Unit of Scientific Affairs

Website:

Lecture title: Polypeptides

Lecturer Affiliation: College of Veterinary Medicine

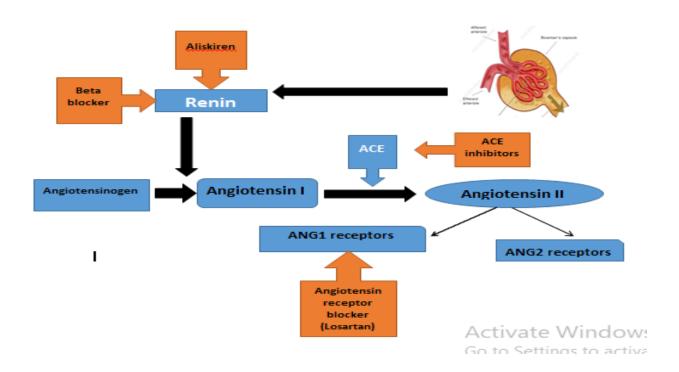
Summary:

POLYPEPTIDES

Vasoactive peptide

- 1-Angiotensin.
- 2-Plasmakinin.
- 3-Vasopressin.
- 4-Natriuretic peptide.
- 5-Vasoactive intestinal polypeptide.
- 6-Substance P.

Renin-angiotensin-aldosterone system


- **a. Angiotensinogen:** Is an α 2-globulin synthesized in the liver and is present in the circulation. It is the precursor for all angiotensin.
- **b. Renin**: Is an enzyme secreted by juxtaglomerular cells in the renal arterioles, which metabolizes angiotensinogen to form angiotensin I.
- c. Angiotensin-converting enzyme (ACE): an enzyme found in large amounts in lung capillary endothelial cells as well as in other vascular beds, metabolizes angiotensin I to the angiotensin II.
- **d.** Angiotensin II: is metabolized by an aminopeptidase to angiotensin III that has less biologic activity than angiotensin II.

Unit of Scientific Affairs Website:

Receptors

AT1(Gq) receptor and **AT2(Gi) receptor**. AT1 receptors are stimulatory, whereas AT2 receptors are inhibitory, which mediate effects usually are opposite to those of AT1.

Pharmacological effects.

CVS	ANGII very potent vasoconstriction	
	ANGII 40 time more potent than NE	
	ANGII rapid onset about 10-15 second	
Adrenal	ANGII stimulate autonomic ganglia leading to increase NE and	
medulla	E release	
Adrenal cortex	ANGII stimulate aldosterone synthesis and release	

A STATE OF THE STA

Unit of Scientific Affairs

Website:

Kidney	ANGII cause renal VC, inhibit renin release and increase Na and		
	water reabsorption from proximal tubule.		
Brain	ANGII increase sympathetic outflow		
	ANGII increase release of ACTH and ADH (vasopressin)		
Cell growth	Mitogenic effect hypertrophy and remodeling of heart and BV.		

Antagonists of the renin-angiotensin system.

1- ACE Inhibitors: -

Mechanism of	ACE inhibitors block the conversion of angiotensin I to			
action	angiotensin II			
	ACE inhibitors inhibit the degradation of bradykinin (vasodilator)			
	substance).			
Adverse effect	1. Dry persistence cough and angioedema due to increase levels of			
	bradykinin.			
	2. Hyperkalemia due to decrease aldosterone secretion.			
	3. Renal impairment			
	4. Fetopathic potential (teratogenicity) decrease organogenesis of lung			
	and fetal abnormalities and may cause fetal death.			
Drug	1. K+ sparing diuretics → hyperkalemia			
interaction	2. NSAIDs → due to decrease PGs →hyperkalemia and decrease renin			
	secretion			

Unit of Scientific Affairs

Website:

	3. Angiotensin receptor blocker			
	4. Renin inhibitors e.g. Aliskiren			
Contraindication		1. Pregnancy		
		2. Lactation		
		3. Chronic obstructive pulmonary disease		
		4. Impaired renal function		
Drugs name	1. Enalapril			
	2. Enalaprilat (only injection)			
	3. Captopril			
	4. Ramipril			
Uses	Hypertension			

2- β1-Adrenergic antagonists:

Catecholamines promotes the release of renin from juxtaglomerular cells via β 1-receptors. **Propranolol** antagonizes β 1-receptors in the kidney and thereby reduce **renin** release.

3-Angiotensin II (AT₁) receptor antagonists:

Act as competitive antagonism at AT_1 receptor of the angiotensin II.

Losartan, Candesartan, Valsartan

- 1. Losartan is an angiotensin II receptor blocker (ARB) used to treat hypertension.
- 2. Patients with ACE inhibitor-associated coughs are switched to ARBs like losartan.

Unit of Scientific Affairs Website:

- 3. Losartan is available as losartan potassium oral tablets as well as a combination tablet of losartan potassium and hydrochlorothiazide.
- 4. Losartan has an anticancer activity and neuroprotective effects in experiment model systems.

4- Renin receptor inhibitor

Aliskiren.

Mechanism of action: Inhibits the conversion of angiotensinogen to angiotensin I.

Uses: It is for controlling hypertension in humans and animals

Route of administration: orally.

Metabolism: Aliskiren is metabolized by cytochrome P450.