RULES AND CALCULATIONS OF ROCK EXPLOSIVE ENGINEERING

Lecture 2

Dr. Azealdeen S. A1-Jawadi

Abbreviations

$\alpha=$ Angle subtended from the vertical by the inclined hole $\pi=3.1416$ (the ratio of the circumference of a circle to its diameter)
AWS = Absolute weight strength
$\mathbf{B}=$ Drilled burden (m)
$\mathbf{B H}=$ Bench height (m)
$\mathbf{C}=$ Explosive column height or charge length (m)
$\mathbf{D}=$ Hole diameter (mm)
$\mathbf{L}=$ Hole length (m)
$\mathbf{N}=$ Number of holes in a blast
PF = Powder factor
RBS = Relative bulk strength
RWS = Relative weight strength
$\mathbf{S}=$ Drilled spacing (m)
SD = Sub-drill (m)
$\mathbf{S L}=$ Stemming length (m)
T = Blasted tons
$\mathbf{V}=$ Blast volume $\left(\mathrm{m}^{3}\right)$

The field of rock explosive engineering

Equations to calculate what you need in the field

Hole length $(\mathrm{L})=\mathrm{BH}+\mathrm{SD}$

Charge length $(\mathrm{C})=\mathrm{L}-\mathrm{SL}$
Blast volume $(\mathrm{V})=\mathrm{B} \times \mathrm{S} \times \mathrm{BH} \times \mathrm{N}$
Blasted tonnes $(T)=V \times$ Density of rock in t / m^{3}

Volume of blasthole $(\mathrm{Vb})=\pi \times \mathrm{D}^{2 / 4000} \times \mathrm{L}$
Mass of explosive per hole $(\mathrm{kg})=$ Volume of hole length charged x Explosive density
PF $\left(\mathrm{kg} / \mathrm{m}^{3}\right)=$ Total explosives in the blast/volume of rock blasted (for $\mathrm{kg} /$ Ton, divided by blasted tons T)
RWS $=$ AWS of explosive/AWS of ANFO $\times 100$
RBS $=$ (RWS explosive x explosive density)/(ANFO density)
Energy factor $=$ PF \times RWS
Vertical length of angled holes $=$ Measured hole length $\mathrm{x} \cos \alpha$

Rules

These rules provide a first estimate in the absence of any better data.

- Blast hole diameter in $\mathrm{mm} \leq 15 \mathrm{x}$ Bench height (BH) in meters
- Bench height (BH) in $\mathrm{m} \geq$ (Blast hole diameter (D) in mm)/15
- Burden (B) = (25 to 40) x (D)
- Spacing $(S)=1.15 \times B$ (This gives an equilateral pattern)
- Sub-drill $=(3$ to 15$) \times \mathrm{D}$
- Charge length (C) $\geq 20 \mathrm{D}$
- Stemming $\geq 20 \times \mathrm{D}$ or (0.7-1.2) x B
- Burden stiffness ratio $=\mathrm{BH} / \mathrm{B}: 2$ to 3.5 good fragmentation
: > 3.5 very good fragmentation
- Stemming material size $=\mathrm{D} / 10$ to $\mathrm{D} / 20$ (Angular material with minimum fines)

Presplit blasting

- Spacing $=$ Hole diameter $\times 12$
- Burden $=0.5 \times$ production blast burden (B)
- Uncharged length at top $=10 \times \mathrm{D}$
- Powder factor $=0.5 \mathrm{~kg}$ per square meter of face Smooth Blasting
- Spacing $=15 \times$ Hole diameter (hard rock)
$20 \times$ Hole diameter (soft rock)
- Burden = $1.25 \times$ Spacing

Powder factors

Typical powder factors used in mass blasts

Rock type	PF $\left(\mathbf{k g} / \mathbf{m}^{\mathbf{3}}\right)$
Hard	$0.7-0.8$
Medium	$0.4-0.5$
Soft	$0.25-0.35$
Very Soft	$0.15-0.25$

Typical powder factors used in presplit and smooth blasting

Rock type	PF $\left(\mathbf{k g} / \mathbf{m}^{\mathbf{3}}\right)$
Hard	$0.6-0.9$
Medium	$0.4-0.5$
Soft	$0.2-0.3$

Angle faced holes

Calculating burdens

Crest Burden (CB) = Distance blast-hole collar is from crest Vertical Stemming Length (VSL) = (measured stemming length $x \cos [H A])$ Toe Burden (TB) = Burden at floor level

$$
=([\tan (\mathrm{FA}) x \text { bench height }]+\mathrm{CB})-(\tan [\mathrm{HA}] \times \text { bench height })
$$

Perimeter control

Perimeter blasting is a technique to reduce the over-break/back-break on a blast.
It usually utilizes decoupled charges in closely spaced blast-holes.
The following formula can be used to estimate the centre-to-centre distances of cartridge product for pre-splitting.

$$
P F=\frac{L \times S}{0.5}
$$

$\mathbf{P F}=$ Required powder factor (usually 0.3 to $0.6 \mathrm{~kg} / \mathrm{m}^{2}$)
$\mathbf{L}=$ Length of charged hole
$\mathbf{S}=$ Spacing between holes
Lx QL
D =
B x S x PF
$\mathbf{D}=$ Center - center distance between cartridges (mm)
QL = Charge density of the explosive, in kg / m
$\mathbf{B}=$ Burden
nhanis

