

ENVIRONMENTAL & SAFETY OF MINES SUBJECT

Ventilation Measurements and Surveys

College of Petroleum & Mining Eng.

Mining Engineering Dept.

4th Class

Lecture No.3 – Chapter 6-Part-III

Mr. Omer Haitham Kanam

Mr. Oper Heithen

Overview-PART-III

• Example 6.5

• Example 6.6

• <u>Example 6.5 :</u>

• Data from an underground pressure survey shown in Table 6.3 were obtained by the leapfrogging method. Determine the head loss between adjacent stations.

Mr. Omer Haitham

Stations	Elevation, ft		Altimeter Reading, ft		Wet-Bulb <i>t</i> _w , °F		Dry-Bulb t _d , °F		Station Area, ft ²		Average Air Velocity, fpm	
	A	В	A	В	А	В	A	В	А	В	Α	В
0-7	750	760	800	1073	40	60	45	60	100.0	120.0	1000	833
0-1	750	745	804	834	40	45	45	50	100.0	95.3	1000	1050
1-2	745	748	838	857	45	52	50	55	95.3	94.0	1050	850
2-3	748	750	860	878	52	60	55	60	94.0	95.0	850	632
3-4	750	752	878	948	60	60	60	60	95.0	80.0	632	500
4-5	752	750	945	979	60	60	60	60	80.0	85.0	500	706
5-6	750	755	975	1016	60	60	60	60	85.0	87.0	706	920
6-7	755	760	1015	1090	60	60	60	60	87.0	95.0	920	1055
7~0	760	750	1090	803	60	38	60	40	95.0	100.0	1055	1000

TABLE 6.3 Altimeter Survey Data Obtained Using Leapfrogging Method (Example 6.5).

Conversion factors: 1 ft = 0.3048 m, $^{\circ}C = [t(^{\circ}F) - 32]/1.8$, 1 ft² = 0.0929 m², 1 fpm = 0.00508 m/s.

• Solution Example 6.5 :

• Data from an underground pressure survey shown in Table 6.3 were obtained by the leapfrogging method. Determine the head loss between adjacent stations.

Mr. Oper Haithan

• <u>Solution:</u>

- Example calculations shown are for stations 7 and 0 only. Chart values for DR and CF are first obtained as follows.
- 1. Determine DR. Use psychometric tables (Appendix Table A.2), or Table 6.1 or a psychometric chart (Fig. 2.2) to find relative humidity.

• <u>Solution Example 6.5 :</u>

For $t_{d_1} = 60^{\circ}$ F and $t_{w_1} = 60^{\circ}$ F, read $\phi_1 = 100\%$

Mr. Oper Haithan

For $t_{d_2} = 40^{\circ}$ F and $t_{w_2} = 38^{\circ}$ F, read $\phi_2 = 92\%$

Final average
$$\phi = \frac{\phi_1 + \phi_2}{2} = 96\%$$

and average
$$t_d = \frac{t_{d_1} + t_{d_2}}{2} = 50^\circ \text{F}$$

From Fig. 6.15, DR = 1.00

2. Determine CF (Fig. 6.16):

З.

Find average altimeter reading $=\frac{1090 + 803}{2} = 946$ ft

Solution Example 6.5 :

Moving horizontally from the altimeter scale until it intersects the appropriate line (ft air column per in. water), CF the air column equivalent to a pressure of 1 in. (25.4 mm) water is found to be 69 ft (25.15 m).

Mr. Omer Haitham

Substituting survey data and the above values in Eq. 6.12:

$$H_{I_{70}} = -\left[\frac{(1090 - 803) - (760 - 750)/1.0}{69}\right] + \frac{(1055)^2 - (1000)^2}{(4009)^2}$$

= 4.00 in. water (-998 Pa)

The computed head losses between adjacent stations are tabulated in Table 6.4.

• Solution Example 6.5 :

TABLE 6.4 Results of Altimeter Survey (Example 6.5)

Stations	Altimeter Difference, ft	Elevation Difference, ft	Head Loss Due to Airflow in. water	Average Air Quantity, cfm	
0-7	- 273	- 10	+ 4.00		
0-1	- 30	+5	+ 0.50	100,000	
1-2	- 19	-3	+0.25	80,000	
2-3	- 18	-2	+0.25	60,000	
3-4	- 70	-2	+1.00	40,000	
4-5	-34	+ 2	+ 0.50	60,000	
5-6	-41	- 5	+0.50	80,000	
6-7	-75	- 5	+1.00	100,000	
7–0	+ 287	+ 10	4.00	_	

Mr. Oper Heithen

Source: Mancha (1946). (By permission from AIME, New York, copyright 1996). Converson factors: 1 ft = 0.3048 m, 1 in. water = 249.089 Pa, 1 cfm = 0.000472 m³/s.

• <u>Example 6.6 :</u>

Data for this example are taken from McElroy and Kingery (1957). A fixed-base altimeter survey was run from station 1, the surface fan house, following the airflow through the mine, and closed back to station 1, as shown in Fig. 6.17. The altimeter scale was offset 1000 ft. The base altimeter was read every 10 min, and the base altimeter reading at the time of the roving altimeter reading at a station was interpolated.

Mr. Oper Haithan

Separate but simultaneous altimeter readings were made by another crew at stations 12 and 13, respectively, the bottom and top of the return shaft, and at stations 2 and 3, respectively, the top and bottom of the slope. The survey data are summarized in Table 6.5.

Calculate the static and total head losses between the survey stations and the total head at each station. Comment on the fan and closure error. Calculate the head losses in the slope and shaft from the simultaneous altimeter readings.

Mr. Oper Haitham

Pressure Survey

• Example 6.6 :

• Example 6.6 :

						Tempe	rature			
Sta.	Location	I/R	Elevation, ft	Time	RAR, ft	Wet-bulb, °F	Dry-bulb, °F	Velocity," fpm	BAR, ft	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
1	Surface at fan house	Base	482	8:22	1391	49	53		1391	
2	Rock slope portal	1	496	8.35	1387	50	53		1373	
3	Rock slope bottom	I	120	8:59	1010	57	64	475	1355	
4	Main N by sta. 1925	I	104	9:10	998	57	65	450	1355	
5	Main N by sta. 2700	1	57	9:18	952	60	65	390	1350	
6	Junction MN and ME	I	- 28	9:45	859	62	65	360	1325	
7	ME, opposite 2N	I	-27	10:15	848	62	64	230	1311	
8	ME opposite 3N	I	-17	10:30	847	63	65	130	1291	
9	ME return at 3N	R	- 16	10:50	889	70	72	475	1291	
10	ME return at MN	R	-24	11:37	894	69	70	350	1276	
11	MN at old coal slope	R	114	1:30	1230	70	70	220	1274	
12	Bottom, upcast shaft	R	317	1:53	1410	70	70	880	1264	
13	Top upcast shaft-fan inlet	R	482	2:45	1610	68	68	1590	1241	
1	Surface at fan house	Base	482	2:53	1238	43	50	_	1239	
2	Top of rock slope portal	1	496	8:50	909	31	37	_	Simultaneous	
3	Bottom of slope portal	I	120	8:50	539	47	54	475	readings	
12	Bottom of shaft	R	317	9:25	1041	69	69	880	Simultaneous	
13	Top of shaft	R	482	9:25	1264	69	69	1590	readings	

Mr. Oper Heithen

TABLE 6.5 Altimeter Ventilation Pressure Survey Data (Example 6.6)^a

Source: McElroy and Kingery (1957).

" Abbreviations: RAR, BAR-roving, base altimeter readings; MN, ME-main north, main east.

^b Velocity negligible, taken as zero in calculations.

Conversion factors: 1 ft = 0.3048 m,
$$^{\circ}C = \frac{t(^{\circ}F) - 32}{1.8}$$
, 1 ft² = 0.0929 m², 1 fpm = 0.00508 m/s.

Solution Example 6.6 :

<u>Step 1.</u> Determine the relative humidity and velocity heads at stations 4 and 5, table 6.1 pages 184-185

Mr. Oper Heithen

Station 4 Relative humidity from Table 6.1 ($t_d = 65^\circ \text{F}, t_w = 57^\circ \text{F}$) $\phi = 61\%$ Velocity head $H_{v_4} = \frac{450^2}{4009^2} = 0.013$ in. water Total head $H_{t_4} = -0.165$ in. water (assume given) Station 5 Relative humidity from Table 6.1 ($t_d = 65^\circ \text{F}, t_w = 60^\circ \text{F}$) $\phi = 75\%$ Velocity head $H_{v_3} = \frac{390^2}{4009^2} = 0.010$ in. water

Solution Example 6.6 :

<u>Step 2.</u> Calculations for conditions between stations 4 and 5: use fig. 6.15 and 6.16

Mr. Omer Haitham

Elevation difference, $Z_5 - Z_4 = 57 - 104 = -47$ ft Density ratio DR for the air column between 5 and 4: Average relative humidity $\phi = \frac{61 + 75}{2} = 68\%$ Average dry-bulb temperature $t_d = \frac{65 + 65}{2} = 65^{\circ}$ F From Fig. 6.15, DR = 1.034 Altimeter difference, $p_{A_5} - p_{A_4} = 952 - 998 = -46$ ft Base correction, $-(p_{B_5} - p_{B_4}) = 5$ ft Elevation correction, $-\frac{(Z_5 - Z_4)}{DR} = \frac{47}{1.034} = 45$ ft

Corrected head difference in ft. of air = (-46 + 5 + 45) = 4 ft

Average altimeter reading
$$=\frac{p_{A_5} + p_{A_4}}{2} = \frac{952 + 998}{2} = 975$$
 ft

The conversion factor CF for the average altimeter is read from the 1000ft offset scale from Fig. 6.16:

Solution Example 6.6 :

Difference in static head $H_s = -\left(\frac{4}{66.8}\right) = -0.060$ in. water Difference in velocity heads $= H_{v_s} - H_{v_4} = 0.010 - 0.013 = -0.003$ in. water Difference in total head $H_t = -0.060 + (-0.003) = -0.063$ Total head at 5 H_{t_s} = total head at 4 H_{t_4} + the difference in total head between 5 and 4 = -0.165 + (-0.063) = -0.228 in. water.

Mr. Oper Haithan

- The negative difference in total head $(H_{15} H_{14})$ indicates that the airflow is from 4 to 5.
- Note that total pressure differences from station 1 back to station 1 must add up to zero.

Mr. Oper Haitham

• <u>Solution Example 6.6 :</u>

	H _e in.	Diff.		Alt.	Base	Elev.	Head ft. of	Avg. alt.	Feet of air per in.	ΔH_s	ΔH_v	ΔH_t	H_t
ф	water	elev.	DR	diff.	corr.	COIT.	air	rdg.	water	in. water.			
(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
75	0		1 000		. 10			1200	(2.2				0
81	0]4	1.008	4	+ 18	- 14	0	1389	6/./	0	U	0	0
45	0.014	- 376	1.022	- 377	+ 18	368	9	1199	67.4	-0.133	0.014	-0.119	0.110
60	0.014	- 16	1.034	- 12	0	15	3	1004	66.8	-0.045	-0.001	-0.046	-0.119
61	0.013	- 47	1 034	- 46	+ 5	45	4	075	66.8	-0.060	-0.003	-0.063	-0.165
75	0.010		1.054	-40	+5		-	,,,,	00.0	-0.000	-0.005	-0.005	-0.228
85	0.010	- 85	1.035	- 93	+ 25	82	14	906	66.8	-0.210	0	-0.210	-0.438
00	0.0	1	1.038	-11	+14	- 1	2	854	66.4	- 0.030	-0.01	-0.04	0.470
90	0.0	10	1.038	- i	+ 20	-10	9	848	66.4	-0.136	0.0	-0.136	-0.478
90	0.0		1 049	42	0	-1	41	949	44 A	0 6 1 8	0.014	0 604	~0.614
91	0.014	1	1.040	42	0	-1	41	000	00.4	-0.618	0.014	-0.604	-1.218
95	0.010	-8	1.054	5	+15	8	28	892	66.5	-0.421	-0.004	-0.425	-1643
	0.010	138	1.048	309	+ 2	- 132	179	1049	67.0	-2.672	-0.01	-2.682	1.045
100	0.0	203	1.049	207	+ 10	- 193	24	1307	67.7	-0.355	0.048	-0.307	-4.325
i 00	0.048		1.046	200		150	15	1510	(8.3	0.053	0.110	0.047	-4.632
100	0.158	165	1.046	200	+ 23	- 158	60	1210	68.2	-0.953	0.110	-0.843	- 5.475
55	0	0	1.022	- 372	+ 2	0	- 370	1424	67.9	+ 5.45	-0.158	5.292	0 183
1	φ 2) 75 81 65 61 75 85 90 90 91 95 00 00 55	φ water 2) (3) 75 0 81 0 65 0.014 61 0.013 75 0.010 85 0.010 90 0.0 90 0.0 91 0.014 95 0.010 00 0.048 00 0.158 55 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							

TABLE 6.6 Altimeter Ventilation Pressure Survey Calculation (Example 6.6)

Source: McElroy and Kingery (1957).

Conversion factors: 1 ft = 0.3048 m. 1 in. water = 249.089 Pa.

Solution Example 6.6 :

• In the example problem, the sum is +0.183 in. water in a total head of 5.475 in. water. This is called the closure error and is the result of errors in measurements and the presence of any natural ventilation.

Mr. Oper Haithan

- The calculations for the head losses in the slope (and the shaft) are similar to those in Example 6.5 and are left for the reader to verify.
- The head loss in the slope is 0.122 in. water, and in the shaft is 0.856 in. water.

Mr. Oper Heithen

END OF PART-III