Lecture (4)

Infinite Sequences and Series

المتتابعات والمتسلسلات اللانهائية

Power series

DEFINITIONS A power series about x = 0 is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$
 (1)

A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots + c_n (x-a)^n + \dots$$
 (2)

in which the center a and the coefficients $c_0, c_1, c_2, \ldots, c_n, \ldots$ are constants.

EXAMPLE 2 The power series

$$1 - \frac{1}{2}(x - 2) + \frac{1}{4}(x - 2)^2 + \dots + \left(-\frac{1}{2}\right)^n (x - 2)^n + \dots$$
 (4)

matches Equation (2) with a=2, $c_0=1$, $c_1=-1/2$, $c_2=1/4$, ..., $c_n=(-1/2)^n$. This is a geometric series with first term 1 and ratio $r=-\frac{x-2}{2}$. The series converges for $\left|\frac{x-2}{2}\right|<1$ or 0< x<4. The sum is

$$\frac{1}{1-r} = \frac{1}{1+\frac{x-2}{2}} = \frac{2}{x},$$

SO

$$\frac{2}{x} = 1 - \frac{(x-2)}{2} + \frac{(x-2)^2}{4} - \dots + \left(-\frac{1}{2}\right)^n (x-2)^n + \dots, \qquad 0 < x < 4.$$

Series (4) generates useful polynomial approximations of f(x) = 2/x for values of x near 2:

$$P_0(x) = 1$$

$$P_1(x) = 1 - \frac{1}{2}(x - 2) = 2 - \frac{x}{2}$$

$$P_2(x) = 1 - \frac{1}{2}(x - 2) + \frac{1}{4}(x - 2)^2 = 3 - \frac{3x}{2} + \frac{x^2}{4},$$

EXAMPLE 4 Find series for f'(x) and f''(x) if

$$f(x) = \frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots + x^n + \dots$$
$$= \sum_{n=0}^{\infty} x^n, \quad -1 < x < 1.$$

Solution We differentiate the power series on the right term by term:

$$f'(x) = \frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + \dots + nx^{n-1} + \dots$$
$$= \sum_{n=1}^{\infty} nx^{n-1}, \quad -1 < x < 1;$$

$$f''(x) = \frac{2}{(1-x)^3} = 2 + 6x + 12x^2 + \dots + n(n-1)x^{n-2} + \dots$$
$$= \sum_{n=2}^{\infty} n(n-1)x^{n-2}, \quad -1 < x < 1.$$

Taylor and Maclaurin Series

DEFINITIONS Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the Taylor series generated by f at x = a is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$

The Maclaurin series of f is the Taylor series generated by f at x = 0, or

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \dots$$

EXAMPLE 1 Find the Taylor series generated by f(x) = 1/x at a = 2. Where, if anywhere, does the series converge to 1/x?

Solution We need to find f(2), f'(2), f''(2), . . . Taking derivatives we get

$$f(x) = x^{-1}$$
, $f'(x) = -x^{-2}$, $f''(x) = 2!x^{-3}$, \cdots , $f^{(n)}(x) = (-1)^n n! x^{-(n+1)}$,

so that

$$f(2) = 2^{-1} = \frac{1}{2}, \quad f'(2) = -\frac{1}{2^2}, \quad \frac{f''(2)}{2!} = 2^{-3} = \frac{1}{2^3}, \quad \cdots, \quad \frac{f^{(n)}(2)}{n!} = \frac{(-1)^n}{2^{n+1}}.$$

The Taylor series is

$$f(2) + f'(2)(x - 2) + \frac{f''(2)}{2!}(x - 2)^2 + \dots + \frac{f^{(n)}(2)}{n!}(x - 2)^n + \dots$$

$$= \frac{1}{2} - \frac{(x - 2)}{2^2} + \frac{(x - 2)^2}{2^3} - \dots + (-1)^n \frac{(x - 2)^n}{2^{n+1}} + \dots$$

EXAMPLE 2 Find the Taylor series and the Taylor polynomials generated by $f(x) = e^x$ at x = 0.

Solution Since $f^{(n)}(x) = e^x$ and $f^{(n)}(0) = 1$ for every n = 0, 1, 2, ..., the Taylor series generated by f at x = 0 (see Figure 10.17) is

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

$$= 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + \dots$$

$$= \sum_{k=0}^{\infty} \frac{x^k}{k!}.$$

EXAMPLE 2 We know from Section 3.11, Example 1, that $\sqrt{1+x} \approx 1 + (x/2)$ for |x| small. With m=1/2, the binomial series gives quadratic and higher-order approximations as well, along with error estimates that come from the Alternating Series Estimation Theorem:

$$(1+x)^{1/2} = 1 + \frac{x}{2} + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2 + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}x^3 + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{4!}x^4 + \cdots$$

$$= 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5x^4}{128} + \cdots$$