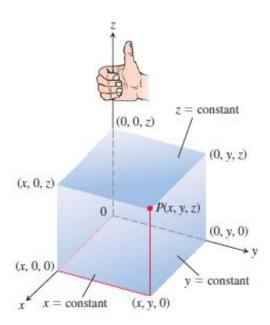
Lecture (5)

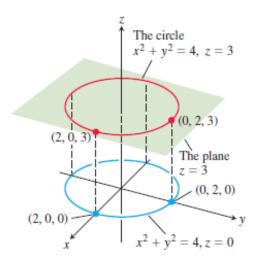
Three-Dimensional Coordinate Systems



EXAMPLE 2 What points P(x, y, z) satisfy the equations

$$x^2 + y^2 = 4$$
 and $z = 3$?

Solution The points lie in the horizontal plane z = 3 and, in this plane, make up the circle $x^2 + y^2 = 4$. We call this set of points "the circle $x^2 + y^2 = 4$ in the plane z = 3" or, more simply, "the circle $x^2 + y^2 = 4$, z = 3" (Figure 12.4).



The Standard Equation for the Sphere of Radius a and Center (x_0, y_0, z_0)

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = a^2$$

EXAMPLE 4 Find the center and radius of the sphere

$$x^2 + y^2 + z^2 + 3x - 4z + 1 = 0.$$

$$x^{2} + y^{2} + z^{2} + 3x - 4z + 1 = 0$$

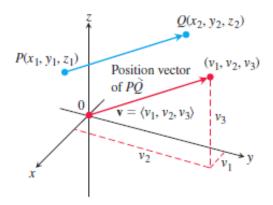
$$(x^{2} + 3x) + y^{2} + (z^{2} - 4z) = -1$$

$$\left(x^{2} + 3x + \left(\frac{3}{2}\right)^{2}\right) + y^{2} + \left(z^{2} - 4z + \left(\frac{-4}{2}\right)^{2}\right) = -1 + \left(\frac{3}{2}\right)^{2} + \left(\frac{-4}{2}\right)^{2}$$

$$\left(x + \frac{3}{2}\right)^{2} + y^{2} + (z - 2)^{2} = -1 + \frac{9}{4} + 4 = \frac{21}{4}.$$

From this standard form, we read that $x_0 = -3/2$, $y_0 = 0$, $z_0 = 2$, and $a = \sqrt{21}/2$. The center is (-3/2, 0, 2). The radius is $\sqrt{21}/2$.

Vectors



EXAMPLE 1 Find the (a) component form and (b) length of the vector with initial point P(-3, 4, 1) and terminal point Q(-5, 2, 2).

Solution

(a) The standard position vector \mathbf{v} representing \overrightarrow{PQ} has components

$$v_1 = x_2 - x_1 = -5 - (-3) = -2,$$
 $v_2 = y_2 - y_1 = 2 - 4 = -2,$

and

$$v_3 = z_2 - z_1 = 2 - 1 = 1.$$

The component form of \overrightarrow{PQ} is

$$\mathbf{v} = \langle -2, -2, 1 \rangle.$$

(b) The length or magnitude of $\mathbf{v} = \overrightarrow{PQ}$ is

$$|\mathbf{v}| = \sqrt{(-2)^2 + (-2)^2 + (1)^2} = \sqrt{9} = 3.$$

DEFINITIONS Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ be vectors with k a scalar.

Addition:
$$\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$$

Scalar multiplication: $k\mathbf{u} = \langle ku_1, ku_2, ku_3 \rangle$

EXAMPLE 3 Let $\mathbf{u} = \langle -1, 3, 1 \rangle$ and $\mathbf{v} = \langle 4, 7, 0 \rangle$. Find the components of

(a)
$$2\mathbf{u} + 3\mathbf{v}$$
 (b) $\mathbf{u} - \mathbf{v}$ (c) $\left| \frac{1}{2}\mathbf{u} \right|$.

Solution

(a)
$$2\mathbf{u} + 3\mathbf{v} = 2\langle -1, 3, 1 \rangle + 3\langle 4, 7, 0 \rangle = \langle -2, 6, 2 \rangle + \langle 12, 21, 0 \rangle = \langle 10, 27, 2 \rangle$$

(b)
$$\mathbf{u} - \mathbf{v} = \langle -1, 3, 1 \rangle - \langle 4, 7, 0 \rangle = \langle -1, 4, 3, 7, 1, 0 \rangle = \langle -5, -4, 1 \rangle$$

(c)
$$\left|\frac{1}{2}\mathbf{u}\right| = \left|\left\langle -\frac{1}{2}, \frac{3}{2}, \frac{1}{2}\right\rangle\right| = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \frac{1}{2}\sqrt{11}.$$

Properties of Vector Operations

Let u, v, w be vectors and a, b be scalars.

1.
$$u + v = v + u$$

2.
$$(u + v) + w = u + (v + w)$$

3.
$$u + 0 = u$$

4.
$$u + (-u) = 0$$

5.
$$0u = 0$$

6.
$$1u = u$$

7.
$$a(b\mathbf{u}) = (ab)\mathbf{u}$$

8.
$$a(u + v) = au + av$$

9.
$$(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$$

EXAMPLE 4 Find a unit vector **u** in the direction of the vector from $P_1(1, 0, 1)$ to $P_2(3, 2, 0)$.

Solution We divide $\overrightarrow{P_1P_2}$ by its length:

$$\begin{aligned}
\overline{P_1P_2} &= (3-1)\mathbf{i} + (2-0)\mathbf{j} + (0-1)\mathbf{k} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k} \\
|\overline{P_1P_2}| &= \sqrt{(2)^2 + (2)^2 + (-1)^2} = \sqrt{4+4+1} = \sqrt{9} = 3 \\
\mathbf{u} &= \frac{\overline{P_1P_2}}{|\overline{P_1P_2}|} = \frac{2\mathbf{i} + 2\mathbf{j} - \mathbf{k}}{3} = \frac{2}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} - \frac{1}{3}\mathbf{k}.\end{aligned}$$

The unit vector \mathbf{u} is the direction of $\overrightarrow{P_1P_2}$.

The Dot Product

DEFINITION The **dot product** $\mathbf{u} \cdot \mathbf{v}$ (" \mathbf{u} **dot** \mathbf{v} ") of vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ is the scalar

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

EXAMPLE 1 We illustrate the definition.

(a)
$$\langle 1, -2, -1 \rangle \cdot \langle -6, 2, -3 \rangle = (1)(-6) + (-2)(2) + (-1)(-3)$$

= $-6 - 4 + 3 = -7$

(b)
$$\left(\frac{1}{2}\mathbf{i} + 3\mathbf{j} + \mathbf{k}\right) \cdot (4\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = \left(\frac{1}{2}\right)(4) + (3)(-1) + (1)(2) = 1$$

DEFINITION Vectors **u** and **v** are orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$.

EXAMPLE 4 To determine if two vectors are orthogonal, calculate their dot product.

- (a) $\mathbf{u} = \langle 3, -2 \rangle$ and $\mathbf{v} = \langle 4, 6 \rangle$ are orthogonal because $\mathbf{u} \cdot \mathbf{v} = (3)(4) + (-2)(6) = 0$.
- (b) $\mathbf{u} = 3\mathbf{i} 2\mathbf{j} + \mathbf{k}$ and $\mathbf{v} = 2\mathbf{j} + 4\mathbf{k}$ are orthogonal because $\mathbf{u} \cdot \mathbf{v} = (3)(0) + (3)(0)(1)$ (-2)(2) + (1)(4) = 0.

Properties of the Dot Product

If u, v, and w are any vectors and c is a scalar, then

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

2.
$$(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$$

3.
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$
 4. $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$

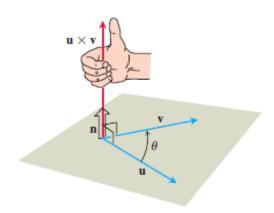
4.
$$\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$$

5.
$$0 \cdot u = 0$$
.

The Cross Product

DEFINITION The cross product $\mathbf{u} \times \mathbf{v}$ ("u cross v") is the vector

$$\mathbf{u} \times \mathbf{v} = (|\mathbf{u}||\mathbf{v}|\sin\theta) \,\mathbf{n}.$$



EXAMPLE 1 Find $\mathbf{u} \times \mathbf{v}$ and $\mathbf{v} \times \mathbf{u}$ if $\mathbf{u} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{v} = -4\mathbf{i} + 3\mathbf{j} + \mathbf{k}$.

Solution We expand the symbolic determinant:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 1 \\ -4 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 2 & 1 \\ -4 & 1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 2 & 1 \\ -4 & 3 \end{vmatrix} \mathbf{k}$$
$$= -2\mathbf{i} - 6\mathbf{j} + 10\mathbf{k}$$
$$\mathbf{v} \times \mathbf{u} = -(\mathbf{u} \times \mathbf{v}) = 2\mathbf{i} + 6\mathbf{j} - 10\mathbf{k} \qquad \text{Property 3}$$