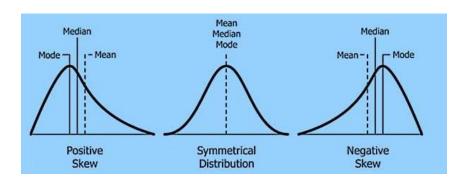

Lecture 2: Measures of Shape

What Are Measures of Shape?

In descriptive statistics, we don't just look at averages (central tendency) or spread (dispersion)—we also care about the shape of the data distribution.


Why Are These Measures Important?

- 1. Understanding Real-World Behavior
- 2. Choosing the Right Statistical Methods
- 3. Detecting Outliers and Anomalies

Skewness?

Skewness is a statistical measure that describes the **asymmetry** of a distribution around its mean.

- When a distribution is **symmetrical**, the left and right sides are mirror images.
- When it is skewed, one tail is longer or fatter than the other.
- Skewness tells us the direction and degree of the skew.

Types of Skewness

1 Symmetrical Distribution (Zero Skewness)

- Mean ≈ Median ≈ Mode
- Data is evenly distributed around the center.

Example:

```
Data: 60, 65, 70, 70 , 71, 74, 80

Mean = 70, Median = 70, Mode = 70

Skewness \approx 0 (symmetrical)
```

2 Positively Skewed (Right Skewness)

- Mean > Median > Mode
- Tail is stretched to the **right** (toward higher values)
- Bulk of data lies on the left

Example:

```
Data: 60, 65, 70, 70 , 71, 74, 108
Mean = 74, Median = 70, Mode = 70
Skewness > 0 (positive)
```

- Indicates a few high outliers
- Common in income distributions, CO₂ emissions
- Mean is "pulled" right by extreme values

3 Negatively Skewed (Left Skewness)

- Mean < Median < Mode
- Tail is stretched to the left (toward lower values)
- Bulk of data lies on the right

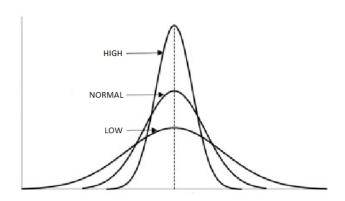
Example:

```
Data: 32, 65, 70, 70 , 71, 74, 80
Mean = 66, Median = 70, Mode = 70
Skewness < 0 (negative)
```

- Indicates few low outliers
- Can occur in datasets like exam scores where most students score high, but a few score very low
- Mean is "pulled" left by lower extreme values

Mathematical Definition

The skewness coefficient is often calculated as:


$$ext{Skewness} = rac{n}{(n-1)(n-2)} \sum \left(rac{X_i - ar{X}}{s}
ight)^3$$

Where:

- X_i = each observation
- ullet $ar{X}$ = mean of the data
- s = standard deviation
- n = number of observations

What Is Kurtosis?

Kurtosis measures the **"peakedness"** or **flatness** of a data distribution compared to a normal (bell-shaped) distribution.

♦ Types of Kurtosis

There are three main types:

1 Normal Kurtosis

- Reference shape: Normal distribution
- Moderate peak, moderate tails

2 High Kurtosis

• Tall, sharp peak

- Heavy tails
- Most values are tightly clustered near the mean
- A few values are **extremely far** from the mean
- Indicates a highly concentrated center with more extreme values.

3 Low Kurtosis

- Flat or broad peak
- Light tails
- Data is evenly spread; there is no strong central tendency.

Mathematical Definition

$$\text{Kurtosis} = \frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum \left(\frac{X_i - \bar{X}}{s}\right)^4 - \frac{3(n-1)^2}{(n-2)(n-3)}$$

- Excess Kurtosis is often used:
 - Excess Kurtosis = Kurtosis 3

Exercise

For the Daily PM2.5 Concentration (µg/m³) in a City Over 15 Days

Day	PM2.5 Concentration (µg/m³)	Day	PM2.5 Concentration (μg/m³)
1	22	9	40
2	25	10	45
3	28	11	55
4	30	12	60
5	32	13	65
6	34	14	70
7	35	15	100
8	36		

Find:

1 Central Tendency

- Calculate the **Mean** PM2.5 value
- Find the **Median**
- Determine the **Mode** (if any)

2 Dispersion

- Find the Range
- Calculate the Variance
- Calculate the Standard Deviation

3 Shape Analysis

- Skewness
- Kurtosis: