Date:

Unit of Scientific Affairs

Website:

Lecture title: Serotonin

Lecturer Affiliation: College of Veterinary Medicine

Summary:

Serotonin (5-hydroxytryptamine, 5-HT)

Biosynthesis:

Its synthesis comes from dietary tryptophan.

Storage: 5-HT is present in high concentration in **platelets**, the **enterochromaffin cells** and **myenteric plexus of the GI tract** and **CNS**

Metabolism, distribution, and function

- 1- Serotonin is metabolized by monoamine oxidase (MAO).
- 2- Approximately 90% of the body's serotonin is found in the GIT in enterochromaffin cells. It is involved in regulating motility.
- 3- Platelets actively transport serotonin and store it. This keeps the concentration of free 5-HT low in the blood flow.
- 4- Serotonin is synthesized and stored in the CNS where it acts as a neurotransmitter.
- 5- Serotonin is also found in venoms and stings. Sensory nerve ends are stimulated by serotonin and this action may be responsible in part for the pain and itch of stings **Serotonin receptors**.

Date:

Unit of Scientific Affairs

Website:

include: 5-HT1, 5-HT2, 5-HT3, 5-HT4-7 with some categories having more than two

receptor subtypes.

Receptors	Site and function	Drugs that act on
5HT ₁	CNS: sleep, appetite, Mood,	Sumatriptan: Agonist on
A,B,C,D, E	thinking and temperature.	5HT _{1D} and 5HT _{1B} (treat
	Blood vessels: Vasoconstriction	migraine).
G_{i}		Buspirone: Agonist on 5HT _{1A}
		(treat anxiety).
5HT ₂	CNS	Cyproheptadine: Antagonist
A, B, C	Platelet: Increase aggregation	on 5HT ₂ (appetite stimulant).
Gq		Ketanserin: Antagonism of
		5HT _{2A}
5HT ₃	CNS: Vomiting center	Ondansetron: Antagonism of
Na ⁺ /K ⁺	GIT: Regulate the motility	5HT ₃
		(treat nausea and vomiting
		related to chemotherapy)
5HT ₄	CNS	Tegaserod: Agonist on 5HT ₄
G_s	GIT: Regulate the motility	(treat IBS).
	Cardiac muscle	Cisapride: Agonist on 5HT4
		Metoclopramide: Agonist on
		5HT ₄ and antagonized D ₂
5HT ₅	CNS	
5HT ₆	CNS	
5HT ₇		

Date:

Unit of Scientific Affairs

Website:

Serotonin agonists in nature

Ergot alkaloids (ergotamine, ergometrine, bromocriptine).

Uses:

- Migraine \rightarrow ergotamine \rightarrow partial agonist at 5-HT_{1D} and α 1 adrenoceptor \rightarrow VC (combined with caffeine to increase absorption)
- Hyperprolactinemia \rightarrow bromocriptine \rightarrow potent agonist on D2 receptors.
- Postpartum hemorrhage PPH -- ergometrine (ergonovine).
- Cerebral insufficiency → Dihydroergotoxine → antagonism effect on α1 adrenoceptor.

GI prokinetic agents:

These drugs increase GI motility by increasing ACh release from the vagus nerve.

a. Cisapride

Mechanism of action: It is an agonist for 5-HT₄ receptor.

Uses: used for gastric/intestinal stasis, reflux esophagitis, and constipation/megacolon in cats.

b. Metoclopramide

Mechanism of action: It is a D2-receptor antagonist/5-HT₄ agonist.

Uses: It is used for treating vomiting disorders, reflux esophagitis, and gastric stasis, or hypomotility.

Cyproheptadine

Mechanism of action: Its block both 5-HT2 receptors and H1-receptors.

Date:

Unit of Scientific Affairs

Website:

Uses: In cats as an **appetite stimulant**, **feline asthma** or **pruritus**. It also has H1-antihistamine activity, and thus is useful in managing hives. In horses, it is for treating photic head shaking.

Ketanserin

Mechanism of action: It antagonize $5HT_{2A}$ receptors and it has significant α 1-adrenergic blocking activity.

Uses:

- Reduces blood pressure. It can be used to reduce intraocular pressure in glaucoma.
- ketanserin does not inhibit platelet aggregation induced by physiologic agonists (collagen and thrombin) and, pathophysiologic stimuli (atherosclerotic plaque). They, therefore, do not constitute a promising strategy for antiplatelet therapy.