

Environmental & Safety Mines

College of Petroleum & Mining Eng.

Mining Engineering Dept.

4th Class

Lecture No. 2 – Chapter 5

Mr. Omer Haitham

Shock Loss, Page-160

Shock losses occur in mine ventilation in addition to friction losses and are caused by changes in the direction of airflow or the shape or size of the duct. Obstructions cause shock loss by reducing the duct area. Although generally constituting only 10–30% of the total head loss in mine ventilation systems, shock losses should always be considered in exact calculations, in major airways, or in short lengths of duct with many bends or area changes.

Shock losses do not lend themselves to precise calculation because of the great range of variability in occurrence and because of a lack of understanding about their actual nature. Basically, for a given source of shock, the head loss varies as the square of the velocity or directly as the velocity head. Calculation of individual shock losses can be carried out in several ways.

Calculation of Shock Loss Directly, Pages 160-161

$$H_x = XH_y \tag{5.23}$$

X: shock loss factor (constant @ constant conditions), it depends on fittings/duct/pipe shape

Calculation of Shock Loss by Equivalent Length Method, Page 161-162

• Using The equation below,

$$L_e = \frac{5.2 \ w R_h X}{K(1098)^2} = \frac{3235 \ R_h X}{10^{10} \ K} \,\text{ft}$$
(5.24)

- Le: equivalent Length
- W: specific weight of air (=0.0750 lb/ft³@ standard cond.)
- Rh: hydraulic radius
- X: shock loss factor
- K: friction factor

<u>Note:</u>

This method is a time consuming because we need to Know (K, Rh, &Le) in order to get Shock loss

Equivalent Length from Table 5.3, Page 162

Mr. Ower Haithaw

Source	ft	(m)	Source	ft	(m)
Bend, acute, round	3	(1)	Contraction, gradual	1	(1)
Bend, acute, sharp	150	(45)	Contraction, abrupt	10	(3)
Bend, right, round	1	(1)	Expansion, gradual	1	(1)
Bend, right, sharp	70	(20)	Expansion, abrupt	20	(6)
Bend, obtuse, round	1	(1)	Splitting, straight branch	30	(10)
Bend, obtuse, sharp	15	(5)	Splitting, deflected branch (90°)	200	(60)
Doorway	70	(20)	Junction, straight branch	60	(20)
Overcast	65	(20)	Junction, deflected branch (90°)	30	(10)
Inlet	20	(6)	Mine car or skip (20% of airway area)	100	(30)
Discharge	arge 65 (20) Mine car or skip (40% of airway area)		500	(150)	

FABLE 5.3 Equivalent	Lengths	for	Various	Sources	of	Shock	Loss
----------------------	---------	-----	---------	---------	----	-------	------

• <u>Note:</u>

- This table based on K=100*10⁻¹⁰,w=0.075 IB/ft³ & Rh=2ft
- Fitting type must be known

Combined Head Loss, Page 163

The below equation is for Head loss at the duct
 Calculate the H_{mine} by summate H_I for all sections

$$H_{I} = H_{f} + H_{x} = \frac{KO(L + L_{e})Q^{2}}{5.2A^{3}}$$
(5.25)

• All parameters in this equation were discussed before.

Air Power, Page 165

• It's the power required to overcome the energy losses in an airstream

$$P_a = \frac{5.2HQ}{33,000} = \frac{HQ}{6346} \,\mathrm{hp} \tag{5.26}$$

Compressibility Effect, Page 166

• Air is compressed at low pressure

• If you neglect a compressibility effect then, there is an error percentage while selecting the fan or blower & that error is calculated by

% Error =
$$1 - \frac{H_s}{H_s + H_f}$$

- That error is affected to quantity of air supplied to the duct or tunnel, & that's mean the fan should be at greater size than it is.
- 1. IF the fan located @ discharge then

2. IF the fan located @ Inlet then

Compressibility Effect, Page 167

• It's advice to consider compressibility effect @ : 1. High pressure >20 in.water by applying below formula

$$p_1^2 - p_2^2 = \frac{K_c Q^2 L}{D^5} \tag{5.27}$$

P: absolute pressure @ points 1&2
K_c: compression friction factor
Long ventilation pipe in mines and tunnel
Deep shaft where difference in elevation exceed 1400 ft

Example 5.7, Page 163-164

• <u>Required:</u>

• H_{combined}, Hmine, and H_{loss} for all sections shown in the figure below

FIGURE 5.12 Mine ventilation system in Example 5.7.

Example 5.7, Page-164

o Given Info.

 $K = 125 \times 10^{-10} \text{ lb} \cdot \text{min}^2/\text{ft}(0.0232 \text{ kg/m}^3)$

 $Q = 20,000 \text{ cfm} (9.44 \text{ m}^3/\text{s})$

 $w = 0.0750 \text{ lb/ft}^3(1.201 \text{ kg/m}^3)$

• In addition to, all information given in the figure

Example 5.7, Page-164

• <u>Solution</u>

- 1. Divide the duct into numbers of sections (AB, BC...etc)
- 2. Select all airways having the same dimension, because they get similar calculations
- 3. You have to figure out the type of fitting from the figure
- 4. Calculate Le, for all fittings in the given duct, using Table 5.3 (you have to add each Le for the fitting to the length of it's airway once, before or after)
- 5. Apply eq. 5.25 to compute head loss
- 6. To find Hv, from eq. 5.14, but Velcity from V=Q/A
- 7. Apply the above procedure to all sections step by step and finally summate the Hs
- 8. Summate Hv
- 9. See, the next slide for full solution

Mr. Opper Haithapp

Example 5.7, Page-164

Airway	Size, ft	<i>L</i> , ft	L _e , ft"	$L + L_{e},$ ft	A. ft ²	O, ft	H _L , in. water (Pa)
AB	10 × 20	810	(None)				b
BC	8 × 8	800	(b) (c) 3 + 1 = 4				
CD	8 × 8	350	(b) 15	1169	64	32	0.1372 (34.1)
DE	5 × 7	100	(b) (c) 70 + 10 = 80 (b)				
EF	5 × 7	250	70 (b)				
FG	5 × 7	100	70 (b)				
бн	5 × 7	400	70	1140	35	24	0.6136 (152.7)
m	10 × 20) 800	(b) (c) (d) 1 + 1 + 65 = 67	1677	200	60	0.0121 (3.0)
			mine $H_x = \sum H_L$ mine H_y .	= =	0.7629 0.0006	in. wa (0.1)	tter (189.8 Pa)
			mine H _r	-	0.7635	(190.0	0)

Mr. Oper Haithapp

END OF LECTURE