Analytical Chemistry

1st Class

Seventh lecture. Analytical Chemistry.

Dr. Yusra Alshaker, Dr. Liqaa

Caculation examples in analytical chemistry

Example (1): How many milligrams are in 0.250 mmole Fe₂O₃ (Ferric oxide).

Solution:

 $Moles = \frac{W}{M.wt.}$

wt (mg)=mmole×M.wt (mgmmol) =0.250 mmole ×159.7mgmmol =39.9 mg

Example (2): Solution was prepared by dissolving 1.26 g of AgNO₃ in a 250 mL volumetric flask and diluted to the mark. Calculate the molarity of the silver nitrate solution. How many millimoles of AgNO₃ were dissolved.

No. of moles = $M \times V_{(L)}$

No. of millimoles = $M \times V_{(mL)}$

Solution:

 $M=wt (g) \times 1000 / M.wt (gmol) \times V(mL)$

M= 1.26 (g)x 1000 / 169.9 (gmol) × 250 (mL)=0.0297 mol/L

Millimoles=M (mmolmL)×V (mL) =0.0297 (mmolmL)×250 mL=7.42 mmole

Example (4): How many grams of Na2SO4 should be weight out to prepare 500 mL of a 0.10 M solution.

 $M = wt (g) \times 1000 / M.wt (gmol) \times V(mL)$

 $0.10 \text{ M=wt (g)} \times 1000 \text{ (mL)} / 142 \text{ (gmol)} \times 500 \text{ (mL)}$

Wt=7.1 g (should be weight out to prepare 500 mL of a 0.10 M solution)

Example (5): Prepare 500 of 1.2M HCI If you know the percentage of acid is 37% and the Specific graffiti is 1.2.

 $M = Sp. gr x \% x10 \div M. wt$

(هذه عيارية الحامض المركز) M= 1.2 x 37x 10 /36.5 = 12.164 mol/L

M1x V1 = M2 x V2

12.164 x V1 = 1.2 x 500

(يؤخذ هذا الحجم ويكمل الى حد العلامة 49.325 take out this volume and complete it to 500 ml by D.W مليلتر بالماء المقطر)

Example (11): Prepare 300 mL of 0.108 M of BaCI₂ .2H₂O?

M. wt. of BaCI₂ $.2H_2O$ is =244.3 g/mol

$$M = \frac{wt.gram \ x \ 1000}{Mwt. \ x \ Vml}$$

$$0.108 = \frac{Wt. \ x \ 1000}{244.3 \ x \ 300}$$

Wt. = 7.9153 grams were dissolved in water and diluted to 300 ml.

Example (12): How many grams are contained in 500 ml of 0.2 M sodium carbonate?

Mwt. Na₂CO₃ =106 g/ mol

$$\mathbf{M} = \frac{wt; gram \ x \ 1000}{MWt. \ x \ Vml} \quad ,$$

$$0.2 = \frac{Wt. \times 1000}{106 \times 500}$$

Wt. = 10.6 grams are present in this solution

الفور مالية هي عدد اوزان الصيغة الغرامي للمذاب في لتتر واحد من المحلول هو التركيز الكلي المحدد للمادة في المحلول بغض النظر عن شكلها الكيمياني المحدد

$$\mathbf{F} = \begin{array}{ccc} wt. & x & 1000 \\ \hline gfwt. & x & Vml. \end{array}$$

F= No. Fw/ Liter of solution F= gram of solute / one liter of solution x g.FW Unit= g. FW/L

Example: 284 g of Na₂SO₄ has been dissolved in water (4 L). Calculate the formality if you know the atomic weight of Na= 23, S=32, O=16.

$$F = \frac{Wet \ x1000}{\text{gfw x V(mL)}}$$

$$F = \frac{284 \times 1000}{142 \times 4000} = 0.5 \text{ g.FW/L}$$

Example: Exactly 4.57 grams of BaCl₂ .2H₂O were dissolved in Water and diluted to 250 ml. What formal Concentration of barium chloride can get?

formal weight for BaCl₂ .2H₂ O = 244

$$F = \frac{wt. \ x \ 1000}{gfwt. \ x \ Vml.} \qquad , \qquad F = \frac{4.57 \ x \ 1000}{244 \ x \ 250}$$

$$F = 0.0749$$

Example: Calculate the w/w% for the solution prepared by dissolving 5 g of AgNO₃ in 100 ml of water.

Assumed density of water equal 1 g/ml.

wt. solvent = d x V = 1 x100 = 100 g

wt. solution = 100 + 5 = 105 g

% w/w = 5 /105 x 100 = 4.76 % for AgNO₃

Example: Calculate the V/V percentage for solution prepared by mixing 125 ml of methyl alcohol with 500 ml of water

$$(V/V)\% = \frac{V_{(solut)}}{V_{(solut)} + V_{(solvent)}} \times 100$$

$$= \frac{125}{(125 + 500)} \times 100 = 20\%$$