Examples From Brazilian Rift And Pull- Apart Basins .By Brown &Fisher ,1977
Recommended books and references (scientific journals, reports)	Seismic Stratigraphy –Applications To Hydrocarbon Exploration By Payton, C.E. 1977 Vertical Seismic Profiling Technique Applications &Case Histories By Balch, A.H. And Lee, M.W. (1984) Reidel Scheriff, Seismic Stratigraphy
Electronic References, Websites	AAPG,54:1184-1224 AAPG, 57:878-886 AAPG, 57:1185-1218 AAPG,63:1999-2020 AAPG,48:317-328 AAPG,62:742-812.
Curriculum Update Percentage or Description	7%

1. Course Name:

Reservoir Modeling

2. Course Code:

PRE413

3. Semester / Year:

First/ 2024-2025

4. Description Preparation Date:

10/9/2024

5. Available Attendance Forms:

Blended

6. Number of Credit Hours (Total) / Number of Units (Total)

75/3.5

7. Course administrator's name (mention all, if more than one name)

Name: Dr. Maha Muneeb Mahmood

Email: mahamuneeb@uomosul.edu.iq

8. Course Objectives

Course Objectives

- Teach the basic concepts and techniques for the construction of a computer model of a petroleum reservoir.
- Build a 3D geological and petrophysical models using static data.
- Integrating geological, geophysical, and petrophysical data into a 3D description of a reservoir.

9. Teaching and Learning Strategies

Strategy

Giving lectures (ppt)

Discussion

E-Learning

Brainstorming

10. Course Structure

Week	Hours	Required Learning Outcomes	Unit or subject Name	Learning Method	Evaluation Method
1	2	Define and describe Reservoir modelling	Introduction	Giving Lectures + discussion	Asking and discussion questions
2	2	List and label uses of reservoir modelling	The Uses of Reservoir Modelling	Giving Lectures + discussion	Asking and discussion questions
3	2	Create workflow plan and define key elements of reservoir model	The Modelling Workflow and Key Elements of Reservoir Modelling	Giving Lectures + discussion	Quiz

5	2	Compare between static and dynamic reservoir's properties List and describe the resources data	Static and Dynamic Properties of Reservoirs The Resolution and Resources of Data	Giving Lectures + discussion Giving Lectures + discussion	Asking and discussion questions Asking and discussion
6	2	Define seismic and dynamic data	Seismic Data, Dynamic Data	Giving Lectures + discussion	questions Quiz
7	2		Exam		
8	2	Recognize heterogeneities in reservoir	Introduction to Heterogeneities in Reservoir and in Petrophysical Properties	Giving Lectures + discussion	Asking and discussion questions
9	2	Summarize the types of reservoir models	Types of Reservoir Models	Giving Lectures + discussion	Asking and discussion questions
10	2	Explain and design a structural model	Structural Model and Seismic Interpretation	Giving Lectures + discussion	Quiz
11	2	List and describe the types of structural model	Structural Modeling Types	Giving Lectures + discussion	Asking and discussion questions
12	2	Explain and design a stratigraphic model	Stratigraphic Model	Giving Lectures + discussion	Asking and discussion questions
13	2	Explain and design a geocellular model	Geocellular Model	Giving Lectures + discussion	Quiz
14	2	Explain and design a property model	Property Model	Giving Lectures + discussion	Apply the software
15	2	Explain and design a facies model	Facies Model	Giving Lectures + discussion	Apply the software

Practical Part				
Week 1	Lab 1: Using Didger software to digitize contour map.			
Week 2	Lab 2: Insert input data to Petrel software			
Week 3 Lab 3: Build surfaces and grid				
Week 4	Lab 4: Build layering			
Week 5	Lab 5: Build structural Model			
Week 6 Lab 6: Build Property Model				
Week 7	Lab 7: Scaling up			
11. Course Evaluation				

Theoretical material (35% divided between 25% monthly exam, 5% daily exam, and 5% student attendance) + 40% final exam.

Practical material (15% divided between 10% monthly exam and 5% assignments and reports) + 10% final exam.

12. Learning and Teaching	12. Learning and Teaching Resources					
Required textbooks.						
Main references (sources)	1- Reservoir Modelling: A Practical Guide by Steve Cannon, 2018.					
Recommended books and references (scientific journals,	1- Reservoir Model Design: A Practitioner's Guide by Philip Ringrose and Mark Bentley, 2015.					
reports)	2-Geostatistical Reservoir Modeling by Michael J. Pyrcz and Clayton V. Deutsch, 2014.					
Electronic References, Websites	https://www.youtube.com/watch?v=bfkE2ozt64&list=PLiI O8Yqo6LD0t2RNDxSAtI0SkdU01-Kz9&index=3					
	https://www.youtube.com/@user-fj8yw3fk6e/playlists https://www.youtube.com/@Elmahdycity					

Head of department

1. Course Name: Advanced petroleum reservoir engineering 2. Course Code:

PRE419

3. Semester / Year:

Second 2024-2025

4. Description Preparation Date:

04/09/2024

5. Available Attendance Forms:

Attendance

6. Number of Credit Hours (Total) / Number of Units (Total):

75/3.5

7. Course administrator's name (mention all, if more than one name)

Name: Bushra Abdullah Mohammed Email: geobushra @uomosul.edu.iq

Course Objectives

Course Objectives

- This course deals with the basic concept of fractured reservoirs
- Developing skills to identify the types of fractures that form in oil formations
- Understanding and analyzing fractured oil reservoirs
- Identifying the geological condition
- Understanding and identifying natural and hydraulic fractures of hydrocarbon reservoirs
- Understanding fluid flow in fractured rocks

Teaching and Learning Strategies

Strategy

The main strategy that will be followed in delivering this unit is to encourage students to participate in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through interactive classes and lessons and by looking at the types of simple experiments that involve some sampling activities that interest students.

10. Course Structure

Week	Hours	Required Learning Outcomes	Unit or subje ct name	Learning method	Evaluation method
Week1	5	Introduction.		Theoretical+ + practica	General questions
Week2	5	What is a fracture?		Theoretical+ + practica	and discussion
Week3	5	Origin of fracture			
Week4	5	Types of fracture (joint an		Theoretical+ practical	
		fault)		Theoretical+ practical	General questions
Week5	5	Classification of fracture (joint and)		Theoretical+ practical	and exam
Week6	5			Theoretical+ practical	

Geological condition of fracturing		1						
Week7 5 Fracture detection and evaluation naturally fractured reserv (carbonate, shale and san reservoir) Theoretical+ practical Group discussion and assignments practical Week9 5 Hydraulic fractured reserv (carbonate, shale and san reservoir) Theoretical+ practical General questions Week10 5 Hydraulic fractured reservoir fluid Flow in Non-Porous Fractured rock Fluid Flow in Fractures Roman presentation fluid Flow in Fractured Reservoirs. Theoretical+ practical presentation fluid Flow in Fractured Roman presentation fluid Flow i			<u> </u>	of				
Week8 5 Fracture detection and evaluation nurally fractured reserv (carbonate ,shale and san reservoir) Theoretical+ practical Theoretical+ practical and assignments (General questions and assignments practical) Group discussion and and assignments (General questions and assignments practical) Week10 5 Hydraulic fractured reservoir fluid Flow in Non-Porous Fractured rock Fluid Flow in Fractures Roll Fluid Discussion and presentation Practical Discussion and presentation Practical Fluid Discussion and Presentation Practical Fluid Discussion and Presentation Practical Fractured Reservoirs. Theoretical+ practical Theoretical+ practical	, _		fracturing					
Week8 5 evaluation naturally fractured reserve (carbonate, shale and sand and anturally fractured reservoir) Theoretical+ practical practical Theoretical+ practical and assignments practical General questions Week10 5 Hydraulic fractured reservoir fluid Flow in Non-Porous Fractured rock Fluid Flow in Non-Porous Fractured rock Fluid Flow in Fractures Robuston and presentation General questions Theoretical+ practical p	Week7	5	_			and discussion		
Week9 S				nd				
Week9 5 (carbonate ,shale and san reservoir) practical Theoretical+ practical Group discussion and assignments practical Week10 5 Hydraulic fractured practical Discussion and presentation Week11 5 reservoir fluid Flow in Non-Porous Fractured Theoretical+ practical General questions Week12 5 rock Fluid Flow in Fractures Roll of Fractured Theoretical+ practical Discussion and presentation Week13 5 of Fluid Displacement in sing Marrix Theoretical+ practical Discussion and presentation Week14 5 Production mechanism of Fractured Reservoirs. Theoretical+ practical Discussion and presentation Week15 5 Production mechanism of Fractured Reservoirs. Theoretical+ practical Discussion and presentation 11. Course Evaluation Discussion and presentation <	Week8	5				Monthly exam		
Week10 5 Hydraulic fractured reservoir Theoretical+ practical General questions Week11 5 reservoir fluid Flow in Non-Porous Fractured Theoretical+ practical Week12 5 rock Practured Theoretical+ practical Fluid Flow in Fractures Rowek13 5 Fluid Displacement in sine practical Week14 5 Fluid Displacement in sine practical Discussion and presentation Week15 5 Production mechanism of Fractured Practical Week16 5 Production mechanism of Fractured Practical Week17 Fluid Displacement in sine practical Block Theoretical+ practical Fractured Practical Fractured Practical Fractured Practical Theoretical+ practical Discussion and presentation Discussion and presentation Discussion and presentation Theoretical+ practical Discussion and presentation Discussion and presentation Theoretical+ practical Discussion and presentation Discussion and presentation Theoretical+ practical Discussion and presentation Theoretical+ practical Discussion and presentation Theoretical+ practical Theoretical+ practical Discussion and presentation Theoretical+ practical Theoretical+ practi			naturally fractured r	eserv	Theoretical+			
Week10 5 Hydraulic fractured practical General questions Week11 5 reservoir fluid Flow in Non-Porous Fractured Theoretical+ practical practical General questions Week12 5 rock Fluid Flow in Fractures Ro Fluid Flow in Fractures Ro Double Porosity Theoretical+ practical practical Discussion and presentation Week13 5 Fluid Displacement in sing Matrix Block Theoretical+ practical practical presentation Week15 5 Production mechanism of Fractured Reservoirs. Theoretical+ practical Discussion and presentation 11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books (curricular books any) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Recommended books and references (sources)	Week9	5	(carbonate ,shale and	d san	practical	Group discussion		
Week11 5 reservoir fluid Flow in Non-Porous Fractured Fluid Flow in Fractures Relation Fractured Fluid Flow in Fractures Relation Fractured Fluid Flow in Fractures Relation Fractured Fluid Displacement in sing Matrix Block Theoretical practical Practical Fluid Displacement in sing Matrix Fractured Reservoirs. Week15 5 Production mechanism of Fractured Reservoirs. Theoretical practical Fluid Discussion and presentation Discussion and presentation Practical Fractured Reservoirs. Theoretical practical Discussion and presentation Discussion and presentation Practical Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek Ahmed, Reservoir_Engineering_Handbook3Ed_2006_pdf			reservoir)					
Week12 5 reservoir fluid Flow in Non-Porous Fractured rock Fluid Flow in Fractures Rock Fluid Displacement in sing Matrix Block Theoretical Practical Practical Theoretical Practical Fractured Reservoirs. Week15 5 Production mechanism of Fractured Reservoirs. Theoretical Practical Discussion and presentation Discussion and presentation 11. Course Evaluation Discussion and presentation Discussion and presentation 21. Learning and Teaching Resources Rock Curricular books Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (Scientific journals, reports) Tarek, Ahmed_Reservoir_Engineering_Handbook _ 3Ed_2006_pdf	Week10	5			practical	General questions		
Week12 5 reservoir fluid Flow in Non-Porous Fractured Theoretical+ practical Week12 5 of Double Porosity Fluid Displacement in sing Matrix Block Production mechanism of Fractured Reservoirs. Week15 5 Production mechanism of Fractured Reservoirs. Theoretical+ practical Discussion and presentation Theoretical+ practical Discussion and presentation 11. Course Evaluation Discussion and presentation 12. Learning and Teaching Resources Required textbooks (curricular books fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Recommended books and references (scientific journals, reports) Theoretical+ practical Theoretical+ pra			Hydraulic fractured			-		
Week12 5 rock Fluid Flow in Fractures References (Sources) Fractured rock Fluid Flow in Fractures References (Scientific journals, reports) Fractured Fluid Flow in Fractures References (Scientific journals, reports) Fractured Fluid Displacement in sing practical practical practical Theoretical+ practical practical Theoretical+ practical Theoretical+ practical Theoretical+ practical Theoretical+ practical Discussion and presentation Discussion and presentation Theoretical+ practical Discussion and presentation Discussion and presentation	Week11	5	_			Discussion and		
Week12 5 rock			fluid Flow in Non-Po	rous		presentation		
Week12 5 rock Fluid Flow in Fractures Refluid Displacement in singular matrix Block Theoretical practical Theoretical practical Theoretical practical Theoretical practical Practured Reservoirs. Theoretical practical Theoretical practical Theoretical practical Practical Practical Discussion and presentation 11. Course Evaluation Theoretical practical Practi					Theoretical+	I =		
Week14 5 Fluid Flow in Fractures Report	Week12	5				d occording quantum		
Week14 5 Fluid Displacement in sine Matrix Block Production mechanism of Fractured Reservoirs. Theoretical+ practical Discussion and presentation 11. Course Evaluation Discussion and presentation Theoretical+ practical Discussion and presentation Discussion and presentation Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook 3Ed_2006_pdf				es Ro	l =			
Week14 5 Double Porosity Fluid Displacement in sing Theoretical+ practical Discussion and presentation Discussion and Discussion and	Week13	5						
Week15 5 Fluid Displacement in sins Block Week15 5 Production mechanism of Fractured Reservoirs. Theoretical+ practical Theoretical+ practical Theoretical+ practical Theoretical+ practical Theoretical+ practical Theoretical+ practical Discussion and presentation Discussion and presentation 11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Theoretical+ practical Discussion and presentation Discussion and presentation Tourise Practical Practical Theoretical+ practical Theoretical	· · · · · · · · · · · · · · · · · · ·		_		practical	Discussion and		
Week15 5 Matrix Block Production mechanism of Fractured Reservoirs. Theoretical Theoretical+ practical Theoretical+ practical Discussion and presentation Discussion and presentation 11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook 3Ed_2006_pdf	Week14	5		n sine	Theoretical+			
Week15 5 Production mechanism of Fractured Reservoirs. Theoretical+ practical Theoretical+ practical Discussion and presentation 11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Theoretical+ practical Discussion and presentation Discussion and presentation Production mechanism of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982	WCCKII		_	11 31118		presentation		
Week15 5 Production mechanism of Fractured Reservoirs. Theoretical+ practical Discussion and presentation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook _ 3Ed_2006_pdf					1 -			
Fractured Reservoirs. Theoretical+ practical Discussion and presentation 11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Sequired textbooks (curricular books any) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook _3Ed_2006_pdf	Week15	5		em of				
Reservoirs. Theoretical+ practical Discussion and presentation 11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Theoretical+ practical Discussion and presentation Discussion and presentation	WCCKIS	3		5111 01	practical			
Theoretical+ practical Discussion and presentation 11. Course Evaluation Discussion and presentation 11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook3Ed_2006_pdf								
practical Discussion and presentation 11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook3Ed_2006_pdf			Reservoirs.		Theoretical			
Discussion and presentation 11. Course Evaluation Discussion and presentation 11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook								
Discussion and presentation 11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook3Ed_2006_pdf								
Discussion and presentation 11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook3Ed_2006_pdf								
11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook _3Ed_2006_pdf						presentation		
11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook _3Ed_2006_pdf								
11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook _3Ed_2006_pdf								
11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook _3Ed_2006_pdf								
11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook _3Ed_2006_pdf								
11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook _3Ed_2006_pdf								
11. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books and references) Required textbooks (curricular books and references) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook _3Ed_2006_pdf								
Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books and references) Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook _3Ed_2006_pdf						presentation		
preparation, daily oral, monthly, or written exams, reports etc 12. Learning and Teaching Resources Required textbooks (curricular books any) Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook3Ed_2006_pdf								
12. Learning and Teaching Resources Required textbooks (curricular books any) Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook3Ed_2006_pdf		_		0	O	ne student such as daily		
Required textbooks (curricular books any) Main references (sources) Recommended books and references (scientific journals, reports) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Tarek_Ahmed_Reservoir_Engineering_Handbook3Ed_2006_pdf				en exams, re	ports etc			
any) by T.D. VAN GOLF-RACHT, 1982 Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook3Ed_2006_pdf								
Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook3Ed_2006_pdf						rvoir Engineering,		
Main references (sources) Fundamentals of Fractured Reservoir Engineering, by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook _3Ed_2006_pdf	any)			by T.D. VAN	GOLF-RACHT, 1982	-		
by T.D. VAN GOLF-RACHT, 1982 Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook3Ed_2006_pdf		rences (so		-		rvoir Engineering,		
Recommended books and references (scientific journals, reports) Tarek_Ahmed_Reservoir_Engineering_Handbook _3Ed_2006_pdf						<i>5 5</i> ,		
(scientific journals, reports) _3Ed_2006_pdf	Recomme	Recommended books and references				ering_Handbook		
				9 9				
including including the contest in the part of the par						1996-1073/12/15/2897		

Lecturer

1. Course Name:

Core Analysis – Grade fourth

2. Course Code:

PRE415

3. Semester / Year:

First Semester 2024/2025

4. Description Preparation Date:

3/9/2024

5. Available Attendance Forms:

Attendance

6. Number of Credit Hours:

(60) / Number of Units (3)

7. Course administrator's name (mention all, if more than one name)

Name: Saad Waleed Saadi (Lecturer) / saad.saadi@uomosul.edu.iq

Name: Bushra Abdullah Mohammed (Lecturer) / geobushra@uomosul.edu.iq

8. Course Objectives

Course Objectives

- Understanding Rock Properties: Studying different types of rocks (igneous, sedimentary, metamorphic) and their physical and chemical properties.
- Studying Mineral Composition: Analyzing the mineral composition of rocks and how this composition affects the physical and mechanical properties of the rocks.
- Laboratory Analysis Techniques: Learning various laboratory techniques used in rock analysis, such as chemical analysis, mineralogical analysis, and petrographic studies.
- Linking Geological Analysis to Earth Processes: Understanding the relationship between rock formation and geological processes such as tectonics, volcanism, sediment accumulation, and thermal and pressure transformations.
- Practical Applications: Using rock analysis techniques to interpret the geological environment and the field transformation processes of rocks. This may include applications in fields such as mineral exploration, geotechnical engineering, and natural resource management.
- Rock Strength Evaluation: Analyzing the hardness and durability of rocks and determining how these properties affect their use in engineering or mining projects.

9. Teaching and Learning Strategies

Strategy Integrating theoretical learning with practical training to provide

students with a comprehensive and in-depth understanding of the physical and chemical properties of rocks and methods of analyzing them, through interactive and experiential learning, the use of technology, and the utilization of diverse resources

10. Course Structure

Week	Hours	Required Learning	Unit or subject	Learning	Evaluation
VVCCIX	liouis	Outcomes	name	method	method
XX71- 1		An ability to outline and	паше	memou	
Week 1		conduct experiments as	Introduction and Core		Group
		well as analyze and	Analysis Requirements		discussion
		interpret data.	Analysis Requirements		
Week 2		An ability to acquire new			Assessment
WEEK Z		engineering knowledge	Coring System and		
		and skills in the	Types of Coring		exam +
		engineering fields	Types or comig		discussion
Week 3		An ability to acquire new			Assessment
WCCK 5		engineering knowledge			
		and skills in the	Sidewall Coring		exam
		engineering fields			
Week 4		An ability to outline and			Seminar
WCCK 1		conduct experiments as	Core Description and		Semma
		well as analyze and	Imaging		
		interpret data			
Week 5		An ability to outline and			Classroom
W COR 5		conduct experiments as	Sample Selection for		discussion
		well as analyze and	Core Analysis		uiscussioii
		interpret data			
Week 6		An ability to outline and			Discussion +
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		conduct experiments as	Routing Core Analysis –		quiz
		well as analyze and	Modul 1		quiz
		interpret data			
Week 7		An ability to acquire new			Quiz or
	2	engineering knowledge	Routing Core Analysis –	Theory	discussion
		and skills in the	Modul 2		discussion
		engineering fields			
Week 8		An ability to acquire new	Wellsite Activities and		Quiz or
		engineering knowledge	Core Analysis		discussion
		and skills in the	Preparation		0100001011
		engineering fields	Treparation		
Week 9		An ability to acquire new			Quiz or
		engineering knowledge	Special Core Analysis –		discussion
		and skills in the	Module 1		
	_	engineering fields			
Week 10		An ability to acquire new			Quiz or
		engineering knowledge	Special Core Analysis –		discussion
		and skills in the	Module 2		
	4	engineering fields			
Week 11		An ability to acquire new			Quiz or
		engineering knowledge	Core Management		discussion
	and				
	4	engineering fields			
Week 12		An ability to outline and	Diam'r C		Quiz or
		conduct experiments as	Planning a Coring		discussion
		well as analyze and	Program		
*** 1 10	4	interpret data	W.H.'. C. H. II'		0 :
Week 13		An ability to outline and	Wellsite Core Handling		Quiz or
		conduct experiments as	Procedures and		discussion
			Preservations		

		well as analyze and			
Week 14		An ability to outline and conduct experiments as well as analyze and interpret data	Advanced Core Analysis Tests - 1		Quiz or discussion
Week 15		An ability to acquire new engineering knowledge and skills in the engineering fields	Advanced Core Analysis Tests - 2		General questions and final exam
Core Ana	lysis - Pi	ractical			
Weeks	Hours		Unit or subject name	Learning method	Evaluation method
Week 1		An ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits	Introduction to core analysis tools		Practical assessment
Week 2		An ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits	Rock Samples and Identification		Electronic report
Week 3		An ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits	Laboratory Tools for Rock Analysis		Report + exam
Week 4		An ability to acquire new engineering knowledge and skills in the engineering fields	Testing Rock Hardness with Mohs Hardness Scale		Report
Week 5	2	An ability to acquire new engineering knowledge and skills in the engineering fields	Sedimentary Rock Analysis	Duration!	Discussion report
Week 6	. 3	An ability to acquire new engineering knowledge and skills in the engineering fields	Data Interpretation and Rock Analysis Conclusions	Practical	Report
Week 7		An ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits	Core Analysis Reports – 1		Report discussion
Week 8		An ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits	Core Analysis Reports – 2		Report discussion
Week 9		An ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits	Presentation – Group Work		Report discussion
Week 10		An ability to acquire new engineering knowledge	Porosity Problems		Report discussion

	and skills in the engineering fields		
Week 11	An ability to acquire new engineering knowledge and skills in the engineering fields	Permeability Problems	Electronic activities
Week 12	An ability to acquire new engineering knowledge and skills in the engineering fields	Water Saturation Problems	Electronic activities
Week 13	An ability to acquire new engineering knowledge and skills in the engineering fields	Advanced Core Analysis Problems - 1	Homework report
Week 14	An ability to acquire new engineering knowledge and skills in the engineering fields	Advanced Core Analysis Problems - 2	Homework report
Week 15	An ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits	Practical test	Final exam

11.Course Evaluation

- Semester Grade: 50%, which includes:
- 35% theoretical, covering attendance, classroom discussions, short exams, and practical lab reports.
- 15% practical.
- Final Exam Grade: 50%, which includes:
- 40% theoretical
- 10% practical.

12.Learning and Teaching Resources	
Required textbooks (curricular books, if any)	The Fundamental of Core Analysis, Keelan,
	1989
Main references (sources)	Recommended Practices for Core Analysis,
	API, 1989
	Best Practice in Coring and Core Analysis, Mcrphee, 2015
Recommended books and references (scientific journals, reports)	Sciencedirect/ Core analysis
Electronic References, Websites	MIT OpenCourseWave
	YouTube/Core Analysis
Curriculum or syllabus update percentage	8%

Head of department

University of Mosul College of Petroleum and Mining Engineering Department of Petroleum Reservoir Engineering

Course Descriptions

Fourth Stage / 2nd Semester (Semester)

- Ro

Dr. Maha Muneeb Al-Dabbagh

Head of Department

h

Dr. Ayman Mahmoud Ahmed
Chairman of the Scientific Committee

1. Course Name: Enhance Oil Recovery2							
2. Course Code: PRE417							
3. Semester / Year:							
Second / 2024-20	25						
4. Description Prep	aration Date:						
5-1-2025							
5. Available Attenda	nce Forms: In person attendance						
6. Number of Credit	Hours (Total) / Number of Units (Total) 75/3						
7. Course administ	rator's name (mention all, if more than one name)						
Name: dr. Muhar	nad A. Jassim						
Email: muhamed	.aswad@uomosul.edu.iq						
8. Course Objectives	5						
Course Objectives	Identify natural (primary) and secondary methods of oil						
	extraction						
	Maintain reservoir pressure by adding secondary						
	processes						
	Study the types of secondary methods and their						
	importance in raising reservoir pressure						
	Distribute water and gas injection wells around						
	production						
	wells						
Identify the most important problems that occur during injection operations and find appropriate solutions for them							
Use tertiary methods to achieve high oil recovery							
9. Teaching and Lea							
Strategy	1- Direct classroom instruction, 6 hours per week +						
	1 hour per week for tutoring.						

- 2- Class discussions.
- 3-Tests, quizzes, class participation, projects, homewo and presentations.

Student Assessment Methods:

- 1. Required exercises.
- 2. Termly exams.
- 3. Project discussions and assignments.

The overall assessment for this course is as follows: 40 points of the total grade are allocated for annual performance, which includes assignments, oral tests, termly exams, and presentations. 60 points are allocated for the final exam.

10. Course Structure

Week	Hour	Required Learning	Unit or	Learning	Evaluati
	s	Outcomes	subject name	method	on
					method
the 1st	3	Gas injection	Enhance Oil Recovery2	Theoretical	General questions a discussion
2 nd +3 rd	6	Injection gas sources	Enhance Oil Recovery2	Theoretical+ practical	Short exam
fourth	3	Gas injection patterns and methods	Enhance Oil Recovery2	Theoretical	General questions a discussion
Fifth + sixth	6	Treatment of gas injection	Enhance Oil Recovery2	Theoretical+ practical	General questions a discussion
Seventh +eighth	6	Tertiary methods	Enhance Oil Recovery2	Theoretical+ practical	homework
Ninth	3	Chemical methods	Enhance Oil Recovery2	Theoretical	Short exam
The tenth + eleventh	6	Polymer injection	Enhance Oil Recovery2	Theoretical+ practical	General questions a discussion
twelfth	3	Alkali injection	Enhance Oil Recovery2	Theoretical	classwork
Thirteenth+ fourteenth	6	Thermal methods	Enhance Oil Recovery2	Theoretical+ practical	General questions a discussion
fifteenth	3	Hot steam injection	Enhance Oil Recovery2	Theoretical	Short exam

11. Course Evaluation				
Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc				
12. Learning and Teaching Resources				
Required textbooks (curricular books, if any)	Introduction to Petrophysics of			
	Reservoir Rocks			
Main references (sources)	Petroleum Reservoir Engineer			
, ,	Handbook, Tark Ahmad, 4th edit			
	2010			
Recommended books and references (scientific journals,				
reports)				
Electronic References, Websites				

1. Course Name:

Reservoir Simulation – Fourth grade

2. Course Code:

PRE418

3. Semester / Year:

Second semester 2024-2025

4. Description Preparation Date:

3/9/2024

5. Available Attendance Forms:

Attendance

6. Number of Credit Hours (Total) / Number of Units (Total):

Total hours 60 / total unit 3.5

7. Course administrator's name (mention all, if more than one name)

Name: Dr. Saad Waleed Saadi Email: saad.saadi@uomosul.edu.iq

8. Course Objectives

Course Objective

- Understanding the fundamental concepts of reservoir simulation.
- Understanding the mathematical and engineering methods for reservoir simulation.
- Understanding partial differential equations (PDEs) in simulation.
- Ability to simulate single-phase and multiphase fluid flows in petroleum reservoirs.
- Testing hypotheses in practical simulations of oil fields.
- Handling wells completed in single-layer and multilayer formations, and presenting fluid flow rate equations for various well operating conditions.
- Understanding initial and boundary conditions.
- Gaining knowledge about different coordinate systems used in reservoir simulation.

9. Teaching and Learning Strategies

Strategy

The strategy focuses on thoroughly understanding the fundamental concepts, applying them using simulation tools, and actively participating in hands-on training with real-world scenarios. Time management, collaboration with peers, and staying up to date with industry developments will also enhance your understanding and performance. By breaking tasks into manageable steps, effectively troubleshooting, and practicing consistently, students will be able to comprehend both the theoretical and practical aspects of reservoir simulation.

	se Structur				
Week	Hours	Required Learning Outcomes	Unit or subject name	Learnin g method	Evaluation method
Week 1		An ability to acquire new engineering knowledge and skills in the engineering fields	Learning Principles of simulation and modelling, simulation objectives, methodology and steps	memou	Group discussion
Week 2		An ability to acquire new engineering knowledge and skills in the engineering fields	Modelling concepts and system simulation		Assessment exam discussion
Week 3		An ability to acquire new engineering knowledge and skills in the engineering fields	Purpose and benefits of numerical reservoir simulation		Assessment exam
Week 4		An ability to acquire new engineering knowledge and skills in the engineering fields	Reservoir simulation relationships with other exploration and production matters		Seminar
Week 5		An ability to acquire new engineering knowledge and skills in the engineering fields	Types of reservoir simulation models		Classroom discussion
Week 6		An ability to acquire new engineering knowledge and skills in the engineering fields	The fluid flow equations in a porous media		Discussion + quiz
Week 7	2	An ability to acquire new engineering knowledge and skills in the engineering fields	Conversation of mass and conversation of momentum equations	Theory	Discussion + quiz
Week 8		An ability to acquire new engineering knowledge and skills in the engineering fields	Darcy's law and its applications		Discussion + quiz
Week 9		An ability to acquire new engineering knowledge and skills in the engineering fields	Compositional and black oil model equations		Discussion + quiz
Week 10		An ability to acquire new engineering knowledge and skills in the engineering fields	Numerical Discretization of the Fluid Flow Equations		Discussion + quiz
Week 11		An ability to acquire new engineering knowledge and skills in the engineering fields	Notions about Finite Differences and Finite elements	-	Discussion + quiz
Week 12		An ability to acquire new engineering knowledge and skills in the engineering fields	Types of Numerical Schemes: a) IMPES. b) Fully Implicit. c) Streamlines.	-	Discussion + quiz
Week 13		An ability to acquire new engineering knowledge and skills in the engineering fields	General form of the one- phase, one-dimensional, horizontal PDE		Discussion + quiz

		T	T		1
Week 14		An ability to acquire new engineering	Coordinate systems in		Discussion
		knowledge and skills in	reservoir simulation		+ quiz
		the engineering fields		1	
Week 15		An ability to acquire	Equation of state,		General
		new engineering knowledge and skills in	Conversation of Mass, Conversion of		questions
		the engineering fields	Momentum		final exam
Reservoir S	Simulation		1120110111		
Week	Hours	Required	Unit or subject name	Learnin	Evaluation
***************************************	110415	Learning		g	method
		Outcomes		method	memou
Week 1		An ability to function on	Tutorial on Practical Use		Practical
		multi-disciplinary teams to	of		application on
		analyze, solve problems,	Reservoir Simulation –		computer
		and deadline commits.	CMG Software		
Week 2		An ability to design an	Data gathering, geological		Practical
		integrated system and its	model and grid		application on
		various components and processes to produce	construction – Modul 1		computer
		solutions that fulfill the			
		needs of society.			
*** 1.0	-	A1-11	D.4		D
Week 3		An ability to design an integrated system and its	Data gathering, geological model and grid		Practical application on
		various components and	construction – Modul 2		computer
		processes to produce			
		solutions that fulfill the			
		needs of society.			
Week 4		An ability to design an			Practical
		integrated system and its	Data authorina application		application on
		various components and processes to produce	Data gathering, geological model and grid		computer
	_	solutions that fulfill the	construction – Modul 3		+ Exam
	3	needs of society.			
Week 5		An ability to design an	Data filtering, data input		Report +
,, con		integrated system and its	and		Discussion
		various components and	model correction		Discussion
		processes to produce solutions that fulfill the			
		needs of society.			
Week	-	An ability to design an	Model run and		Description 1
Week 6		integrated system and its	Model run and visualization – Module 1		Practical
		various components and	. Isaanization 1910aute 1		application on
		processes to produce solutions that fulfill the			computer
		needs of society.			+ Exam
Week 7	1	An ability to design an	Model run and		Practical
		integrated system and its	visualization – Module 2		application on
		various components and processes to produce			computer
		solutions that fulfill the			+ Exam
		needs of society.			
Week 8		An ability to function on	Model refinement		Practical
		multi-disciplinary teams to analyze, solve			application on
					computer
					+ Exam

	problems, and deadline commits.		
Week 9	An ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits.	Fluid and rock-fluid properties, aquifer modelling and initialization	Practical application on computer + Exam
Week 10	An ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits.	Well description, history matching and forecast simulation	Practical application on computer + Exam
Week 11	An ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits.	Basic exercises about finite difference discretization.	Practical application on computer + Exam
Week 12	An ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits.	Modify and run with Eclipse/CMG software a vertical cross- section model to mimic reservoir	Practical application on computer + Exam
Week 13	An ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits.	Analyze input data and results of a 3D full field simulation model with different scenarios	Practical application on computer + Exam
Week 14	An ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits.	Retesting the model	Practical application on computer + Exam
Week 15	An ability to function on multi-disciplinary teams to analyze, solve problems, and deadline commits.	Practical test	Final course exam

11. Course Evaluation

This includes daily preparation, quizzes (written and oral), monthly exams, written tests, reports, etc.

- Midterm Grade 50%
 - 35% Theoretical, which includes attendance, classroom discussions, short quizzes, and laboratory reports.
 - o 15% Practical
- Final Exam 50%
 - o 40% Theoretical
 - o 10% Practical

12. Learning and Teaching Resources	
Required textbooks (curricular books, if any)	1- Reservoir Simulation: Mathematical
	Techniques in Oil Recovery, Z.Chen,2007
	2- Practical Enhanced Reservoir
	Engineering: Assisted with Simulation
	Software, Abdus Sattar,
Main references (sources)	Petroleum Reservoir Simulation:

	The Engineering Approach, Second edition, Jamal H. Abou-Kassem M. Rafiqul Islam S.M. Farouq Ali
Recommended books and references (scientific journals, reports)	Advanced Petroleum Reservoir Simulation, 2010, M.R.Islam
Electronic References, Websites	MIT OpenCourseWave YouTube/reservoir simulation
Curriculum or Course Description Update Rate	9%

	ourse N					
Petrole	ım Econ	omics				
2. C	ourse Co	ode:				
F	PRE413					
3. S	emester	/ Year:				
	2nd Sem	ester /2024	-2025			
4. D	escripti	on Preparati	ion Date	:		
3	3-9-202	4				
5. A	vailable	Attendance 1	Forms:			
I1	n-persor	1				
		f Credit Hou	rs (Total)) / Number of Uni	ts (Total)	
	30/2	alias lin la tira ta i	ul	/		
					more than one na	,
		san Shaban bjectives	EI	nan: <u>monammed</u>	<u>hasan@uomosul.</u>	<u>eau.iq</u>
		DJECHVES	1 ₋ I	Provide students with a	solid foundational knowl	ledge of the oil and end
Course)bjectives			ctor.	sond foundational known	leage of the off and en
			2	Develop students' anal	ytical and critical abilitie	es in addressing petrole
			rel	ated issues.		
			3	Enhance students' aware	eness of the strategic role	of oil as a vital resource
9. T	eaching	and Learning	g Strateg	ies		
Strategy			- Interac	ctive theoretical lecture	es s	
				torming and class discrete reports and assignment		
				ning and digital resource		
	- Case study analysis					
10. Course Structure						
Week	Hours	Required	Learn	Unit or subject na	Learning method	Evaluation metho
		Outcomes				
1	2	Understand fundamentals petroleum ed and its macroe	the of conomics economic	Introduction to Petroleum Economics and the Oil Industry	Lecture	Q&A & Discussion

importance.

2	2	Analyze supply and demand dynamics in the global oil market and price elasticity.	Global Oil Market Analysis: Supply & Demand	Lecture	Q&A & Discussion
3	2	Identify factors affecting oil prices and assess future trends.	Factors Influencing Oil Pricing	Lecture	Formative Assessn Exam
4	2	Comprehend the impact of oil reserves on market behavior and producer strategies.	Impact of Oil Reserves on the Global Market	Lecture	Q&A & Discussion
5	2	Track the evolution of oil sector investments and their economic impacts.	Investment Trends in the Oil Sector	Lecture	Q&A & Discussion
6	2	Recognize post- production activities such as refining, transportation, and distribution.	Post-production Operations and Gas Utilization	Lecture	Formative Assessn Exam
7	2	Understand economic theories related to non-renewable resource depletion.	Theories of Non- Renewable Resource Depletion	Lecture	Q&A & Discussion
8	2	Appreciate the importance of rational energy consumption for sustainable development.	Energy Economics and Consumption Rationalization	Lecture	Q&A & Discussion
9	2	Explore alternative energy sources and evaluate their economic and environmental feasibility.	Shift toward Alternative Energy Sources	Lecture	Q&A & Discussion
10	2	Analyze the relationship between energy use and environmental pollution; discuss emission reduction mechanisms.	Energy & Pollution: Challenges and Solutions	Lecture	Formative Assessn Exam
11	2	Understand energy policies in Iraq and dimensions of local and regional energy security.	Energy Policy and Security in the Iraqi Context	Lecture	Q&A & Discussion
12	2	Compare characteristics of depletable and renewable energy sources and substitution opportunities.	Substitution between Depletable and Renewable Sources	Lecture	Q&A & Discussion
13	2	Develop a future outlook on global energy sector transformations.	Future Foresight of the Global Energy Sector	Lecture	Formative Assessn Exam
14	2	Learn about electrical energy sources and their role in supporting development.	Concepts and Sources of Electrical Energy	Lecture	Q&A & Discussion
15	2	Comprehensive review and preparation for the final exam.	Comprehensive Review and Exam Preparation	Lecture	Q&A & Discussion

11. Course Evaluation

- Daily quizzes.
- Weekly examinations.

- Monthly tests.- Midterm examinations.- Final examination.12. Learning and Teach	ning Resources
Required textbooks	
(curricular books, if any)	
Main references (sources)	Petroleum Industry Economics / Dr. Mahmoud Azhar Al- Sammak
Recommended books and	Energy Economics / Dr. Ahmad Jassim Al-Yasiri
references (scientific	
journals, reports)	
Electronic References,	
Websites	

1. Course Name:

Reservoir Management - Grade 4th

2. Course Code:

PRE421

3. Semester / Year:

2nd Semester / 2024-2025

4. Description Preparation

Date: 3/9/2024

5. Available Attendance Forms:

Attendance

6. Number of Credit Hours (60 Total) / Number of Units (3.5 Total)

7. Course administrator's name (mention all, if more than one name)

Name: Asst. Lecturer Sarah Saad Abdul-Jabbar Email: sarahsaad3860707@uomosul.edu.iq

8. Course Objectives

Course Objectives

- Understand the principles of well testing.
- Deal with reservoir evaluation techniques.
- - Understand the types of tests.
- Determine the initial reservoir pressure measurement.
- - Determine the average reservoir pressure measurement.
- Address formation damage due to drilling and completion.
- Cover fluid flow equations.
- - Develop problem-solving skills using Darcy's Law.
- - Solve the diffusivity equation.

9. Teaching and Learning Strategies

Strategy

- Strategies to achieve a deep understanding of well testing principles, methodologies, and applications that enhance reservoir characterization and hydrocarbon recovery, adapting to evolving challenges and innovations in the petroleum industry

10. Course Structure

Theory

Week	Hours	Required Learning	Unit or	Learning method	Evaluation
		Outcomes	subject		method
			name		
Week 1		Introduction to	Introductio		Group Discussion
		Reservoir	n to		
		Management	Reservoir		
TAT 1 0		Leter 1 at a Debut of a confi	Management		D. J. et D.
Week 2		Introduction, Principles of Well Testing	Introduction, Principles of		Evaluation Exam + Discussion
		wen resumg	Well Testing		Discussion
Week 3		Well Testing Objectives,	Well Testing Well Testing	-	Evaluation Exam
week 5		Reservoir Evaluation	Objectives,		Evaluation Exam
		Treserven Byunuuren	Reservoir		
			Evaluation		
Week 4		Types of Tests	Types of Tests	-	Seminar
Week 5		Initial Reservoir Pressure	Initial	-	Classroom Discussion
WCCKS		Measurements	Reservoir		Classi oolii Discussi
			Pressure		
			Measurements		
Week 6		Average Reservoir	Average		Discussion Instant
Weeko		Pressure Measurements	Reservoir		Exam
			Pressure		
			Measurements		
Week 7		Subsequent	Subsequent		
		Measurements:	Measurements		
	2	Permeability (k),	: Permeability	Discussion & Q&A	
		Reservoir Flow Capacity	(k), Reservoir		
		(kh), Drilling/Completion Damage (Skin), Drainage	Flow Capacity		
		Area	(kh),		
			Drilling/Comp		
			letion Damage		
			(Skin),		
			Drainage Area		
Week 8		Well Testing Procedures	Well Testing		
			Procedures		Instant Exam or
Week 9		Key Points in Test	Key Points in		Discussion
		Interpretation	Test		
			Interpretation		
Week 10		Pressure Transient	Pressure		
		Analysis	Transient		
TAY 1 4 4	4	D D "11 T	Analysis	-	
Week 11		Pressure Build-up Test	Pressure		
TAT 1.40	4	D 1 T	Build-up Test	-	
Week 12		Drawdown Test	Drawdown		
W1 12	4	Injection Test	Test	-	
Week 13	-	Injection Test	Injection Test	-	
Week 14		Principle of Superposition	Principle of		

			Superposition	
Week 15		Reservoir and Well	Reservoir and	General Questions
		Aspects	Well Aspects	and Final Exam
Pra	actical			

Week	Hours	Unit or subjectname	Learning method	Evaluation method
Week 1		Formation Evaluation		
Week 2		Well Test Design		
Week 3		Pressure Build-up Test Analysis		
Week 4	3	Drawdown Test Analysis and Type Curve	Lectures + discussion	Report & Q&A
Week 5		Practical Project – Full		
Week 6		Interpretation of Well		
Week 7		Test Data		

11. Course Evaluation

- Semester Grade: 50% (35% theoretical including attendance, class discussions, short exams, and lab reports; 15% practical)
 - Final Grade: 50% (40% theoretical; 10% practical)

12. Learning and Teaching Resources

12. Learning and readining rest	501000
Required textbooks (curricular books, if any)	"Well Testing" by John Lee (Essential reference covering principles applications of well testing.) Well Testing and Interpretation" by D. W. Matthews & W. R. Russell
Main references (sources)	* "Pressure Transient Testing" by D. M. Steward * "Modern Well Test Analysis" by Roland N. Horne
Recommended books and references (scientific journals, reports)	* Journal of Petroleum Technology (JPT) * Society of Petroleum Engineers (SPE) papers * Journal of Canadian Petroleum Technology
Electronic References, Websites	* Society of Petroleum Engineers (SPE) website * OnePetro
Curriculum/ Syllabus Update Percentage	9%

Head of department

1. Course Name: Reservoir Management – Grade 4th 2. Course Code: PRE421 3. Semester / Year: 2024/2025 4. Description Preparation Date: 3/9/2024 5. Available Attendance Forms: Attendance 6. Number of Credit Hours (60 Total) / Number of Units (3.5 Total) 7. Course administrator's name (mention all, if more than one name) Name: Saad Waleed Saadi / Lecture Name: Maha Muneeb Al-Dabagh Email: mahamuneeb@uomosul.edu.iq Email: saad.saadi@uomosul.edu.i 8. Course Objectives Understanding the basic principles of reservoir management: **Course Objectives** Students are introduced to reservoir concepts, their natural formations, an methods of exploration and evaluation. • Reservoir production management: Learning how to optimize reservoir productivity through techniques like water injection, ga injection, and other enhanced oil recovery (EOR) methods. • Reservoir data analysis: Training students to analyze geological and engineering data, such as rock and fluid properties in the reservoir, using mathematical models and simulation techniques. • Reservoir development planning: How to design strategies for reservoir development and ensure maximum utilization of resources. • Environmental and economic challenges: Discussing the environmental impact of reservoir management techniques and the economic feasibility of investing in these reservoirs. Production strategy analysis: How to select the best strategies for

- oil and gas production based on geological and economic condition
 - Modern technologies in reservoir management: Studying new
- techniques such as digital modeling, artificial intelligence, and
- advanced drilling technologies.

9. Teaching and Learning Strategies

Strategy

The learning strategy for the 'Reservoir Management' course relies on a set of methods that help students understand complex concepts and apply them in practical contexts through problem-based learning, collaborative learning, project-based learning, and the use of simulation techniques

10. Course Structure

Theory

Week	Hours	Required Learning	Unit or	Learning	Evaluation method
		Outcomes	subject	method	
			name		
Week 1		Introduction to Reservoir Management			Group Discussion
Week 2		Types and Characteristic of Reservoirs			Evaluation Exam + Discussion
Week 3		Rock and Fluid Propertion in Reservoirs			Evaluation Exam
Week 4		Reservoir Exploration Techniques			Seminar
Week 5		Reservoir Evaluation			Classroom Discussion
Week 6		Reservoir Modeling and			Discussion Instant
		Simulation			Exam
Week 7		Drilling Techniques			
Week 8		Water and Gas Injection Enhanced Production			
Week 9	2	Enhanced Oil Recovery (EOR) Techniques	Reservoir Management	Theoretical	
Week 10		Production Management and Control			
Week 11		Environmental Challeng in Reservoir Managemen			Instant Exam or Discussion
Week 12		Economic Feasibility of Reservoir Management			
Week 13		Modern Technologies in Reservoir Management			
Week 14		Reservoir Management Amid Global Economic Challenges			
Week 15		Case Studies and Reserv Management Reports			General Questions and Final Exam
Pr	actical	0 F 7- 45			<u> </u>

Week	Hours	Required Learning	Unit or	Learning	Evaluation method
		Outcomes	subject	method	
			name		
Week 1	3	Introduction to Reservo Modeling – Module 1	Reservoir Management	3	Practical Assessment
Week 2		Introduction to Reserv Modeling – Module 2			Electronic Report
Week 3		Reservoir Simulation Module 1			Report + Exam
Week 4		Reservoir Simulation Module 2			Report
Week 5		Reservoir Data Analysis			Discussion + Report
Week 6		Reservoir Rock and Fluid Characterization			Report
Week 7		Well Log Interpretation Part 1			Report + Discussion
Week 8		Well Log Interpretation Part 2			Evaluation Exam
Week 9		Enhanced Oil Recovery (EOR) Techniques			Exam
Week 10		Well Testing and Production Data Analysi			
Week 11		Pressure Maintenance and Reservoir Management			Online Activities
Week 12		Environmental Impact Assessment			
Week 13		Economic Feasibility Reservoir Development			Homework + Report
Week 14		Case Study Analysis Reservoir Management			Homework + Report
Week 15		Practical Test			Final exam

11. Course Evaluation

Grade distribution out of 100 based on student tasks such as daily preparation, daily exams, oral exams, monthly exams, written exams, reports, etc.

Semester Grade: 50%

- 35% Theory, which includes attendance, class discussions, short quizzes, and practical lab reports
- 15% Practical

Final Exam Grade: 50%

- 40% Theory
- 10% Practical

12. Learning and Teaching Resources

Required textbooks (curricular books, if any)	Integrated Petroleum Reservoir Management, Abdus Sa 1990
Main references (sources)	Petroleum Reservoir Management, Ashok, K, Pathak, 2022

Recommended books and references	Sciencedirect/ Reservoir Management
(scientific journals, reports)	
Electronic References, Websites	MIT OpenCourseWave
Curriculum/ Syllabus Update Percentage	9%