Methods of Calculation

There are several empirical methods that are designed to predict the non-linearity behavior of the IPR for solution gas drive reservoirs. Most of these methods require at least one stabilized flow test in which \mathbf{Q}_0 and \mathbf{P}_{wf} are measured. All the methods include the following two computational steps:

- Using the stabilized flow test data, construct the IPR curve at the current average reservoir pressure $P_{\rm r}$.
- Predict future inflow performance relationships as to the function of average reservoir pressures.

The following empirical methods that are designed to generate the current and future inflow performance relationships:

- 1. Vogel's method
- 2. Standing's method
- 3. Couto's Method
- 4. Al saadoon's Method
- 5. Fetkovich's method
- 6. Wiggins' method
- 7. The Klins-Clark method

1) Vogel's Method

Vogel (1968) based on a computer simulation of dissolved gas drive reservoirs, where in his calculated IPRs using a wide range of reservoir and fluid parameters, proposed the general IPR curve of Figure (1-29). Often this same Vogel relation is successfully applied to other types of reservoir drive systems.

Vogel normalized the calculated IPRs and expressed the relationships in a dimensionless form. He normalized the IPRs by introducing the following dimensionless parameters:

- Dimensionless pressure = $\frac{P_{wf}}{P_r}$
- Dimensionless flow rate $=\frac{Q_0}{(Q_0)_{max}}$

Where $(Q_0)_{max}$ is the flow rate at zero wellbore pressure (100% drawdown), i.e., AOF.

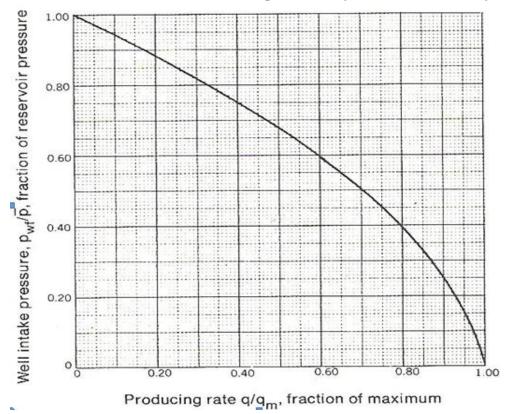


Fig. (1-29): Inflow performance relation (Vogel).

Vogel plotted the dimensionless IPR curves for all the reservoir cases as shown in Figure (1-29) and arrived at the following relationship between the above dimensionless parameter:

$$\frac{Q_{o}}{(Q_{o})_{max}} = 1 - 0.2 \left(\frac{P_{wf}}{P_{r}}\right) - 0.8 \left(\frac{P_{wf}}{P_{r}}\right)^{2} - \dots (1.13)$$

Where:

 Q_o = oil rate at P_{wf}

 $(Q_o)_{max}$ = maximum oil flow rate at zero wellbore pressure, i.e., AOF

 P_r = current average reservoir pressure, psig

 P_{wf} = wellbore pressure, psig

Vogel's method can be extended to account for water production by replacing the dimensionless rate with $Q_L/(Q_L)$ max where $Q_L = Q_o + Q_w$.

This has proved to be valid for wells producing at water cuts as high as 97%.

The method requires the following data:

- Current average reservoir pressure P_r
- Bubble-point pressure **P**_b
- Stabilized flow test data that include Q_0 at P_{wf}

Vogel's methodology can be used to predict the IPR curve for the following two types of reservoirs:

- Saturated oil reservoirs $P_r \le P_b$
- Undersaturated oil reservoirs P_r > P_b

> Saturated Oil Reservoirs

When the reservoir pressure equals the bubble-point pressure, the oil reservoir is referred to as a *saturated oil reservoir*. The computational procedure of applying Vogel's method in a saturated oil reservoir to generate the IPR curve for a well with a stabilized flow data point, i.e., a recorded Q_0 value at P_{wf} , is summarized below:

Step 1: Using the stabilized flow data, i.e., Q_0 and P_{wf} , calculate: $(Q_0)_{max}$ from Equation

$$(Q_0)_{\text{max}} = \frac{Q_0}{1 - 0.2 \left(\frac{P_{\text{wf}}}{P_{\text{u}}}\right) - 0.8 \left(\frac{P_{\text{wf}}}{P_{\text{u}}}\right)^2}$$
 ------(1.14)

Step 2: Construct the IPR curve by assuming various values for P_{wf} and calculating the corresponding Q_0 from:

$$Q_{o} = (Q_{o})_{max} \left[1 - 0.2 \left(\frac{P_{wf}}{P_{r}} \right) - 0.8 \left(\frac{P_{wf}}{P_{r}} \right)^{2} \right] - \dots (1.15)$$

Problem (1-3): A well is producing from a saturated reservoir with an average reservoir pressure of **2500** psig. Stabilized production test data indicated that the stabilized rate and wellbore pressure are **350** STB/day and **2000** psig, respectively. Calculate:

- 1. Oil flow rate at $P_{wf} = 1850$ psig
- 2. Calculate oil flow rate assuming constant J
- 3. Construct the IPR by using Vogel's method and the constant productivity index approach.

Solution:

Part A.

Step 1: Calculate (Q_o)_{max}:

$$(Q_o)_{max} = \frac{350}{1 - 0.2(\frac{2000}{2500}) - 0.8(\frac{2000}{2500})^2} = 1076.1 \text{ STB /day}$$

Step 2: Calculate Q_o at p_{wf} = 1850 psig by using Vogel's equation

$$Q_o = (Q_o)_{max} \left[1 - 0.2 \left(\frac{P_{wf}}{P_r} \right) - 0.8 \left(\frac{P_{wf}}{P_r} \right)^2 \right]$$

$$Q_o = 1076.1 \left[1 - 0.2 \left(\frac{1850}{2500} \right) - 0.8 \left(\frac{1850}{2500} \right)^2 \right] = 441.7 \text{ STB/day}$$

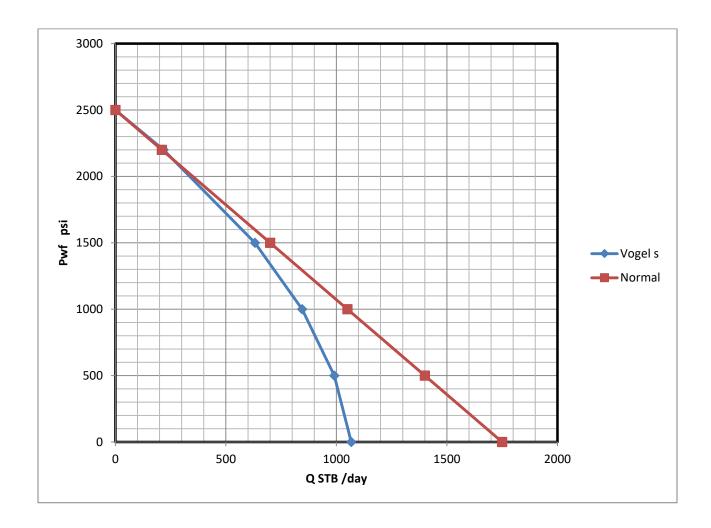
Part B.

Calculating oil flow rate by using the constant **J** approach Step 1: Apply Equation (1.1) to determine **J**

$$J = \frac{Q_o}{P_r - P_{wf}}$$

$$J = \frac{350}{2500 - 2000} = 0.7 \text{ STB /day / psi}$$

Step 2: Calculate Qo


$$Q_0 = J (Pr - P_{wf}) = 0.7 (2500 - 1850) = 455 STB/day$$

Part C.

Generating the IPR by using the constant J approach and Vogel's method: Assume several values for P_{wf} and calculate the corresponding Q_o .

Lecture-**IPR**

p_{wf}	Vogel`s	$Q_0 = J(p_r - p_{wf})$
2500	0	0
2200	218.2	210
1500	631.7	700
1000	845.1	1050
500	990.3	1400
0	1067.1	1750

Petroleum Department	Fourth Stage	Production Engineering II
	Lecture-	/ /2017
	IPR	

Under-saturated Oil Reservoirs

Beggs (1991) pointed out that in applying Vogel's method for under-saturated reservoirs, there are **two possible outcomes to the recorded stabilized flow test data** that must be considered, as shown schematically in Figure (1-30):

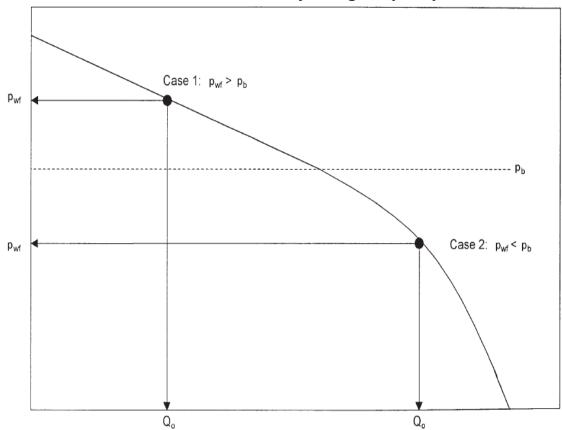


Fig. (1-30): Stabilized flow test data.

- The recorded stabilized bottom-hole flowing pressure is greater than or equal to the bubble-point pressure, i.e. $P_{wf} \ge P_b$
- The recorded stabilized bottom-hole flowing pressure is less than the bubble-point pressure $P_{wf} < P_b$

Case 1: The Value of the Recorded Stabilized $P_{wf} \ge P_b$

Beggs outlined the following procedure for determining the IPR when the stabilized bottom-hole pressure is greater than or equal to the bubble point pressure Figure (1-30):

Step 1: Using the stabilized test data point (Q_0 and P_{wf}) calculate the productivity index **J**:

$$J = \frac{Q_o}{P_r - P_{wf}}$$

Step 2: Calculate the oil flow rate at the bubble-point pressure:

$$Q_{ob} = J (P_r - P_b)$$
 ----- (1.16) Where:

 Q_{ob} : is the oil flow rate at P_b

Step 3: Generate the IPR values below the bubble-point pressure by assuming different values of $P_{wf} < P_b$ and calculating the corresponding oil flow rates by applying the following relationship:

$$Q_{o} = Q_{ob} + \frac{JP_{b}}{1.8} \left[1 - 0.2 \left(\frac{P_{wf}}{P_{r}} \right) - 0.8 \left(\frac{P_{wf}}{P_{r}} \right)^{2} \right] - \dots (1.17)$$

The maximum oil flow rate (Q_{omax} or AOF) occurs when the bottomhole flowing pressure is zero, i.e. P_{wf} = 0, which can be determined from the above expression as:

$$Q_o = Q_{ob} + \frac{JP_b}{1.8}$$
 ----- (1.18)

It should be pointed out that when $P_{wf} \ge P_b$, the IPR is linear and is described by:

$$Q_o = J(P_r - P_{wf})$$

Problem (1-4): An oil well is producing from an under-saturated reservoir that is characterized by a bubble-point pressure of 2130 psig. The current average reservoir pressure is 3000 psig. Available flow test data show that the well produced 250 STB/day at a stabilized P_{wf} of 2500 psig. Construct the IPR data.

Solution:

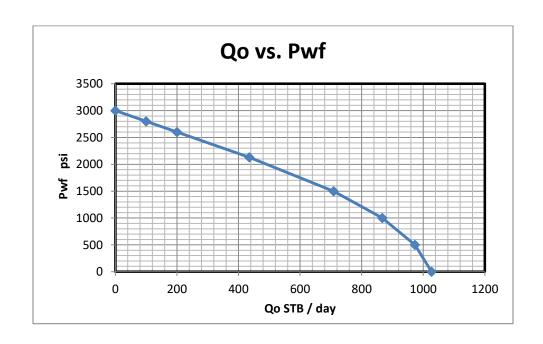
The problem indicates that the flow test data were recorded above the bubble-point pressure; therefore, the Case 1 procedure for under-saturated reservoirs as outlined previously must be used.

Step 1: Calculate J using the flow test data.

$$J = \frac{Q_o}{P_r - P_{wf}}$$

Petroleum Department	Fourth Stage	Production Engineering II / /2017
	Lecture-	/ /2017
	IPR	

$$J = \frac{250}{3000 - 2500} = 0.5 \text{ STB/day/psi}$$


Step 2: Calculate the oil flow rate at the bubble-point pressure by applying

$$Q_{ob} = J (P_r - P_b)$$

$$Q_{ob} = 0.5 (3000 - 2130) = 435 STB/day$$

Step 3: Generate the IPR data by applying the constant J approach for all pressures above P_b and equation (1.17) for all pressures below P_b .

Pwf	Equation	$\mathbf{Q}_{\mathbf{o}}$
3000	(1.4)	0
2800	(1.4)	100
2600	(1.4)	200
2130	(1.4)	435
1500	(1.17)	709
1000	(1.17)	867
500	(1.17)	973
0	(1.17)	1027

Case 2: The Value of the Recorded Stabilized Pwf < Pb

When the recorded P_{wf} from the stabilized flow test is below the bubble- point pressure, as shown in Figure (1-30), the following procedure for generating the IPR data is proposed:

Step 1: Using the stabilized well flow test data and combining Equation (1.16) with (1.17), solve for the productivity index **J** to give:

$$J = \frac{Q_o}{(P_r - P_b) + \frac{P_b}{1.8} \left[1 - 0.2 \left(\frac{P_{wf}}{P_r} \right) - 0.8 \left(\frac{P_{wf}}{P_r} \right)^2 \right]}$$
 (1.19)

Step 2: Calculate Q_{ob} by using Equation (1.16), or:

$$Q_{ob} = J (P_r - P_b)$$

Step 3: Generate the IPR for $P_{wf} \ge P_b$ by assuming several values for P_{wf} above the bubble point pressure and calculating the corresponding Q_0 from:

$$Q_0 = J(P_r - P_{wf})$$

Step 4: Use equation (1.17) to calculate Q_0 at various values of P_{wf} below P_b , or:

$$Q_o = Q_{ob} + \frac{JP_b}{1.8} \left[1 - 0.2 \left(\frac{P_{wf}}{P_r}\right) - 0.8 \left(\frac{P_{wf}}{P_r}\right)^2\right]$$

Problem (1-5): The well described in problem (1-4) was retested and the following results obtained:

 $P_{wf} = 1700 \text{ psig, } Q_o = 630.7 \text{ STB/day}$

Generate the IPR data using the new test data.

Solution:

Notice that the stabilized Pwf is less than Pb

Step 1: Solve for J by applying equation (1.19).

$$J = \frac{Q_o}{(P_r - P_b) + \frac{P_b}{1.8} \left[1 - 0.2 \left(\frac{P_{wf}}{P_r}\right) - 0.8 \left(\frac{P_{wf}}{P_r}\right)^2\right]}$$

$$J = \frac{630.7}{(3000 - 2130) + \frac{2130}{1.8} \left[1 - 0.2 \left(\frac{1700}{3000} \right) - 0.8 \left(\frac{1700}{3000} \right)^2 \right]} = \mathbf{0.5} \text{ STB/day/psi}$$

Step 2: $Q_{ob} = 0.5 (3000 - 2130) = 435 STB/day$

Step 3: Generate the IPR data.

P_{wf}	Equation	Qo
3000	(1.4)	0
2800	(1.4)	100
2600	(1.4)	200
2130	(1.4)	435
1500	(1.17)	709
1000	(1.17)	867
500	(1.17)	973
0	(1.17)	1027