Introduction to MATLAB

MATLAB (short for MATrix LABoratory) is a special-purpose
computer program optimized to perform engineering and scientific
calculations. It started life as a program designed to perform matrix
mathematics, but over the years it has grown into a flexible computing
system capable of solving essentially any technical problem.

The MATLAB program implements the MATLAB programming
language and provides a very extensive library of predefined functions
to make technical programming tasks easier and more efficient.

MATLAB is a huge program with an incredibly rich variety of
functions. Even the basic version of MATLAB without any toolkits is
much richer than other technical programming languages. There are
more than 1000 functions in the basic MATLAB product alone, and the
toolkits extend this capability with many more functions in various
specialties. Furthermore, these functions often solve very complex
problems (solving differential equations, inverting matrices, and so
forth) in a single step, saving large amounts of time.

**The MATLAB Desktop

When you start MATLAB, a special window called the MATLAB
desktop appears. The desktop is a window that contains other windows
showing MATLAB data, plus toolbars and a “Toolstrip” or “Ribbon
Bar” similar to that used by Windows 10 or Microsoft Office.

By default, most MATLAB tools are “docked” to the desktop, so that
they appear inside the desktop window. However, the user can choose
to “undock” any or all tools, making them appear in windows separate
from the desktop.

The default configuration of the MATLAB desktop is shown in Figure
1. It integrates many tools for managing files, variables, and
applications within the MATLAB environment.

Current Folder
Browser
shows a list
of the files in the
current directory

This control allow
a user to view

Launch the

or change the Help Browser
n::urreht directory

MATLADB
Editor

displays the

selected in the

Details Window
properties of a file

Current Folder Brow ser

MATLADB Command
WA T ooy

YWorkspace Browser
shows variables defined
in workspace

Figure 1 The default MATLAB desktop.

Tool

Description

Command Window
Toolstrip
Command History
Window

Document Window

Figure Window
Workspace Browser

Current Folder
Browser

Help Browser

Path Browser

A window where the user can type commands and see immediate
results, or where the user can execute scripts or functions

A strip across the top of the desktop containing icons to select func-
tions and tools, arranged in tabs and sections of related functions

A window that displays recently used commands, accessed by click-
ing the up arrow when typing in the Command Window

A window that displays MATLARB files and allows the user to edit or
debug them

A window that displays a MATLAB plot

A window that displays the names and values of variables stored in
the MATLAB workspace

A window that displays the names of files in the current directory. If
a file is selected in the Current Folder Browser, details about the file
will appear in the Details Window

A tool to get help for MATLAB functions, accessed by clicking the
“Help™ button on the Toolstrip

A tool to display the MATLAB search path, accessed by clicking the
“Set Path” button on the Home tab of the Toolstrip

Table 1: Tools and Windows Included

in the MATLAB Desktop

The functions of these tools are summarized in Table 1. We will

discuss them.

**The Command Window

The bottom center of the default MATLAB desktop contains the
Command Window. A user can enter interactive commands at the
command prompt (») in the Command Window, and they will be
executed on the spot.

As an example of a simple interactive calculation, suppose that you
wanted to calculate the area of a circle with a radius of 2.5 m. The
equation for this area of a circle is:

A=mxr?

where r is the radius of the circle and A is the area of the circle. This
equation can be evaluated in the MATLAB Command Window by

typing:

» area = pi * 2.5"2
area =

19.6350

where * is the multiplication symbol and ” is the exponential symbol.
MATLAB calculates the answer as soon as the Enter key is pressed,
and stores the answer in a variable (really a 1 X 1 array) called area.
The contents of the variable are displayed in the Command Window as
shown in Figure 2, and the variable can be used in further calculations.
(Note that p is predefined in MATLAB, so we can just use pi without
first declaring it to be 3.141592 ...).

4\ MATLAB R2014b
@ =l £ S R) {g @ Search Documentation PH
L El_i‘j - [P s &l Ha Liz, New Variable | Analyze Code H_E. | E @ Preferences @ (*% Community
g 1 Open Variable ~ {i> Run and Time (7 setPath 5 Request Support
New New Open |-/ Compare Import Save Simulink Layout Help
(Serpt v v Data Workspace ') ClearWorkspace v) Clear Commands v Library v ||| Paralel v v [Add-Ons v
. FILE VARIABLE CODE SIMULINK ENVIRONMENT RESOURCES
€« » C: » Program Files » MATLAB » R2014b » bin » MK
Current Folder [GM Command Window OF Workspace ®
Name =>> area=pi*2.5"2 Name Value
E m3iregistry . tH area 19.6350
@ registry area =
® util
@ | win64 19.6350
©l deploytool.bat
_| lcdata.xml Jx>> U . ¢
| ledata.xsd Serinpu
"I lcdata_utf8.xml
[“Imatlab.bat -
4 matlab exe v Result is added to the
petalls v workspace

Result of calculation

Select a file to view details

Figure 2 : The Command Window appears in the center of the
desktop. You enter commands and see responses here.

**The Toolstrip

The Toolstrip (see Figure 1.3) is a bar of tools that appears across the
top of the desktop. The controls on the Toolstrip are organized into
related categories of functions, first by tabs, and then by groups. For
example, the tabs visible in Figure 1.3 are “Home”, “Plots”, “Apps”,
“Editor”, and so forth. When one of the tabs is selected, a series of
controls grouped into sections is displayed. In the Home tab, the
sections are “File”, “Variable”, “Code”, and so forth. With practice, the
logical grouping of commands helps the user to quickly locate any
desired function. In addition, the upper-right corner of the Toolstrip
contains the Quick Access Toolbar, which is where you can customize
the interface and display the most commonly used commands and
functions at all times. To customize the functions displayed there, right-
click on the toolbar and select the Customize option from the popup
menu.

Tabs Quick Access Toolbar

Groups

Figure 3 : The Toolstrip

**The Command History Window

The Command History Window displays a list of the commands that a
user has previously entered in the Command Window. The list of
commands can extend back to previous executions of the program.
Commands remain in the list until they are deleted. To display the
Command History Window, press the up arrow key while typing in the
Command Window. To reexecute any command, simply double-click
it with the left mouse button. To delete one or more commands from
the Command History Window, select the commands and right-click
them with the mouse. A popup menu will be displayed that allows the
user to delete the items (see Figure 4).

1] fig1-01.docx
| fig1-01.png
1] fig1-02.docx
|| fig1-02.png
1] fig1-03.docx
& fig1-03.png

my UULK pPIY ‘

1] fig1-04.docx
| fig1-04.png =i ® [~
@_11191.05 docx = calc_area
| fig1-05a.png clc
|| fig1-05b.png calc_area
|| fig1-05c.png commandhistory
&l fin1-05d nna ks o
. W clc
calc_area Cut Cirl+X |
clc Copy Ctrl+C ‘
clear Delete Delete =|
Select a file to view details cle Undo Delete Ctrl+Z |
area = pi * 2.5%J v
Evaluate Selection F9
fe >> calc_area
cle Create Script
calc_areg| Create Live Script
Create Favorite

Set Error Indicator

Figure 4. The Command History Window, showing three
commands being deleted.

**The Document Window

A Document Window (also called an Edit/Debug Window) is used to
create new M-files or to modify existing ones. An Edit/Debug Window
is created automatically when you create a new M-file or open an
existing one. You can create a new M-file with the “New Script”
command from the “File” group on the Toolstrip (Figure 5a), or by
clicking the New icon and selecting Script from the popup menu
(Figure 5b). You can open an existing M-file file with the Open
command from the “File” section on the Toolstrip.

An Edit/Debug Window displaying a simple M-file called calc_area.m
Is shown in Figure 5. This file calculates the area of a circle given its
radius and displays the result. By default, the Edit Window is docked
to the desktop, as shown in Figure 5.

The Edit Window is essentially a programming text editor, with the
MATLAB language’s features highlighted in different colors.
Comments in an M-file file appear in green, variables and numbers
appear in black, complete character strings appear in magenta,
incomplete character strings appear in red, and language keywords
appear in blue.

After an M-file is saved, it may be executed by typing its name in the
Command Window. For the M-file in Figure 5, the results are:

» calc_area
area = 19.635
The Edit Window also doubles as a debugger.

» C: » Data » boock » matlab

® | [A Edit

Current Folder
D Name =

(a)

4\ MATLAB R2014b

HOME PLOTS APPS
T
“hmymv i GoTo v Comment % 43 7J
AT, '

Breakpoints.

HOME

=

[

<= = @ 3\

PLOTS

¥ [Find Files

Script Ctrl=MN

‘\r

Current Folder
D Mame =
~%captl.dog
~%chap1.do
~%ig1-05.do
calc_area.m
capt1.docx
@ chap1.docx
[&] dock.png

fig1-01.do

Live Script
Live Function
Class

Figure

App >
Build MATLAB app

T T O T

@ D@@ms«m@

Rin Runand | Advance Runand

L,

- M @ b @) L

)

$EdEH 0 mat
Current Folder OM ¥ Editor n ® X Workspace i
Name « calc_area.m + Name « Value
c 1 % this file calculates the area of a circle; B e 195350
. [ﬁmdms 2.5000
2- radius=2.5;
3- area=pi* radius"2;
4- disp (‘area=");
5- disp (area);
Command Window ®
19.6350 "
>> calc_area
area=
19.6350
i a.m (A fx_ >> v
script Ln 5 Col 3

(c)

Figure 5: (a) Creating a new M-file with the “New Script”
command. (b) Creating a new M-file with the “New >> Script”
selection from the Toolbar. (c) The MATLAB Editor, docked to

the MATLAB desktop. (See color insert.)

**Figure Windows

A Figure Window is used to display MATLAB graphics. A figure can
be a two- or three-dimensional plot of data, an image, or a GUI. A
simple script file that calculates and plots the function sin x is as
follows:

% sin_x.m: This M-file calculates and plots the function sin(x) for
0<=x<=6.

x=0:0.1:6

y = sin(x)

plot(x,y)

The resulting plot is shown in Figure 6.

File Edit View Insert Tools Desktop Window Help

DO dS | R RRARMWIBDELL- || 0E | am

Figure 6 : MATLAB plot of sin x versus X.

**Docking and Undocking Windows

MATLAB windows such as the Command Window, the
Edit/Debugging Window, and Figure Windows can either be docked to
the desktop, or they can be undocked. When a window is docked, it
appears as a pane within the MATLAB desktop. When it is undocked,
it appears as an independent window on the computer screen separate
from the desktop. When a window is docked to the desktop, it can be
undocked by selecting the small down arrow in the upper-right corner
and selecting the “Undock” option from the popup menu (see Figure
7a). When a window is an independent window, it can be docked to the
desktop by selecting the small down arrow in the upper-right corner
and selecting the “Dock” option from the popup menu (see Figure 7b).

TS —— > |
g | calc_aream = | 4 | Show Code Anzlyzer Report
1 ® IThis m-file calculates the area of a cixcle, Show Dependency Report
z = &nd AisSplays ©hne result.
3 — radius — 2.5; “+* Minimize
4 — arcea = p1L ® . 2,522 Moo Cirl+Shi
S — stxing — ["Thce arca of cthe circle is ' numZstr (axca)ls < 7 Undock Ctri+Shift-U
6= disp {string) > 7 Undock calc_ares.m =1
i X Close

(a)

> Do(li Editor Ceri+Shift+D
2 Und calc_area.m

Show Code Analyzer Report
Show Dependency Report

= | calcaream] o 1

= This m—file calculates the arxea of a circle,
% and displavs th= result.
== radius = 2.5;
== area = pi * 2.57%2:>
5 == string = ["The area of the circle is ' num2scriarea)l:

= disp(string) :

(b)

Figure 7 (a) Selecting the “Undock” option from the menu displayed after clicking
the small down arrow. (b) Selecting the “Dock” option

**The MATLAB Workspace
A statement like
z=10

creates a variable named z, stores the value 10 in it, and saves it in a
part of computer memory known as the workspace. A workspace is the
collection of all the variables and arrays that can be used by MATLAB
when a particular command, M-file, or function is executing. All
commands executed in the Command Window (and all script files
executed from the Command Window) share a common workspace, so
they can all share variables. As we will see later, MATLAB functions
differ from script files in that each function has its own separate
workspace. A list of the variables and arrays in the current workspace
can be generated with the who’s command. See figure 8.

Array Editor allows the Workspace Browser
user to edit any variable shows a list of the
or array selected in the variables defined
Workspace Browser in the workspace

WARIRHLE

[i oo
= L1l L < Wanspose

] m’fn Delvele il dort -
EDIT ' -

matlab » Be b chapl o
(=

| Editor - calc_ar=a.m space

X

H he = Walue
o 1x61 double o drea 19.5350
s e
1 2 T 3 4 5 6 7 R == LR .

[Hring The arza ofthe cird...
0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0~ X 67 double

H r Ix57 doutle

I

|~ | ;A Wk

g gy ey pry
TRIEE Y =
1

Figure 8 The Workspace Browser and Array Editor. The Array Editor is
invoked by double-clicking a variable in the Workspace Browser. It allows

**The Current Folder Browser

The Current Folder Browser is displayed on the upper-left side of the
desktop. It shows all the files in the currently selected folder, and allows
the user to edit or execute any desired file. You can double-click on any
M-file to open it in the MATLAB editor, or you can right-click it and
select “Run” to execute it. The Current Folder Browser is shown in
Figure 9. A toolbar above the browser is used to select the current folder

to display.

HOME

PUBLISH

W = (= ﬂ! » C: » Data » book *» matlab » B6e *» chapl

Current Folder
1 Name =

* calc_area.m
!} capt1.docx
El] chap1.docx
=] fig1-01.docx
|§] fig1-01.png
=] fig1-02. docx
[&] fig1-02.png
=] ig1-03.docx
|&] fig1-03.png
=] fig1-04.docx
|E] fig1-04.png
®1] fig1-05.docx
|&] fig1-05a.png
|| fig1-05b.png
& fig1-05c.png
|l fig1-05d.png
®) fig1-06.docx
& fig1-06.png
=] fig1-07 docx

[&] fig1-07a.png
M, Im'l eyl _NT R omnm

O

\

]

disp (stying)

-

Selecting the
current folder

\

Current Folder
Browser

/_lu Command Window

Figure 9 The Current Folder Browser.

** Getting Help

There are three ways to get help in MATLAB. The preferred method is
to use the Help Browser. The Help Browser can be started by selecting
the icon from the Toolstrip

or by typing doc or helpwin in the Command Window.

The Help Browser is shown in Figure 10.

| MATLAE Fie Helge Default Topecs AR

¢ DOCumantiton Mo
CMATLAB

Goting Statied with MATLAR

Language Fundamentals
Entening Commands
Mavices and Alrays

Op: S E y Operas

Data Types
Mameratos
Graphecs
Data mpoct and Analyus
Programemng SO00 #0000 Fancioms
Agp Ruiding
Advanced Sofwale Develooment
Deshiop Ervironment

Suppoed Mardware

Esampies
Funcsons
Release Nodes

POF Documeniaton

Uy Confidential Preveloase Documentation — Subject 1o Nondisclowure Agreement]

Language Fundamentals
Syttax, openlors, data types anay ndening and marspuiation
MATLAS is an abbreviation for “matsix laboratory ” YWhie cther programening langueges usually work with numbers one of & trme, MATLAS® cpecates

on whole matrices and arrays Language fundamentals include Basic operations, such as Croating vatiables. aray indexing, arthmetic, and data
types

Entering Commands
Buld and run MATLAS statements

Matrices and Arrays
Array Creation, combining. reshaping. reaTanging. and Indexing

Opetators and Elementary Operations
Arithmetic, relational, and logical operators. special characters, rounding set functions

Data Types
Numedc amays. characters and strings. tables, structures, and cell amays; data type conversion

WWan this topic helphul? | Yea No |

Figure 10 The Help Browser.

A user can get help by browsing the MATLAB documentation.

There are also two command-line-oriented ways to get help. The first
way is to type help or help followed by a function name in the
Command Window. If you just type help, MATLAB will display a list
of possible help topics in the Command Window. If a specific function
or a toolbox name is included, help will be provided for that particular
function or toolbox.

The second way to get help is the lookfor command. The lookfor
command differs from the help command in that the help command
searches for an exact function name match, while the lookfor command
searches the quick summary information in each function for a match.
This makes lookfor slower than help, but it improves the chances of
getting back useful information. For example, suppose that you were
looking for a function to take the inverse of a matrix. Since MATLAB
does not have a function named inverse, the command “help inverse”
will produce nothing. On the other hand, the command “lookfor
inverse” will produce the following results (show in figure 11)

Command Window

>> |ookfor inverse

ifft - Inverse discrete Fourier transform.

ifft2 - Two-dimensional inverse discrete Fourier transform.
ifftn - N-dimensional inverse discrete Fourier transform.
ifitshift - Inverse FFT shift.

acos - Inverse cosine, result in radians.

acosd - Inverse cosine, result in degrees.

acosh - Inverse hyperbolic cosine.

acot - Inverse cotangent, result in radian.

acotd - Inverse cotangent, result in degrees.

acoth - Inverse hyperbolic cotangent.

acsc - Inverse cosecant, result in radian.

acscd - Inverse cosecant, result in degrees.

acsch - Inverse hyperbolic cosecant.

asec - Inverse secant, result in radians.

asecd - Inverse secant, result in degrees.

asech - Inverse hyperbolic secant.

asin - Inverse sine, result in radians.

asind - Inverse sine, result in degrees.

asinh - Inverse hyperbolic sine.

atan - Inverse tangent, result in radians.

atan2 - Four quadrant inverse tangent.

atan2d - Four quadrant inverse tangent, result in degrees.
atand - Inverse tangent, result in degrees.

atanh - Inverse hyperbolic tangent.

invhilb - Inverse Hilbert matrix.

Ipermute - Inverse permute array dimensions.

nv - Matrix inverse.

pinv - Pseudoinverse.

<

Figure 11 lookfor inverse list.

o | JE >> cal

~

** A Few Important Commands

The contents of the Command Window can be cleared at any time using
the (clc) command, and the contents of the current Figure Window can
be cleared at any time using the (clIf) command. The variables in the
workspace can be cleared with the (clear) command.

If an M-file appears to be running for too long, it may contain an infinite
loop, and it will never terminate. In this case, the user can regain control
by typing (control-c).

There is also an auto-complete feature in MATLAB. If a user starts to
type a command and then presses the Tab key, a popup list of recently
typed commands and MATLAB functions that match the string will be
displayed (see Figure 12). The user can complete the command by

selecting one of the items from the list

~
calc area

calc_binomial_dist

calc_prob

caldays

calendar
calendarDuragion

callallCptimOqtputFcns

Commond | (AREERETR

List of possible commands to
complete the string

Figure 12 If you type a partial command and then hit the Tab key, MATLAB
will pop up a window of suggested commands or functions that match the
string.

**The MATLAB Search Path

MATLAB has a search path that it uses to find M-files. MATLAB’s
M-files are organized in directories on your file system. Many of these
directories of M-files are provided along with MATLAB, and users
may add others. If a user enters a name at the MATLAB pompt, the
MATLAB interpreter attempts to find the name as follows:

1. It looks for the name as a variable. If it is a variable, MATLAB
displays the current contents of the variable.

2. It checks to see if the name is an M-file in the current directory. If it
Is, MATLAB executes that function or command.

3. It checks to see if the name is an M-file in any directory in the search
path. If it is, MATLAB executes that function or command.

Note that MATLAB checks for variable names first, so if you define a
variable with the same name as a MATLAB function or command, that
function or command becomes inaccessible. This is a common mistake
made by novice users.

MATLAB includes a special command (which) to help you find out
just which version of a file is being executed and where it is located.
This can be useful in finding filename conflicts. The format of this
command is which function name, where function name is the name
of the function that you are trying to locate. For example, the cross-
product function cross.m can be located as follows:

Command Window ®

>> which cross
C:\Program Files\MATLAB\R2014b\toolbox\matlab\specfun\cross.m

fi >>|

Figure 13 command window which cross

The MATLAB search path can be examined and modified at any time
by selecting the “Set Path” tool from the Environment section of the
Home tab on the Toolstrip, or by typing pathtool in the Command
Window. The Path Tool is shown in Figure 14. It allows you to add,
delete, or change the order of directories in the path.

4\ Set path = 0O X

All changes take effect immediately.
MATLAB search path:

B C:\Users\Cloud\Documents\MATLAB

Add with Subfolders.. C:\Program Files\MATLAB\R2014b\toolbox\matlab\testframework
C:\Program FilessMATLAB\R2014b\toolbox\matlabxl\matlabxl
C:\Program Files\MATLAB\R2014b\toolbox\matlabxl\matlabxldemos
C:\Program Files\MATLAB\R2014b\toolbox\matlab\demos

Move to Top C:\Program FilessMATLAB\R2014b\toolbox\matlab\graph2d

C:\Program Files\MATLAB\R2014b\toolbox\matlab\graph3d

C:\Program Files\MATLAB\R2014b\toolbox\matlab\graphics

C:\Program FilessMATLAB\R2014b\toolbox\matlab\graphics\obsolete

Mave to Bottom C:\Program Files\MATLAB\R2014b\toolbox\matlab\plottools

C:\Program FilessMATLAB\R2014b\toolbox\matlab\scribe

C:\Program FilessMATLAB\R2014b\toolbox\matlab\scribe\obsolete

C:\Program FilessMATLAB\R2014b\toolbox\matlab\specgraph v

Remove < >

| AddFolder. |

Move Up

Move Down

Save Close Revert Default Help

Figure 14 The Path Tool.

**Using MATLAB as a Calculator

In its simplest form, MATLAB can be used as a calculator to perform
mathematical calculations. The calculations to be performed are typed
directly into the Command Window, using the symbols +, -, *, /, and
for addition, subtraction, multiplication, division, and exponentiation,
respectively. After an expression is typed, the results of the expression
will be automatically calculated and displayed. If an equal sign is used
in the expression, then the result of the calculation is saved in the
variable name to the left of the equal sign.

For example, suppose that we would like to calculate the volume of a
cylinder of radius r and length I. The area of the circle at the base of the
cylinder is given by the equation
A=
and the total volume of the cylinder will be

V=AI

If the radius of the cylinder is 0.1 m and the length is 0.5 m, then the
volume of the cylinder can be found using the following MATLAB
statements :

Value

Ha 0.0314
Hv 0.0157

Note that pi is predefined to be the value 3.141592

When the first expression is typed, the area at the base of the cylinder
is calculated, stored in variable A, and displayed to the user. When the
second expression is typed, the volume of the cylinder is calculated,
stored in variable V, and displayed to the user. Note that the value
stored in A was saved by MATLAB and reused when we calculated V.

If an expression without an equal sign is typed into the Command
Window, MATLAB will evaluate it, store the result in a special
variable called ans, and display the result.

>> 200/7

ans =

28.5714

The value in ans can be used in later calculations, but be careful! Every
time a new expression without an equal sign is evaluated, the value
saved in ans will be overwritten.

>=> 200/7

ans =

28.5714
>> ans * 6
ans =

171.4286

The value stored in ans is now 171.4286, not 28.5714.

If you want to save a calculated value and reuse it later, be sure to assign
it to a specific name instead of using the default name ans.

** Note

The following summary lists all of the MATLAB special symbols,
commands, and functions described

Special Symbols

+ Addition

- Subtraction

* Multiplication

/ Division

- Exponentiation
**Note

Predefined MATLAB functions can also be used in the calculations. A
few common ones are given in Table. They can be combined with the
basic addition, subtraction, multiplication, division, and exponentiation
to evaluate mathematical equations.

Function Description

Mathematical Functions

abs (x) Calculates the absolute value lxl.

acos (x) Calculates cos™'x (results in radians).
asin(x) Calculates sin~'x (results in radians).

atan (x) Calculates tan™lx (results in radians).

cos (x) Calculates cos x, with x in radians.

1ogl0 (x) Calculates the logarithm to the base 10 log,x.
sin (x) Calculates sin x, with x in radians.

sgrt (x) Calculates the square root of x.

tan (x) Calculates tan x, with x in radians.

For example, from basic trigonometry we know that the square root of the sine
of an angle squared plus the cosine of the angle squared will always add up to I:

V(sin 0)? + (cos 0)* = 1

T
We can evaluate the expression V (sin 0)> + (cos)* for the case of § = ?

» sqrt((sin(pi/2))”"2 + (cos(pi/2))"2)
ans =
1

As expected, the result is 1.0.

*MATLAB Script Files

In the previous examples , we have executed MATLAB commands by
typing them directly into the Command Window and observing the
results in the Command Window. While this works, it is a very poor
way to perform complex calculations.

For example, suppose that an engineer wanted to make a series of
calculations where the results of some calculations depended on the
values derived from previous calculations. This could be done by
typing each equation in by hand, but there are three disadvantages to
this approach:

A MATLAB script file is a much better solution for performing series
of calculations and reusing those calculations later. A script file is a file
containing a series of MATLAB commands or equations, exactly as
they would have been typed into the Command Window.

Script files are also called M-files, because the filename has a file
extension of “.m”.

H.W:- Suppose that for a project we wanted to calculate the
following values:

1. The area of the circle of radius r

2. The circumference of a circle of radius r
3. The volume of a sphere of radius r

4. The surface area of a sphere of radius r

We will write a single script file that calculates all four values for a
given input radius, and we will test the script using a radius of 5 m.

**Variables and Arrays

The basic unit of data in any MATLAB program is the array. An array
Is a collection of data values organized into rows and columns and
known by a single name. Individual data values within an array are
accessed by including the name of the array followed by subscripts in
parentheses that identify the row and column of the particular value.
see Figure 1.

Arrays can be classified as either vectors or matrix. The term “vector”
is usually used to describe an array with only one dimension, while the
term “matrix” is usually used to describe an array with two or more
dimensions. In this text, we will use the term “vector” when discussing
one-dimensional arrays, and the term “matrix” when discussing arrays
with two or more dimensions.

The size of an array is specified by the number of rows and the number
of columns in the array, with the number of rows mentioned first. The
total number of elements in the array will be the product of the number
of rows and the number of columns. For example, here are some arrays
and sizes.

Array Size
1 2 This is a 3 X 2 matrix containing
a=|3 6 elements.
5
b=[1 2 3 4] Thisisa 1 X 4 array containing 4 elements; it is

known as a row vector.

1
o=l 2 This isa 3 % 1 array containing 3 elements; it is
known as a column vector.
3

Row | ——J»

ROW 2 =

Row 3 ————J»

ROW 4 e

Col 1 Col 2 Col 4 Col 5

Col 3
Array arr

Figure 1: An array is a collection of data values organized into
rows and columns.

Individual elements in an array are addressed by the array name
followed by the row and column of the particular element. If the array
IS a row or column vector, then only one subscript is required. For
example, in the preceding arrays, a(2, 1) is 3 and c(2) is 2.

A MATLAB variable is a region of memory containing an array; the
array is known by a user-specified name. The contents of the array may
be used or modified at any time by including its name in an appropriate
MATLAB command. MATLAB variable names must begin with a
letter, followed by any combination of letters, numbers, and the
underscore () character. Only the first 63 characters are significant; if
more than 63 are used, the remaining characters will be ignored. If two
variables are declared with names that only differ in the 64th character,
MATLAB will treat them as the same variable. MATLAB will issue a
warning if it has to truncate a long variable name to 63 characters.

*Note: When writing a program, it is important to pick meaningful
names for the variables. Meaningful names make a program much
easier to read and to maintain. Names such as day, month, and year are
clear even to a person seeing a program for the first time. Since spaces
cannot be used in MATLAB variable names, underscore characters can
be substituted to create meaningful names. For example, exchange rate
might become (exchange_rate).

The most common types of MATLAB variables are double and char.
Variables of type double consist of scalars or arrays of 64-bit double-
precision floating-point numbers. They can hold real, imaginary, or
complex values. The real and imaginary components of each variable
can be positive or negative numbers

A variable of type double is automatically created whenever a
numerical value is assigned to a variable name. The numerical values
assigned to double variables can be real, imaginary, or complex. A real
value is just a number. For example, the following statement assigns
the real value 10.5 to the double variable var:

var = 10.5

An imaginary number is defined by appending the letter i or j to a
number.1 For example, 10i and —4j are both imaginary values. The
following statement assigns the imaginary value 4i to the double
variable var:

var = 4i

A complex value has both a real and an imaginary component. It is
created by adding a real and an imaginary number together. For
example, the following statement assigns the complex value 10 1 10i
to variable var:

var =10 + 10i

Variables of type char consist of scalars or arrays of 16-bit values, each
representing a single character. Arrays of this type are called character
arrays. They are automatically created whenever a single character or
a string of characters is assigned to a variable name. For example, the
following statement creates a variable of type char whose name is
comment, and stores the specified string in it. After the statement is
executed, comment will be a 1 X 26 character array.

comment = 'This is a character string'

**Initializing Variables in Assignment Statements

Simple examples of initializing variables with assignment statements
include

var = 40i;

var2 =var/ 5;
x=1y=2
array = [12 3 4];

The first example creates a scalar variable of type double and stores the
imaginary number 40i in it. The second example creates a scalar
variable and stores the result of the expression var/5 in it. The third
example creates a variable and stores a 4-element row vector in it. The
third example shows that multiple assignment statements can be placed
on a single line, provided that they are separated by semicolons.

Note that if any of the variables had already existed when the
statements were executed, then their old contents would have been lost.

The last example shows that variables can also be initialized with arrays
of data. Such arrays are constructed using brackets ([]) and semicolons.
All of the elements of an array are listed in row order. In other words,
the values in each row are listed from left to right, with the topmost row
first and the bottommost row last. Individual values within a row are
separated by blank spaces or commas, and the rows themselves are

separated by semicolons or new lines. The following expressions are
all legal arrays that can be used to initialize a variable:

[3.4] This expression creates a 1 X 1 array (a scalar) containing the value 3.4.
The brackets are not required in this case.
(1.0 2.0 3.0] This expression creates a 1 X 3 array containing the row vector
[1 2 3]
1
[1.0; 2.0; 3.0] This expression creates a 3 X 1 array containing the column vector | 2 |.
‘%_
. . . o2 3]
(1, 2, 3; 4, 5, 6] This expression creates a 2 X 3 array containing the matrix _—
. . . o2 3
(1, 2, 3 This expression creates a 2 X 3 array containing the matrix s 6l
The end of the first line terminates the first row.
4, 5, 6]
[] This expression creates an empty array, which contains no rows and no

columns. (Note that this is not the same as an array containing zeros.)

**Note: The number of elements in every row of an array must be the
same, and the number of elements in every column must be the same.
An expression such as

[123:45];

is illegal because row 1 has three elements while row 2 has only two
elements.

**Note : The expressions used to initialize arrays can include algebraic operations
and all or portions of previously defined arrays. For example, the assignment
statements

a = [0 147];
b = [a(2) 7 a];

will define an arraya = [0 8] andanarrayb=1[8 7 0 8].

Also, not all of the elements in an array must be defined when it is created. If a
specific array element is defined and one or more of the elements before it are not,
then the earlier elements will automatically be created and initialized to zero. For
example, if ¢ is not previously defined, the statement

c(2,3) = 5;
: : 0 0 0] .. .
will produce the matrix ¢ = L) 0 5]. Similarly, an array can be extended by

specifying a value for an element beyond the currently defined size. For example,
suppose thatarrayd = [1 2].Then the statement

d(4) = 4;
will produce the arrayd = [1 2 0 4].

**nitializing with Shortcut Expressions

It is easy to create small arrays by explicitly listing each term in the
array, but what happens when the array contains hundreds or even
thousands of elements? It is not practical to write out each element in
the array separately.

MATLAB provides a special shortcut notation for these circumstances
using the colon operator. The colon operator specifies a whole series of
values by specifying the first value in the series, the stepping increment,
and the last value in the series. The general form of a colon operator is

first:incr:last

where first is the first value in the series, incr is the stepping increment,
and last is the last value in the series.

For example, the expression 1:2:10 is a shortcut for a 1 3 5 row vector
containing the values 1, 3, 5, 7, and 9. The next value in the series
would be 11, which is greater than 10, so the series terminates at 9.

» X =1:2:10
X:
13579

Shortcut expressions can be combined with the transpose operator (') to ini-
tialize column vectors and more complex matrices. The transpose operator swaps the
row and columns of any array that it is applied to. Thus the expression|

£f = [1:4]";

generates a 4-element row vector [2 3 4] and then transposes it into the

1
2 .. .
4-element column vector £ = 5 | Similarly, the expressions
-
g = 1:4;
h = [g' g'l;
1 1
) . 2 2
will produce the matrix h = s 3
4 4

**Initializing with Built-In Functions

Arrays can also be initialized using built-in MATLAB functions. For
example, the function zeros can be used to create an all-zero array of
any desired size. There are several forms of the zeros function. If the
function has a single scalar argument, it will produce a square array
using the single argument as both the number of rows and the number
of columns. If the function has two scalar arguments, the first argument
will be the number of rows, and the second argument will be the
number of columns. Since the size function returns two values
containing the number of rows and columns in an array, it can be
combined with the zeros function to generate an array of zeros that is
the same size as another array. Some examples using the zeros function
follow:

= zeros (2) ;

zeros (2, 3)
[1 2; 3 4]
= zeros (size(c)) ;

hal] =&

OTRNO N o I
Il

These statements generate the following arrays:

0O O O O 0
a = b =

O O O O 0

1 2 O O
C = d =

3 4 O O

Similarly, the ones function can be used to generate arrays containing
all ones, and the eye function can be used to generate arrays containing
identity matrices, in which all on-diagonal elements are one, while all
off-diagonal elements are zero. The next Table. contains a list of
common MATLAB functions useful for initializing variables.

Function Purpose

zeros (n) Generates ann x n matrix of zeros.

zeros (m,n) Generates anm x n matrix of zeros.

zeros (size (arr)) Generates a matrix of zeros of the same size as arr.

ones (n) Generates ann x n matrix of ones.

ones (m,n) Generates anm x n mairix of ones.

ones (size(arr)) Generates a matrix of ones of the same size as arr.

eye (n) Generates ann x n identity matrix.

eye (m,n) Generates anm x n identity matrix.

length (arr) Returns the length of a vector, or the longest dimension of a two-dimensional
array.

numel (arr) Returns the total number of elements in an array, which is the product of the

number of rows times the number of columns.

size(arr) Returns two values specifying the number of rows and columns in arr.

**Initializing Variables with Keyboard Input

It is also possible to prompt a user and initialize a variable with data
that he or she types directly at the keyboard. This option allows a script
file to prompt a user for input data values while it is executing. The
input function displays a prompt string in the Command Window and
then waits for the user to type in a response. For example, consider the
following statement:

my_val = input('Enter an input value:");

When this statement is executed, MATLAB prints out the string
'Enter an input value:', and then waits for the user to respond

[f the input function includes the character 's' as a second argument,
then the input data is returned to the user as a character array. Thus, the statement

» inl = input('Enter data: ');
Enter data: 1.23

stores the numeric value 1.23 into inl, while the statement

» in2 = input('Enter data: ','s');
Enter data: 1.23

stores the character array '1.23'inu)in2w

**Multidimensional Arrays

As we have seen, MATLAB arrays can have one or more dimensions.
One-dimensional arrays can be visualized as a series of values laid out
in a row or column, with a single subscript used to select the individual
array elements. Such arrays are useful to describe data that is a function
of one independent variable, such as a series of temperature
measurements made at fixed intervals of time.

Some types of data are functions of more than one independent
variable. For example, we might wish to measure the temperature at
five different locations at four different times. In this case, our 20
measurements could logically be grouped into five different columns
of four measurements each, with a separate column for each location .

For example, the following two statements create a 2 X 3 X 2 array c:

» c(:,:,1)=[1 2 3; 4 5 6[];
» c(:,:,2)=[7 8 9; 10 11 12];
» whos ¢

Name Size Bytes Class Attributes
C 2xX3x2 96 double

This array contains 12 elements (2 X 3 X 2). Its contents can be displayed just like
any other array.

» C
c(:,:,1) =
1 2 3
4 5 6
c(:,:,2) =
7 8 S

Note that the size function of this array would return three values representing
lengths of the array in each dimension:

» Size(c)
ans =
232

and the numel function would return the total number of elements in
the array:

» numel(c)
ans =
12

**Storing Multidimensional Arrays in Memory

MATLAB always allocates array elements in column major order.
That is, MATLAB allocates the first column in memory, then the
second, then the third, and so forth until all of the columns have been
allocated. Figure

1 2 3
4 5 6
| 1 (1, 1)
7 8 9
- 2 (2, 1)
o | 11| 12 [R
10 a(4,1)
(a) 2 5 (1, 2)
> 58 (2, 2)
Arrangement
in Computer 8 a(3,2)
Memory
) 11 1 (4, 2)
3 a(l, 3)
6 a(2,3)
9 al(3,3)
12 a4, 3)

**Accessing Multidimensional Arrays with One
Dimension

One of MATLAB’s property is that it will permit a user or programmer
to treat a multidimensional array as though it were a one-dimensional
array whose length is equal to the number of elements in the
multidimensional array. If a multidimensional array is addressed with
a single dimension, then the elements will be accessed in the order in
which they were allocated in memory.

»a=[123;456;7809;1011 12]
a=

123

456

789

1011 12

Then the value of a(5) will be 2.

**Subarrays

It is possible to select and use subsets of MATLAB arrays as though
they were separate arrays. To select a portion of an array, just include
a list of all of the elements to be selected in the parentheses after the
array name. For example, suppose array arrl is defined as follows:

arrl =11 -2.2 3.3 -44 55];

Then arr1(3) isjust 3, arrl1([1 4]) isthearray [1.1 -4.4],and arrl
(1:2:5) isthearray [1.1 3.3 5.5].

For a two-dimensional array, a colon can be used in a subscript to select all of
the values of that subscript. For example, suppose

arr2 = [1 2 3; -2 -3 -4; 3 4 5];

1 2 3
This statement would create an array arr2 containing the values [=2 =3 —4
3 4 5

With this definition, the subarray arr2 (1, :) wouldbe [1 2 3], and the subarray

1 3
arr2(:,1:2:3) wouldbe [—2 —4
3 5

**The end Function

MATLAB includes a special function named end that is very useful for creating array
subscripts. When used in an array subscript, end refurns the highest value taken on
by that subscript. For example, suppose that array arr3 is defined as follows:

arr3d = [1 23 45 6 7 8];

Then arr3 (5:end) would be the array [5 6 7 8],and array (end) would
be the value 8.

The value returned by end is always the highest value of a given subscript. If
end appears in different subscripts, it can return different values within the same
expression. For example, suppose that the 3 X 4 array arr4 is defined as follows:

arrd = [1 2 3 4; 56 7 8; 9 10 11 12];

6 7 8
Then the expression arr4 (2:end, 2 :end) would return the array L 0 11 1 2].

**Note It is also possible to use subarrays to update only some of the
values in an array, as long as the shape (the number of rows and
columns) of the values being assigned matches the shape of the
subarray.

» arrd = [1 2 3 4; 56 7 8; 9 10 11 12]
arr4
4

6 7 8
9 10 11 12

g =
(NS
w

Then the following assignment statement is legal, since the expressions on both sides
of the equal sign have the same shape (2 X 2):

» arr4(1l:2,[1 4]) = [20 21; 22 23]
arrd =
20 2 3 21
22 6 7 23
9 10 11 12

arrd = [1234; 5678; 91011 12];
Then the following expression assigns the value 1 to four elements of the array.

» arrd (1:2,1:2) =1

arrd =
1 1 L
1 1] 8
9 10 11 12

