

# — University of Mosul — College of Petroleum & Mining Engineering



# Numerical methods:Bisection Method Lecture No.3

Dr. Almutasim Abdulmuhsin H. Albaker

Petroleum and Refining Engineering Department

Email:almutasim@uomosul.edu.iq

#### **Numerical methods:**

### (1) Bisection Method:

Suppose a continuous function f defined on the interval [a,b] is given with f(a) and f(b) of opposite sign (i.e.  $f(a)\times f(b)<0$ ). Then by intermediate value theorem (If  $f\in C[a,b]$  and k is any number between f(a) and f(b), then there exists  $c\in (a,b)$  for which f(c)=k) there exists a point  $c\in (a,b)$  such that f(c)=0. If we choose the midpoint  $c=\frac{a+b}{2}$ , then three possibilities arises:

If 
$$f(a) \times f(c)$$
  $= 0$  there is a root between  $a, c \Rightarrow d = \frac{a+c}{2}$   
 $= 0$  there is a root between  $b, c \Rightarrow d = \frac{b+c}{2}$   
 $= 0$  c is exact root ((Stop)).

We stop iteration if the interval width is as small as desired i.e.  $|c_i - c_{i+1}| < \varepsilon$  for any i.

# Example (5):

Find an approximate root of the equation xsin(x) - 1 = 0 in the interval [0,2] by using Bisection method.

**Solution:** It is possible to use bisection method because f(x) is continuous on [0,2] and f(a)=f(0)=-1;  $f(b)=f(2)=0.81859 \implies f(a)\times f(b)<0$ .

$$\Rightarrow$$
c<sub>1</sub>= $\frac{a+b}{2}=\frac{0+2}{2}=1$ 

$$f(c_1)=f(1)=-0.158529$$

 $\Rightarrow$  f(c<sub>1</sub>)×f(a) >0  $\Rightarrow$  there is a root between c<sub>1</sub> and b  $\Rightarrow$  [c<sub>1</sub>,b]

$$\Rightarrow$$
  $c_2 = \frac{c_1 + b}{2} = \frac{1 + 2}{2} = 1.5$ 

$$f(c_2)=f(1.5)=0.496242$$

 $\Rightarrow$  f(c<sub>2</sub>)×f(c<sub>1</sub>) <0  $\Rightarrow$  there is a root between c<sub>1</sub> and c<sub>2</sub>  $\Rightarrow$  [ c<sub>1</sub>,c<sub>2</sub>]

$$\Rightarrow$$
  $c_3 = \frac{c_1 + c_2}{2} = \frac{1 + 1.5}{2} = 1.25$ 

$$f(c_3)=f(1.25)=0.18623$$

 $\Rightarrow$  f(c<sub>3</sub>)×f(c<sub>1</sub>) <0  $\Rightarrow$  there is a root between c<sub>1</sub> and c<sub>3</sub>  $\Rightarrow$  [c<sub>1</sub>,c<sub>3</sub>]

$$\Rightarrow c_4 = \frac{c_1 + c_3}{2} = 1.125$$

:

Stop iteration with c=1.114157141

# Example (6):

Find an approximate root of  $f(x)=x^2-2$  in the interval [1,2] by using Bisection method with error  $\leq \varepsilon = 10^{-4}$ .

#### **Solution:**

It is possible to use bisection method because f(x) is continuous on [1,2] and f(a)=f(1)=-1; f(b)=f(2)=2

$$\Rightarrow$$
 f(a)×f(b)=-2<0.

$$c_1 = \frac{a+b}{2} = \frac{1+2}{2} = 1.5$$
,  $|c_1-a| = 0.5 > \varepsilon$ .

Find c<sub>2</sub>:

 $f(c_1)=0.25 \Rightarrow f(c_1)\times f(a)<0 \Rightarrow$  there is a root between  $c_1$  and  $a\Rightarrow [a,c_1]$ 

$$\Rightarrow c_2 = \frac{a + c_1}{2} = 1.25$$

 $|c_1-c_2|=0.25>\epsilon$ .

Find  $c_3$ :

 $f(c_2)=-0.437 \Rightarrow f(c_2)\times f(c_1)<0 \Rightarrow$  there is a root between  $c_1$  and  $c_2\Rightarrow [c_2,c_1]$ 

$$\Rightarrow c_3 = \frac{c_2 + c_1}{2} = 1.375$$

:

Stop iteration if  $|c_{i}-c_{i+1}| \le \epsilon$  for any i=1, 2, ....

#### **Theorem:**

Let  $f \in C[a,b]$  and suppose  $f(a) \times f(b) < 0$ . The bisection method generates a sequence  $\{c_n\}$  approximating to P a zero of f (f(P)=0) with the property  $|c_n - P| \le \frac{b-a}{2^n}$ ;  $n \ge 1$ .

#### **Notes:**

- **1-** The rate of convergence is linear.
- **2-** Since  $|c_n P| \le \frac{b a}{2^n}$ ;  $n \ge 1$ , then the sequence  $\{c_n\}$  converges to P with rate of convergence  $O(1/2^n)$  that is  $c_n = P + O(1/2^n)$ .
- 3- We can determine approximately how many iterations are necessary to solve f(x) with error  $\leq \epsilon$  over [a,b]. i.e.:

We must find an integer n that will satisfy

$$|c_n - P| \le \frac{b - a}{2^n} \le \varepsilon$$

$$\Rightarrow 2^n \ge \frac{b - a}{\varepsilon} \Rightarrow n \ln(2) \ge \ln\left(\frac{b - a}{\varepsilon}\right)$$

$$\Rightarrow n \ge \frac{\ln(b - a) - \ln(\varepsilon)}{\ln(2)}.$$

For example, if  $f(x) = x\sin(x) - 1 = 0$ ,  $\varepsilon = 10^{-5}$  and [0,2], then

$$n \ge \frac{\ln(2-0) - \ln((10^{-5}))}{\ln(2)} = \frac{0.69315 - (-11.51293)}{0.69315} \approx 17.6072 \Longrightarrow n = 18 \text{(number of iterations)}.$$

# Home work:

Find an approximate root of  $f(x)=x\ln(x)-1=0$  in the interval [1,2] by using Bisection method with error  $\leq \varepsilon = 10^{-3}$ .

**Answer** the root is  $c_{11}=1.762953125$  with error  $\leq \varepsilon = 10^{-3}$ .

# **Algorithm (Bisection method)**

Input: a, b,  $\varepsilon$ , f(x)

Step(1): If  $f(a) \times f(b) > 0$  then stop (does not exist root).

Step(2): Set  $c = \frac{a+b}{2}$ , and find f(c).

Step(3): If  $f(a) \times f(c) < 0$  then b=c

Step(4): If  $f(a) \times f(c) > 0$  then a=c

Step(5): If  $|b-a| \ge \varepsilon$  or  $|f(c)| \ge \varepsilon$  then go to step(2).

Step(6): Print c