RULES AND CALCULATIONS OF ROCK EXPLOSIVE ENGINEERING

Dr. Azealdeen S. Al-Jawadi

Abbreviations

- α = Angle subtended from the vertical by the inclined hole
- $\pi = 3.1416$ (the ratio of the circumference of a circle to its diameter)
- **AWS** = Absolute weight strength
- $\mathbf{B} = \text{Drilled burden (m)}$
- BH = Bench height (m)
- C = Explosive column height or charge length (m)
- \mathbf{D} = Hole diameter (mm)
- $\mathbf{L} = \text{Hole length}(\mathbf{m})$
- N = Number of holes in a blast
- **PF** = Powder factor
- **RBS** = Relative bulk strength
- **RWS** = Relative weight strength
- S = Drilled spacing (m)
- SD = Sub-drill (m)
- **SL** = Stemming length (m)
- $\mathbf{T} =$ Blasted tons
- $V = Blast volume (m^3)$

The field of rock explosive engineering

Equations to calculate what you need in the field

Hole leng	th (L)	= BH	+ SD				
Charge length $(C) =$			L - S	L - SL			
Blast volume $(V) = I$			B x S	B x S x BH x N			
Blasted tonnes $(T) = V$			V x Density of rock in t/m ³				
Volume of blasthole (Vb) =			(b) =	$\pi \ge D^2/4000 \ge L$			
Mass of explosive per hole (kg) = Volume of hole length charged x Explosive density							
$PF (kg/m^3) =$		Total explosives in the blast/volume of rock blasted (for kg/Ton, divid					
		by blasted tons T)					
RWS =	AWS of explosive/AWS of ANFO x 100						
RBS =	(RWS explosive x explosive density)/(ANFO density)						
Energy factor = PF x RWS							
Vertical length of angled holes = Measured hole length x $\cos \alpha$							

Rules

These rules provide a first estimate in the absence of any better data.

- **Blast hole diameter** in mm \leq 15 x Bench height (BH) in meters
- **Bench height** (BH) in $m \ge (Blast hole diameter (D) in mm)/15$
- **Burden** (B) = (25 to 40) x (D)
- **Spacing** $(S) = 1.15 \times B$ (This gives an equilateral pattern)
- **Sub-drill** = $(3 \text{ to } 15) \times D$
- Charge length $(C) \ge 20 D$
- **Stemming** $\ge 20 \text{ x D or} (0.7 1.2) \text{ x B}$
- **Burden stiffness ratio** = BH/B : 2 to 3.5 good fragmentation

: > 3.5 very good fragmentation

- Stemming material size = D/10 to D/20 (Angular material with minimum fines) Presplit blasting
- **Spacing** = Hole diameter x 12
- **Burden** = 0.5 x production blast burden (B)
- Uncharged length at $top = 10 \times D$
- **Powder factor** = 0.5 kg per square meter of face

Smooth Blasting

• Spacing = 15 x Hole diameter (hard rock)

20 x Hole diameter (soft rock)

• Burden = 1.25 x Spacing

Powder factors

Typical powder factors used in mass blasts

Rock type	PF (kg/m ³)
Hard	0.7 - 0.8
Medium	0.4 - 0.5
Soft	0.25 - 0.35
Very Soft	0.15 - 0.25

Typical powder factors used in presplit and smooth blasting

Rock type	PF (kg/m ³)
Hard	0.6 -0.9
Medium	0.4 - 0.5
Soft	0.2 - 0.3

Crest Burden (CB) = Distance blast-hole collar is from crest Vertical Stemming Length (VSL) = (measured stemming length x cos [HA]) Toe Burden (TB) = Burden at floor level

= ($[\tan (FA) x \text{ bench height}] + CB$) - ($\tan [HA] x \text{ bench height}$)

Perimeter control

Perimeter blasting is a technique to reduce the over-break/back-break on a blast.

It usually utilizes decoupled charges in closely spaced blast-holes. **The following formula can be used to estimate the centre-to-centre distances of cartridge product for pre-splitting.**

L x S

PF =------

0.5

PF = Required powder factor (usually 0.3 to 0.6 kg/m²)

- \mathbf{L} = Length of charged hole
- S = Spacing between holesL x QL

D =------

B x S x PF

 \mathbf{D} = Center – center distance between cartridges (mm)

- $\mathbf{QL} = \mathbf{Charge \ density \ of \ the \ explosive, \ in \ kg/m}$
- $\mathbf{B} =$ Burden

