Course Description Form

1. Course Name:

Physical pharmacy II (Theoretical+ Practical)

2. Course Code:

Phind24_2210-

3. Semester / Year:

Second semester/2nd year

4. Description Preparation Date:

15/1/2025

5. Available Attendance Forms:

Students' signature on attendance sheet

- 6. Number of Credit Hours (Total) / Number of Units (Total)
- 3 hours Theoretical + 2 hours Practical (75) /4 units

7. Course administrator's name

Theoretical

Dr. Ali Alazzo

Email: alialazzo@uomosul.edu.iq

Practical

Dr. Amina Mudhafar Al-Nima

Email: amnah.mudhafar@uomosul.edu.iq

Dr. Rasha Khalid Shakir

Email:rasha.kh@uomosul.edu.iq

8. Course Objectives

Course Objectives

- Learning the physical principles that guide the pharmaceutical dosage form.
- Understanding the basis of solubility, kinetics and drug delivery.

9. Teaching and Learning Strategies

Strategy	Lecturing
	Seminars
	Homeworl

Practical laboratory demonstrations and team lab work

10. Course Structure

Week	Hours	Required Learning	Unit or subject	Learning	Evaluation
		Outcomes	name	method	method
1	3+2	Define saturated solution, solubility, and unsaturated solution. Describe and give examples of polar, nonpolar, and semipolar solvents.	Solubility and distribution phenomena, solvent-solute interactions, solubility of gases in liquids,	Theoretical lectures. Laboratory experiments	Paper-based exams
2	3+2	Define complete and partial miscibility. Understand the factors controlling the solubility of weak electrolytes.	Solubility of liquids liquids, solubility of rionic solids in liquids,	Theoretical lectures. Laboratory experiments	Paper-based exams
3	3+2	Describe what a distribution coefficient and partition	distribution of sol between immisc solvents.	Theoretical lectures.	Paper-based exams

		1			_
		coefficient are and their		Laboratory	
		importance in		experiments	
		pharmaceutical			
1	2+2	systems.	Chemical kinetics	Theoretical	
4	3+2	Define reaction rate,	stability, rate and order		
		reaction order, and	reactions,	lectures.	
		molecularity.	reactions,	Laboratory	
		Understand and apply		experiments	
		apparent zero-order		1	Danca based assess
		kinetics to the			Paper-based exams
		practice of pharmacy.			
		Calculate half-life and			
		shelf life of pharmaceutical products			
		and drugs.			
5	3+2	Describe the influence of	Influence of temperature	Theoretical	
		temperature, ionic	other factors on react		
		strength,	rate		
		solvent, pH, and		Laboratory	Paper-based exams
		dielectric constant on		experiments.	
		reaction rates.			
6	3+2	Calculate the increase in	Decomposition of	Theoretical	
•	312	rate constant as a	medicinal agents and	lectures.	
		function of	accelerated stability		
		temperature.	analysis.	Laboratory	Paper-based exams
		Describe the factors		experiments	Taper-based exams
		that influence solid-state			
		chemical kinetics.			
7	3+2	Differentiate among	Interfacial phenomena	Theoretical	
,	312	different types of	interraciai piiciiomena	lectures.	
		interfaces and describe			
		relevant examples in the		Laboratory	
		pharmaceutical sciences.		experiments	
		Understand the terms			Paper-based exams
		surface tension and interfacial tension			
		and their application in			
		pharmaceutical sciences.			
8			Mid-term exam		
9	3+2	Calculate surface and	Electric properties of	Theoretical	
		interface tensions,	interfaces, spreading	lectures.	
		surface free energy, its changes, work	coefficient	Laboratory	
		of cohesion and		experiments.	
		adhesion,		experiments.	Paper-based exams
		and spreading coefficient			1
		for different types of			
		interfaces.			
10	3+2	Understand the	Adsorption at liquid	Theoretical	
10	J+2	mechanisms of	interfaces, surface-active		
		adsorption on liquid and	agents	-30001001	
			_	Laboratory	Paper-based exams
		solid interfaces.		Laboratory	1 aper-based exams
		Classify surface-active		experiments	1 aper-based exams
					r aper-based exams

		in pharmacy.			
11	3+2	Differentiate between different types of colloidal systems and their main characteristics.	Colloids, dispersed syste and its pharmaceutical application, types of colloidal systems	Theoretical lectures. Laboratory experiments	Paper-based exams
12	3+2	Appreciate the major kinetic properties of colloids. Understand the main electrical properties of colloids and their application for the stability, sensitization, and protective action of colloids.	kinetic properties, diffus zeta potential, solubiliza of colloidal systems		Paper-based exams
13	3+2	Define rheology, provide examples of fluid pharmaceutical products exhibiting various rheologic behaviors, and describe the application of rheology in the pharmaceutical sciences and practice of pharmacy. Differentiate flow properties and corresponding rheograms between Newtonian and non-Newtonian materials.	Rheology, Newtonian ar non-newtonian systems,		Paper-based exams
14	3+2	Understand and calculate the effects of temperature on viscosity and recognize similarities between viscous flow and diffusion relative to temperature. Recognize and identify specific rheologic behaviors with their corresponding rheograms.	Thixotropy, determination of thixotropy.	Theoretical lectures. Laboratory experiments	Paper-based exams
15		Students' seminars			

11. Course Evaluation

- 20 M Theoretical assessment; (paper-based mid-term exam + quiz + attendance + seminar)
- 20 M practical assessment (attendance + quiz + practice)
- 60 M paper-based theoretical final exam

Total 100 M

12. Learning and Teaching Resources			
Required textbooks	1- Alfred Martin et al, Physical Pharmacy,6th edition,2010.		
	2- Laboratory Manual for Practical Physical pharmacy adopted by the department.		
Main references (sources)	1- Physicochemical Principles of Pharmacy Alexander Taylor Florence and David Attwood.		
	2- Fast track: Physical Pharmacy by Alexander Tay Florence and David Attwood.		

Γ