University of Mosul Lecture No.: 4

College of Veterinary Medicine

Date: 2024-2025

Unit of Scientific Affairs

Website: https://uomosul.edu.ig/veterinarymedicine/

Lecturer Affiliation: Iman Thannoon Sedeeq, BSc, MSc, PhD

Assistant Professor, Department of Public Health

College of Veterinary Medicine, University of Mosul, Mosul, Iraq

https://orcid.org/0000-0001-5903-3593

Summary:

Measures of Variation (Dispersion)

It means how far or close the values of data are. It is the measurements of amount of variation between the values and its mean.

• Range (R) $R = X_{max}-X_{min}$

-it gives inappropriate weight to extreme values (overestimate the dispersion if the outliers present)

Example: Xi = 12,6,7,3,15,10,18,5

R = 18-3=15

Xi= 9,8,9,7,3,8,9,9,8,18

R = 18-3=15

• Mean Absolute Deviation (MAD): The mean absolute deviation of a dataset is the average distance between each data point and the mean. It gives us an idea about the variability in a dataset.

$$MAD = \frac{|\sum (xi - \bar{X})|}{n}$$

How to calculate MAD?

Step 1: Calculate the mean.

Step 2: Calculate how far away each data point is from the mean using

positive distances. These are called absolute deviations.

Step 3: Add those deviations together.

Step 4: Divide the sum by the number of data points.

Example: Find the mean absolute deviation for the following data

University of Mosul Lecture No.: 4

College of Veterinary Medicine

Date: 2024-2025

Unit of Scientific Affairs

Website: https://uomosul.edu.iq/veterinarymedicine/

set:

10, 15, 15, 17, 18, 21

- 1. Calculate the mean=(10+15+15+17+17+18+21)/6 = 16
- 2. Calculate the absolute distance of each value from the mean

10	10-16	6
15	15-16	1
15	15-16	1
17	17-16	1
18	18-16	2
21	21-16	5

- 3. Add the distances together 6+1+1+1+2+5=16
- 4. Divide the sum by the number of data points. $MAD=16/6\approx3$
- Variance and Standard Deviation: The variance is mathematically defined as the average of the squared differences from the mean. The sample variance, s², is used to calculate how varied a sample is. A sample is a select number of items taken from a population. Standard deviation is equal to the square root of the variance.

For samples:	For populations:
variance = $s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$	variance = $\sigma^2 = \frac{\Sigma (x - \bar{x})^2}{n}$
standard deviation = $s = \sqrt{s^2}$	standard deviation= $\sigma = \sqrt{\sigma^2}$

Note:

- 1) Always consider observations as a sample except if mentioned it is a population.
- 2) The unit for variance is square cm², kg²,.....etc.
- 3) If variance is high, that means you have larger variability in your dataset. In the other way, we can say more values are spread out around your mean value.
- 4) When adding or subtracting any constant (k) form each value of a data set, the variance and standard deviation remain unchanged.
- 5) When multiplying each value of a data set with a constant (k), the new variance and new standard deviation will be:

University of Mosul Lecture No.: 4

College of Veterinary Medicine

Date: 2024-2025

Unit of Scientific Affairs

Website: https://uomosul.edu.iq/veterinarymedicine/

New
$$s^2 = \text{old } s^2 * k^2$$

New $s = \text{old } s * k$

Example: find the variance and the standard deviation for the values of X in the following table:

Х	x - ₹	(X - ₹)^2
0	-15	225
24.1	9.1	82.81
5.6	-9.4	88.36
14.1	-0.9	0.81
17.2	2.2	4.84
8.7	-6.3	39.69
19.2	4.2	17.64
14.1	-0.9	0.81
27.7	12.7	161.29
15	0	0
19.3	4.3	18.49
		639.74

$$n = 11$$

$$n-1=10$$

Mean
$$(\bar{x}) = 15$$

Sample variance (
$$s^2$$
) = 639.74/10 = 63.97

Sample standard deviation (S) =
$$8.00$$

• Coefficient of variation (C.V %): It is the ratio of the standard deviation to the mean (average). It is used to compare between two different samples for different populations.

Coefficient of Variation C.V = (Standard Deviation / Mean) * 100
C.V =
$$\frac{s}{\bar{x}}$$
 *100

Example:

University of Mosul Lecture No.: 4

College of Veterinary Medicine

Date: 2024-2025

Unit of Scientific Affairs

Website: https://uomosul.edu.iq/veterinarymedicine/

Calculate the coefficient of standard deviation and coefficient of variation for

the

following sample data: 2, 4, 8, 6, 10, and 12.

X	$\left(X-\overline{X} ight)^2$	
2	$(2-7)^2 = 25$	
4	$(4-7)^2 = 9$	
8	$(8-7)^2 = 1$	
6	$(6-7)^2 = 1$	
10	$(10-7)^2 = 9$	
12	$(12-7)^2 = 25$	
$\sum X = 42$	$\sum \left(X - \overline{X} ight)^2 = 70$	
$\overline{X} = \frac{\sum X}{n} = \frac{42}{6}$	$\frac{2}{3}=7$	
$S = \sqrt{\frac{\sum (X - \overline{X})}{n}}$	<u>)</u>	
$S = \sqrt{\frac{70}{6}} = \sqrt{\frac{1}{6}}$		
Coefficient of Star	ndard Deviation $=rac{S}{\overline{X}}=0$	$\frac{3.42}{7} = 0.49$
Coefficient of Vari	iation	
	$(C.V) = rac{S}{\overline{X}} imes 1$	$00 = \frac{3.42}{7} \times 100 = 48.86$

Example: A group of 80 candidates have their average height is 145.8 cm with

coefficient of variance 2.5%. What is the standard deviation of

their

height?

$$CV = \frac{s}{\bar{x}} *100$$

 $2.5 = S / 145.8$

University of Mosul Lecture No.: 4 College of Veterinary Medicine

Date: 2024-2025

Unit of Scientific Affairs

Website: https://uomosul.edu.iq/veterinarymedicine/

