Date:

Unit of Scientific Affairs

Website:

Lecture title: <u>ANTIADRENERGIC DRUGS (Sympatholytics)</u>

Lecturer Affiliation: College of Veterinary Medicine

Summary:

ANTIADRENERGIC DRUGS (Sympatholytics)

Antiadrenergic drugs can be classified under two heads: -

(1) Direct acting adrenergic receptor blockers or adrenergic antagonists: These drugs interact with adrenergic receptors and by occupying these sites do not allow an adrenergic agonist access to the receptor.

Adrenergic blockers

I-Alpha adrenergic blockers:

- \triangleright a 1 and a 2 nonselective blocker (Phenoxybenzamine, Phentolamine)
- \triangleright selective α 1 blocker prazosin
- > selective α 2 blocker yohimbine
- ergot alkaloids

Non selective α 1 and α 2 blocker:

1-Phenoxybenzamine:

Its blocker to α receptors, its bind to receptors irreversibly by covalent bond.

Long acting 4days

Uses

- 1- In pheochromocytoma with propranolol (which block β 1 and β 2).
- 2- In dog and cat reduce hypertonus at urethral sphincters
- 3- In horse: treat laminitis and secretory diarrhea.

Adverse effect:

- 1- ↓BP with reflex tachycardia.
- 2- Miosis
- 3- Not use in horse with colic

Date:

Unit of Scientific Affairs

Website:

2-Phentolamine

It's a competitive α **1 and \alpha 2** receptors antagonist.

Selective α 1 blocker:

1-Prazosin

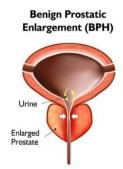
Its act by block α 1 receptor

Effects

- 1-Vasodilation
- 2- Direct relaxation of smooth muscle of blood vessels
- 3- Don't affect RBF
- 4- ↓BP and lipid profile (cholesterol and triglyceride) **Uses**:
- 1- Hypertensive patient with renal disease
- 2- Acute heart failure
- 3- Urine retention in benign prostate hypertrophy

Adverse effect:

- $F \rightarrow First dose syncope$
- F→ Fluid retention
- U→ Urine incontinence


2-Tamsulosin:

Block $\alpha 1A$ which located in the sphincter of UB, ($\alpha 1B$ found in BV).

Uses

- 1- Symptom of BPH.
- 2- Allowing kidney stones to pass through ureter.

Date:

Unit of Scientific Affairs

Website:

Selective a 2 blockers

Yohimbine and Atipamizole

Mechanism of action:

are competitive α 2 receptors antagonist.

Pharmacological effects:

- 1- CNS stimulation
- 2- Increase heart rate
- 3- Increase salivation

Uses:

Reverse the effect of xylazine

Ergot alkaloids

Natural	Semisynthetic
Ergotamine	Dihydroergotamine
Ergometrine	Methylergometrine
Ergotoxin (very toxic)	Dihydroergotoxin
Bromocriptine	

Note: all ergot alkaloids stimulate vomiting center

Caffeine increases the absorption

Drug	Properties	Effect	Uses
Ergotamine	Partial agonist for α 1 and 5HT receptor	Vasoconstriction of cerebral blood vessels	Migraine
Ergometrine	Agonist α 1	Vasoconstriction and uterine contraction	Post-partum hemorrhage
Dihydroergotoxin	Antagonism of α 1	Vasodilation of cerebral blood vessels	Cerebral insufficiency
Bromocriptine	Dopamine receptor agonist	↓ prolactin secretion	Treat Parkinson Treat hyperprolactinemia

Date:

Unit of Scientific Affairs

Website:

Beta blocker

- 1- β 1 and β 2 blockers: Propranolol, Nadolol, Sotalol and Timolol
- 2- β 1 blockers: Atenolol, Esmolol, Metoprolol
- 3- β 1 blocker with direct vasodilator: carvedilol and labetalol

Pharmacokinetics:

- 1- absorbed well
- 2- extensive first pass metabolism

Nonselective beta blockers		Selective beta blockers
1	Propranolol	atenolol
2	Lipophilic	Hydrophilic
3	CNS effect	no
4	↑ distribution	↓ distribution
5	Need liver metabolism to be more	no
	water soluble	
6	Short duration	Long duration
7	Multiple dose	One tablet daily

Pharmacodynamics

- 1- Heart: decrease HR
- 2- Decrease blood pressure by the following mechanisms:
 - $\downarrow \downarrow$ COP by their blocking β 1 receptor.
 - $\downarrow \downarrow$ renin release from the kidney by their blocking β 1 receptor.
 - $\downarrow\downarrow$ Norepinephrine release and central sympathetic outflow (by blocking presynaptic β 2).
 - Resetting the sensitivity of baroreceptor.
 - Increase vasodilator prostaglandins (PGI₂).
 - Some β blockers block also vascular α 1 receptor.

Date:

Unit of Scientific Affairs

Website:

- 3- Respiratory system: bronchospasm.
- 4- Eye: decrease intraocular pressure
- 5- CNS: beta2 presynaptic → ↓ NE release → sedation →depression (antianxiety effect).

Beta blocker with special effect

- 1- Propranolol: membrane stabilization action so it has local anesthetic effect and antiarrhythmic action.
- 2- Pindolol: partial agonist---no Brady cardia
- 3- Esmolol: very short acting use during surgery to prevent arrhythmia.
- 4- Labetalol: beta and alpha 1 blocker ----pheochromocytoma.
- 5- Carvedilol: antioxidant action.

Uses:

- 1- Hypertensive patient.
- 2- Ischemic heart disease.
- 3- Cardiac arrhythmia
- 4- Hyperthyroidism
- 5- Glaucoma (betaxolol)
- 6- Pheochromocytoma. (timolol).
- 7- Migraine prophylaxis: Propranolol>Metoprolol
- 8- Anxiety.
- 9- Tremor.
- 10- Effective in asthma and may promote bronchodilation: Celiprolol
- 11- Augmentation therapy of depression: Pindolol

Adverse effects:

- 1- Fatigue due to ↓COP and ↓ blood supply of skeletal muscle
- 2- Bronchoconstriction.
- 3- Bradycardia
- 4- Peripheral ischemia.
- 5- Sleep disturbance (nightmare and vivid dream)
- 6- Cold extremities

Date:

Unit of Scientific Affairs

Website:

(2) Indirect acting adrenergic neuron blockers: These drugs do not block receptors; instead, they act presynaptically at the nerve terminal to cause a decreased release of the endogenous neurotransmitter norepinephrine.

The adrenergic neuron blockers interfere with the transmitter function of adrenergic neurons by the following mechanisms:

- (i) By interfering with the synthesis of catecholamines: e.g. Methyldopa and methyltyrosine.
- (ii) By interfering with storage of norepinephrine: e.g. Reserpine (It depletes NE stores in adrenergic neurons).
- (iii) By preventing the release of norepinephrine: e.g. Guanethidine

Adrenergic neuron blocker

* α - methyldopa

Mechanism of action: its act by enter in the NE synthesis as a false substrate which result in α - methylnorepinephrine (false transmitter) which act on α 2 receptor.

Uses: treatment hypertensive pregnant

Adverse effects

- 1- Sympathetic blocked→ postural hypotension, nasal congestion.
- 2- CNS signs→ sedation, depression and parkinsonian signs.
- 3- Increase prolactin hormone: due to inhibition of dopaminergic mechanism →gynecomastia in male and galactorrhea in female.
- 4- Allergy
- Reservine

Mechanism of action:

This drug facilitates the NE release from the nerve ending and prevent reuptake 3 to the vesicle which result in destroyed by MAO leading to depletion of NE, D and 5HT.

Date:

Unit of Scientific Affairs

Website:

