
Introduction to MATLAB

MATLAB (short for MATrix LABoratory) is a special-purpose

computer program optimized to perform engineering and scientific

calculations. It started life as a program designed to perform matrix

mathematics, but over the years it has grown into a flexible computing

system capable of solving essentially any technical problem.

The MATLAB program implements the MATLAB programming

language and provides a very extensive library of predefined functions

to make technical programming tasks easier and more efficient.

MATLAB is a huge program with an incredibly rich variety of

functions. Even the basic version of MATLAB without any toolkits is

much richer than other technical programming languages. There are

more than 1000 functions in the basic MATLAB product alone, and the

toolkits extend this capability with many more functions in various

specialties. Furthermore, these functions often solve very complex

problems (solving differential equations, inverting matrices, and so

forth) in a single step, saving large amounts of time.

**The MATLAB Desktop

When you start MATLAB, a special window called the MATLAB

desktop appears. The desktop is a window that contains other windows

showing MATLAB data, plus toolbars and a “Toolstrip” or “Ribbon

Bar” similar to that used by Windows 10 or Microsoft Office.

By default, most MATLAB tools are “docked” to the desktop, so that

they appear inside the desktop window. However, the user can choose

to “undock” any or all tools, making them appear in windows separate

from the desktop.

The default configuration of the MATLAB desktop is shown in Figure

1. It integrates many tools for managing files, variables, and

applications within the MATLAB environment.

 Figure 1 The default MATLAB desktop.

Table 1: Tools and Windows Included

 in the MATLAB Desktop

The functions of these tools are summarized in Table 1. We will

discuss them.

**The Command Window

The bottom center of the default MATLAB desktop contains the

Command Window. A user can enter interactive commands at the

command prompt (») in the Command Window, and they will be

executed on the spot.

As an example of a simple interactive calculation, suppose that you

wanted to calculate the area of a circle with a radius of 2.5 m. The

equation for this area of a circle is:

A = π r2

where r is the radius of the circle and A is the area of the circle. This

equation can be evaluated in the MATLAB Command Window by

typing:

» area = pi * 2.5^2

area =

19.6350

where * is the multiplication symbol and ^ is the exponential symbol.

MATLAB calculates the answer as soon as the Enter key is pressed,

and stores the answer in a variable (really a 1 X 1 array) called area.

The contents of the variable are displayed in the Command Window as

shown in Figure 2, and the variable can be used in further calculations.

(Note that p is predefined in MATLAB, so we can just use pi without

first declaring it to be 3.141592 …).

User input

Result of calculation

Result is added to the

workspace

Figure 2 : The Command Window appears in the center of the

desktop. You enter commands and see responses here.

**The Toolstrip

The Toolstrip (see Figure 1.3) is a bar of tools that appears across the

top of the desktop. The controls on the Toolstrip are organized into

related categories of functions, first by tabs, and then by groups. For

example, the tabs visible in Figure 1.3 are “Home”, “Plots”, “Apps”,

“Editor”, and so forth. When one of the tabs is selected, a series of

controls grouped into sections is displayed. In the Home tab, the

sections are “File”, “Variable”, “Code”, and so forth. With practice, the

logical grouping of commands helps the user to quickly locate any

desired function. In addition, the upper-right corner of the Toolstrip

contains the Quick Access Toolbar, which is where you can customize

the interface and display the most commonly used commands and

functions at all times. To customize the functions displayed there, right-

click on the toolbar and select the Customize option from the popup

menu.

Figure 3 : The Toolstrip

**The Command History Window

The Command History Window displays a list of the commands that a

user has previously entered in the Command Window. The list of

commands can extend back to previous executions of the program.

Commands remain in the list until they are deleted. To display the

Command History Window, press the up arrow key while typing in the

Command Window. To reexecute any command, simply double-click

it with the left mouse button. To delete one or more commands from

the Command History Window, select the commands and right-click

them with the mouse. A popup menu will be displayed that allows the

user to delete the items (see Figure 4).

Figure 4: The Command History Window, showing three

commands being deleted.

**The Document Window

A Document Window (also called an Edit/Debug Window) is used to

create new M-files or to modify existing ones. An Edit/Debug Window

is created automatically when you create a new M-file or open an

existing one. You can create a new M-file with the “New Script”

command from the “File” group on the Toolstrip (Figure 5a), or by

clicking the New icon and selecting Script from the popup menu

(Figure 5b). You can open an existing M-file file with the Open

command from the “File” section on the Toolstrip.

An Edit/Debug Window displaying a simple M-file called calc_area.m

is shown in Figure 5. This file calculates the area of a circle given its

radius and displays the result. By default, the Edit Window is docked

to the desktop, as shown in Figure 5.

The Edit Window is essentially a programming text editor, with the

MATLAB language’s features highlighted in different colors.

Comments in an M-file file appear in green, variables and numbers

appear in black, complete character strings appear in magenta,

incomplete character strings appear in red, and language keywords

appear in blue.

After an M-file is saved, it may be executed by typing its name in the

Command Window. For the M-file in Figure 5, the results are:

» calc_area

area = 19.635

The Edit Window also doubles as a debugger.

Figure 5: (a) Creating a new M-file with the “New Script”

command. (b) Creating a new M-file with the “New >> Script”

selection from the Toolbar. (c) The MATLAB Editor, docked to

the MATLAB desktop. (See color insert.)

 (c)

**Figure Windows

A Figure Window is used to display MATLAB graphics. A figure can

be a two- or three-dimensional plot of data, an image, or a GUI. A

simple script file that calculates and plots the function sin x is as

follows:

% sin_x.m: This M-file calculates and plots the function sin(x) for

0 <= x <= 6.

x = 0:0.1:6

y = sin(x)

plot(x,y)

The resulting plot is shown in Figure 6.

Figure 6 : MATLAB plot of sin x versus x.

**Docking and Undocking Windows

MATLAB windows such as the Command Window, the

Edit/Debugging Window, and Figure Windows can either be docked to

the desktop, or they can be undocked. When a window is docked, it

appears as a pane within the MATLAB desktop. When it is undocked,

it appears as an independent window on the computer screen separate

from the desktop. When a window is docked to the desktop, it can be

undocked by selecting the small down arrow in the upper-right corner

and selecting the “Undock” option from the popup menu (see Figure

7a). When a window is an independent window, it can be docked to the

desktop by selecting the small down arrow in the upper-right corner

and selecting the “Dock” option from the popup menu (see Figure 7b).

Figure 7 (a) Selecting the “Undock” option from the menu displayed after clicking

the small down arrow. (b) Selecting the “Dock” option

** The MATLAB Workspace

A statement like

z = 10

creates a variable named z, stores the value 10 in it, and saves it in a

part of computer memory known as the workspace. A workspace is the

collection of all the variables and arrays that can be used by MATLAB

when a particular command, M-file, or function is executing. All

commands executed in the Command Window (and all script files

executed from the Command Window) share a common workspace, so

they can all share variables. As we will see later, MATLAB functions

differ from script files in that each function has its own separate

workspace. A list of the variables and arrays in the current workspace

can be generated with the who’s command. See figure 8.

Figure 8 The Workspace Browser and Array Editor. The Array Editor is

invoked by double-clicking a variable in the Workspace Browser. It allows

you to change the values contained in a variable or array.

**The Current Folder Browser

The Current Folder Browser is displayed on the upper-left side of the

desktop. It shows all the files in the currently selected folder, and allows

the user to edit or execute any desired file. You can double-click on any

M-file to open it in the MATLAB editor, or you can right-click it and

select “Run” to execute it. The Current Folder Browser is shown in

Figure 9. A toolbar above the browser is used to select the current folder

to display.

Figure 9 The Current Folder Browser.

** Getting Help

There are three ways to get help in MATLAB. The preferred method is

to use the Help Browser. The Help Browser can be started by selecting

the icon from the Toolstrip

or by typing doc or helpwin in the Command Window.

The Help Browser is shown in Figure 10.

Figure 10 The Help Browser.

A user can get help by browsing the MATLAB documentation.

There are also two command-line-oriented ways to get help. The first

way is to type help or help followed by a function name in the

Command Window. If you just type help, MATLAB will display a list

of possible help topics in the Command Window. If a specific function

or a toolbox name is included, help will be provided for that particular

function or toolbox.

The second way to get help is the lookfor command. The lookfor

command differs from the help command in that the help command

searches for an exact function name match, while the lookfor command

searches the quick summary information in each function for a match.

This makes lookfor slower than help, but it improves the chances of

getting back useful information. For example, suppose that you were

looking for a function to take the inverse of a matrix. Since MATLAB

does not have a function named inverse, the command “help inverse”

will produce nothing. On the other hand, the command “lookfor

inverse” will produce the following results (show in figure 11)

Figure 11 lookfor inverse list.

** A Few Important Commands

The contents of the Command Window can be cleared at any time using

the (clc) command, and the contents of the current Figure Window can

be cleared at any time using the (clf) command. The variables in the

workspace can be cleared with the (clear) command.

If an M-file appears to be running for too long, it may contain an infinite

loop, and it will never terminate. In this case, the user can regain control

by typing (control-c).

There is also an auto-complete feature in MATLAB. If a user starts to

type a command and then presses the Tab key, a popup list of recently

typed commands and MATLAB functions that match the string will be

displayed (see Figure 12). The user can complete the command by

selecting one of the items from the list

Figure 12 If you type a partial command and then hit the Tab key, MATLAB

will pop up a window of suggested commands or functions that match the

string.

**The MATLAB Search Path

MATLAB has a search path that it uses to find M-files. MATLAB’s

M-files are organized in directories on your file system. Many of these

directories of M-files are provided along with MATLAB, and users

may add others. If a user enters a name at the MATLAB pompt, the

MATLAB interpreter attempts to find the name as follows:

1. It looks for the name as a variable. If it is a variable, MATLAB

displays the current contents of the variable.

2. It checks to see if the name is an M-file in the current directory. If it

is, MATLAB executes that function or command.

3. It checks to see if the name is an M-file in any directory in the search

path. If it is, MATLAB executes that function or command.

Note that MATLAB checks for variable names first, so if you define a

variable with the same name as a MATLAB function or command, that

function or command becomes inaccessible. This is a common mistake

made by novice users.

MATLAB includes a special command (which) to help you find out

just which version of a file is being executed and where it is located.

This can be useful in finding filename conflicts. The format of this

command is which function name, where function name is the name

of the function that you are trying to locate. For example, the cross-

product function cross.m can be located as follows:

Figure 13 command window which cross

The MATLAB search path can be examined and modified at any time

by selecting the “Set Path” tool from the Environment section of the

Home tab on the Toolstrip, or by typing pathtool in the Command

Window. The Path Tool is shown in Figure 14. It allows you to add,

delete, or change the order of directories in the path.

Figure 14 The Path Tool.

**Using MATLAB as a Calculator

In its simplest form, MATLAB can be used as a calculator to perform

mathematical calculations. The calculations to be performed are typed

directly into the Command Window, using the symbols +, -, *, /, and ^

for addition, subtraction, multiplication, division, and exponentiation,

respectively. After an expression is typed, the results of the expression

will be automatically calculated and displayed. If an equal sign is used

in the expression, then the result of the calculation is saved in the

variable name to the left of the equal sign.

For example, suppose that we would like to calculate the volume of a

cylinder of radius r and length l. The area of the circle at the base of the

cylinder is given by the equation

If the radius of the cylinder is 0.1 m and the length is 0.5 m, then the

volume of the cylinder can be found using the following MATLAB

statements :

Note that pi is predefined to be the value 3.141592 … .

When the first expression is typed, the area at the base of the cylinder

is calculated, stored in variable A, and displayed to the user. When the

second expression is typed, the volume of the cylinder is calculated,

stored in variable V, and displayed to the user. Note that the value

stored in A was saved by MATLAB and reused when we calculated V.

If an expression without an equal sign is typed into the Command

Window, MATLAB will evaluate it, store the result in a special

variable called ans, and display the result.

The value in ans can be used in later calculations, but be careful! Every

time a new expression without an equal sign is evaluated, the value

saved in ans will be overwritten.

The value stored in ans is now 171.4286, not 28.5714.

If you want to save a calculated value and reuse it later, be sure to assign

it to a specific name instead of using the default name ans.

** Note

The following summary lists all of the MATLAB special symbols,

commands, and functions described

**Note

Predefined MATLAB functions can also be used in the calculations. A

few common ones are given in Table. They can be combined with the

basic addition, subtraction, multiplication, division, and exponentiation

to evaluate mathematical equations.

**MATLAB Script Files

In the previous examples , we have executed MATLAB commands by

typing them directly into the Command Window and observing the

results in the Command Window. While this works, it is a very poor

way to perform complex calculations.

For example, suppose that an engineer wanted to make a series of

calculations where the results of some calculations depended on the

values derived from previous calculations. This could be done by

typing each equation in by hand, but there are three disadvantages to

this approach:

A MATLAB script file is a much better solution for performing series

of calculations and reusing those calculations later. A script file is a file

containing a series of MATLAB commands or equations, exactly as

they would have been typed into the Command Window.

Script files are also called M-files, because the filename has a file

extension of “.m”.

H.W:- Suppose that for a project we wanted to calculate the

following values:

1. The area of the circle of radius r

2. The circumference of a circle of radius r

3. The volume of a sphere of radius r

4. The surface area of a sphere of radius r

We will write a single script file that calculates all four values for a

given input radius, and we will test the script using a radius of 5 m.

**Variables and Arrays

The basic unit of data in any MATLAB program is the array. An array

is a collection of data values organized into rows and columns and

known by a single name. Individual data values within an array are

accessed by including the name of the array followed by subscripts in

parentheses that identify the row and column of the particular value.

see Figure 1.

Arrays can be classified as either vectors or matrix. The term “vector”

is usually used to describe an array with only one dimension, while the

term “matrix” is usually used to describe an array with two or more

dimensions. In this text, we will use the term “vector” when discussing

one-dimensional arrays, and the term “matrix” when discussing arrays

with two or more dimensions.

The size of an array is specified by the number of rows and the number

of columns in the array, with the number of rows mentioned first. The

total number of elements in the array will be the product of the number

of rows and the number of columns. For example, here are some arrays

and sizes.

Individual elements in an array are addressed by the array name

followed by the row and column of the particular element. If the array

is a row or column vector, then only one subscript is required. For

example, in the preceding arrays, a(2, 1) is 3 and c(2) is 2.

A MATLAB variable is a region of memory containing an array; the

array is known by a user-specified name. The contents of the array may

be used or modified at any time by including its name in an appropriate

MATLAB command. MATLAB variable names must begin with a

letter, followed by any combination of letters, numbers, and the

underscore (_) character. Only the first 63 characters are significant; if

more than 63 are used, the remaining characters will be ignored. If two

variables are declared with names that only differ in the 64th character,

MATLAB will treat them as the same variable. MATLAB will issue a

warning if it has to truncate a long variable name to 63 characters.

Figure 1: An array is a collection of data values organized into

rows and columns.

*Note: When writing a program, it is important to pick meaningful

names for the variables. Meaningful names make a program much

easier to read and to maintain. Names such as day, month, and year are

clear even to a person seeing a program for the first time. Since spaces

cannot be used in MATLAB variable names, underscore characters can

be substituted to create meaningful names. For example, exchange rate

might become (exchange_rate).

The most common types of MATLAB variables are double and char.

Variables of type double consist of scalars or arrays of 64-bit double-

precision floating-point numbers. They can hold real, imaginary, or

complex values. The real and imaginary components of each variable

can be positive or negative numbers

A variable of type double is automatically created whenever a

numerical value is assigned to a variable name. The numerical values

assigned to double variables can be real, imaginary, or complex. A real

value is just a number. For example, the following statement assigns

the real value 10.5 to the double variable var:

var = 10.5

An imaginary number is defined by appending the letter i or j to a

number.1 For example, 10i and –4j are both imaginary values. The

following statement assigns the imaginary value 4i to the double

variable var:

var = 4i

A complex value has both a real and an imaginary component. It is

created by adding a real and an imaginary number together. For

example, the following statement assigns the complex value 10 1 10i

to variable var:

var = 10 + 10i

Variables of type char consist of scalars or arrays of 16-bit values, each

representing a single character. Arrays of this type are called character

arrays. They are automatically created whenever a single character or

a string of characters is assigned to a variable name. For example, the

following statement creates a variable of type char whose name is

comment, and stores the specified string in it. After the statement is

executed, comment will be a 1 X 26 character array.

comment = 'This is a character string'

**Initializing Variables in Assignment Statements

Simple examples of initializing variables with assignment statements

include

var = 40i;

var2 = var / 5;

x = 1; y = 2;

array = [1 2 3 4];

The first example creates a scalar variable of type double and stores the

imaginary number 40i in it. The second example creates a scalar

variable and stores the result of the expression var/5 in it. The third

example creates a variable and stores a 4-element row vector in it. The

third example shows that multiple assignment statements can be placed

on a single line, provided that they are separated by semicolons.

 Note that if any of the variables had already existed when the

statements were executed, then their old contents would have been lost.

The last example shows that variables can also be initialized with arrays

of data. Such arrays are constructed using brackets ([]) and semicolons.

All of the elements of an array are listed in row order. In other words,

the values in each row are listed from left to right, with the topmost row

first and the bottommost row last. Individual values within a row are

separated by blank spaces or commas, and the rows themselves are

separated by semicolons or new lines. The following expressions are

all legal arrays that can be used to initialize a variable:

**Note: The number of elements in every row of an array must be the

same, and the number of elements in every column must be the same.

An expression such as

[1 2 3; 4 5];

is illegal because row 1 has three elements while row 2 has only two

elements.

**Note :The expressions used to initialize arrays can include algebraic operations

and all or portions of previously defined arrays. For example, the assignment

statements

**Initializing with Shortcut Expressions

It is easy to create small arrays by explicitly listing each term in the

array, but what happens when the array contains hundreds or even

thousands of elements? It is not practical to write out each element in

the array separately.

MATLAB provides a special shortcut notation for these circumstances

using the colon operator. The colon operator specifies a whole series of

values by specifying the first value in the series, the stepping increment,

and the last value in the series. The general form of a colon operator is

first:incr:last

where first is the first value in the series, incr is the stepping increment,

and last is the last value in the series.

For example, the expression 1:2:10 is a shortcut for a 1 3 5 row vector

containing the values 1, 3, 5, 7, and 9. The next value in the series

would be 11, which is greater than 10, so the series terminates at 9.

» x = 1:2:10

x =

1 3 5 7 9

**Initializing with Built-In Functions

Arrays can also be initialized using built-in MATLAB functions. For

example, the function zeros can be used to create an all-zero array of

any desired size. There are several forms of the zeros function. If the

function has a single scalar argument, it will produce a square array

using the single argument as both the number of rows and the number

of columns. If the function has two scalar arguments, the first argument

will be the number of rows, and the second argument will be the

number of columns. Since the size function returns two values

containing the number of rows and columns in an array, it can be

combined with the zeros function to generate an array of zeros that is

the same size as another array. Some examples using the zeros function

follow:

Similarly, the ones function can be used to generate arrays containing

all ones, and the eye function can be used to generate arrays containing

identity matrices, in which all on-diagonal elements are one, while all

off-diagonal elements are zero. The next Table. contains a list of

common MATLAB functions useful for initializing variables.

**Initializing Variables with Keyboard Input

It is also possible to prompt a user and initialize a variable with data

that he or she types directly at the keyboard. This option allows a script

file to prompt a user for input data values while it is executing. The

input function displays a prompt string in the Command Window and

then waits for the user to type in a response. For example, consider the

following statement:

my_val = input('Enter an input value:');

When this statement is executed, MATLAB prints out the string

'Enter an input value:', and then waits for the user to respond

**Multidimensional Arrays

As we have seen, MATLAB arrays can have one or more dimensions.

One-dimensional arrays can be visualized as a series of values laid out

in a row or column, with a single subscript used to select the individual

array elements. Such arrays are useful to describe data that is a function

of one independent variable, such as a series of temperature

measurements made at fixed intervals of time.

Some types of data are functions of more than one independent

variable. For example, we might wish to measure the temperature at

five different locations at four different times. In this case, our 20

measurements could logically be grouped into five different columns

of four measurements each, with a separate column for each location .

» size(c)

ans =

2 3 2

and the numel function would return the total number of elements in

the array:

» numel(c)

ans =

12

**Storing Multidimensional Arrays in Memory

MATLAB always allocates array elements in column major order.

That is, MATLAB allocates the first column in memory, then the

second, then the third, and so forth until all of the columns have been

allocated. Figure

**Accessing Multidimensional Arrays with One

Dimension

One of MATLAB’s property is that it will permit a user or programmer

to treat a multidimensional array as though it were a one-dimensional

array whose length is equal to the number of elements in the

multidimensional array. If a multidimensional array is addressed with

a single dimension, then the elements will be accessed in the order in

which they were allocated in memory.

» a = [1 2 3; 4 5 6; 7 8 9; 10 11 12]

a =

1 2 3

4 5 6

7 8 9

10 11 12
Then the value of a(5) will be 2.

**Subarrays

It is possible to select and use subsets of MATLAB arrays as though

they were separate arrays. To select a portion of an array, just include

a list of all of the elements to be selected in the parentheses after the

array name. For example, suppose array arr1 is defined as follows:

arr1 = [1.1 -2.2 3.3 -4.4 5.5];

**The end Function

**Note It is also possible to use subarrays to update only some of the

values in an array, as long as the shape (the number of rows and

columns) of the values being assigned matches the shape of the

subarray.

