
8

Techniques of Integration

Over the next few sections we examine some techniques that are frequently successful when

seeking antiderivatives of functions. Sometimes this is a simple problem, since it will be

apparent that the function you wish to integrate is a derivative in some straightforward

way. For example, faced with
∫

x10 dx

we realize immediately that the derivative of x11 will supply an x10: (x11)′ = 11x10. We

don’t want the “11”, but constants are easy to alter, because differentiation “ignores” them

in certain circumstances, so

d

dx

1

11
x11 =

1

11
11x10 = x10.

From our knowledge of derivatives, we can immediately write down a number of an-

tiderivatives. Here is a list of those most often used:

∫

xn dx =
xn+1

n+ 1
+ C, if n 6= −1

∫

x−1 dx = ln |x|+ C

∫

ex dx = ex + C

∫

sinx dx = − cosx+ C
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∫

cosx dx = sinx+ C

∫

sec2 x dx = tanx+ C

∫

secx tanx dx = sec x+ C

∫

1

1 + x2
dx = arctanx+ C

∫

1√
1− x2

dx = arcsinx+ C

8.1 Substitution

Needless to say, most problems we encounter will not be so simple. Here’s a slightly more

complicated example: find
∫

2x cos(x2) dx.

This is not a “simple” derivative, but a little thought reveals that it must have come from

an application of the chain rule. Multiplied on the “outside” is 2x, which is the derivative

of the “inside” function x2. Checking:

d

dx
sin(x2) = cos(x2)

d

dx
x2 = 2x cos(x2),

so
∫

2x cos(x2) dx = sin(x2) + C.

Even when the chain rule has “produced” a certain derivative, it is not always easy to

see. Consider this problem:
∫

x3
√

1− x2 dx.

There are two factors in this expression, x3 and
√

1− x2, but it is not apparent that the

chain rule is involved. Some clever rearrangement reveals that it is:

∫

x3
√

1− x2 dx =

∫

(−2x)

(

−1

2

)

(1− (1− x2))
√

1− x2 dx.

This looks messy, but we do now have something that looks like the result of the chain

rule: the function 1 − x2 has been substituted into −(1/2)(1 − x)
√
x, and the derivative
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of 1− x2, −2x, multiplied on the outside. If we can find a function F (x) whose derivative

is −(1/2)(1− x)
√
x we’ll be done, since then

d

dx
F (1− x2) = −2xF ′(1− x2) = (−2x)

(

−1

2

)

(1− (1− x2))
√

1− x2

= x3
√

1− x2

But this isn’t hard:
∫

−1

2
(1− x)

√
xdx =

∫

−1

2
(x1/2 − x3/2) dx (8.1.1)

= −1

2

(

2

3
x3/2 − 2

5
x5/2

)

+ C

=

(

1

5
x− 1

3

)

x3/2 + C.

So finally we have

∫

x3
√

1− x2 dx =

(

1

5
(1− x2)− 1

3

)

(1− x2)3/2 + C.

So we succeeded, but it required a clever first step, rewriting the original function so

that it looked like the result of using the chain rule. Fortunately, there is a technique that

makes such problems simpler, without requiring cleverness to rewrite a function in just the

right way. It sometimes does not work, or may require more than one attempt, but the

idea is simple: guess at the most likely candidate for the “inside function”, then do some

algebra to see what this requires the rest of the function to look like.

One frequently good guess is any complicated expression inside a square root, so we

start by trying u = 1− x2, using a new variable, u, for convenience in the manipulations

that follow. Now we know that the chain rule will multiply by the derivative of this inner

function:
du

dx
= −2x,

so we need to rewrite the original function to include this:

∫

x3
√

1− x2 =

∫

x3
√
u
−2x

−2x
dx =

∫

x2

−2

√
u
du

dx
dx.

Recall that one benefit of the Leibniz notation is that it often turns out that what looks

like ordinary arithmetic gives the correct answer, even if something more complicated is
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going on. For example, in Leibniz notation the chain rule is

dy

dx
=

dy

dt

dt

dx
.

The same is true of our current expression:

∫

x2

−2

√
u
du

dx
dx =

∫

x2

−2

√
udu.

Now we’re almost there: since u = 1− x2, x2 = 1− u and the integral is

∫

−1

2
(1− u)

√
u du.

It’s no coincidence that this is exactly the integral we computed in (8.1.1), we have simply

renamed the variable u to make the calculations less confusing. Just as before:

∫

−1

2
(1− u)

√
udu =

(

1

5
u− 1

3

)

u3/2 + C.

Then since u = 1− x2:

∫

x3
√

1− x2 dx =

(

1

5
(1− x2)− 1

3

)

(1− x2)3/2 + C.

To summarize: if we suspect that a given function is the derivative of another via the

chain rule, we let u denote a likely candidate for the inner function, then translate the

given function so that it is written entirely in terms of u, with no x remaining in the

expression. If we can integrate this new function of u, then the antiderivative of the

original function is obtained by replacing u by the equivalent expression in x.

Even in simple cases you may prefer to use this mechanical procedure, since it often

helps to avoid silly mistakes. For example, consider again this simple problem:

∫

2x cos(x2) dx.

Let u = x2, then du/dx = 2x or du = 2x dx. Since we have exactly 2x dx in the original

integral, we can replace it by du:

∫

2x cos(x2) dx =

∫

cosu du = sinu+ C = sin(x2) + C.

This is not the only way to do the algebra, and typically there are many paths to the

correct answer. Another possibility, for example, is: Since du/dx = 2x, dx = du/2x, and
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then the integral becomes
∫

2x cos(x2) dx =

∫

2x cosu
du

2x
=

∫

cosu du.

The important thing to remember is that you must eliminate all instances of the original

variable x.

EXAMPLE 8.1.1 Evaluate

∫

(ax+b)n dx, assuming that a and b are constants, a 6= 0,

and n is a positive integer. We let u = ax+ b so du = a dx or dx = du/a. Then
∫

(ax+ b)n dx =

∫

1

a
un du =

1

a(n+ 1)
un+1 + C =

1

a(n+ 1)
(ax+ b)n+1 + C.

EXAMPLE 8.1.2 Evaluate

∫

sin(ax+ b) dx, assuming that a and b are constants and

a 6= 0. Again we let u = ax+ b so du = a dx or dx = du/a. Then
∫

sin(ax+ b) dx =

∫

1

a
sinu du =

1

a
(− cosu) + C = −1

a
cos(ax+ b) + C.

EXAMPLE 8.1.3 Evaluate

∫ 4

2

x sin(x2) dx. First we compute the antiderivative, then

evaluate the definite integral. Let u = x2 so du = 2x dx or x dx = du/2. Then
∫

x sin(x2) dx =

∫

1

2
sinu du =

1

2
(− cosu) + C = −1

2
cos(x2) + C.

Now
∫ 4

2

x sin(x2) dx = −1

2
cos(x2)

∣

∣

∣

∣

4

2

= −1

2
cos(16) +

1

2
cos(4).

A somewhat neater alternative to this method is to change the original limits to match

the variable u. Since u = x2, when x = 2, u = 4, and when x = 4, u = 16. So we can do

this:
∫ 4

2

x sin(x2) dx =

∫ 16

4

1

2
sinu du = −1

2
(cosu)

∣

∣

∣

∣

16

4

= −1

2
cos(16) +

1

2
cos(4).

An incorrect, and dangerous, alternative is something like this:
∫ 4

2

x sin(x2) dx =

∫ 4

2

1

2
sinu du = −1

2
cos(u)

∣

∣

∣

∣

4

2

= −1

2
cos(x2)

∣

∣

∣

∣

4

2

= −1

2
cos(16) +

1

2
cos(4).

This is incorrect because

∫ 4

2

1

2
sinu dumeans that u takes on values between 2 and 4, which

is wrong. It is dangerous, because it is very easy to get to the point −1

2
cos(u)

∣

∣

∣

∣

4

2

and forget



168 Chapter 8 Techniques of Integration

to substitute x2 back in for u, thus getting the incorrect answer −1

2
cos(4) +

1

2
cos(2). A

somewhat clumsy, but acceptable, alternative is something like this:

∫ 4

2

x sin(x2) dx =

∫ x=4

x=2

1

2
sinu du = −1

2
cos(u)

∣

∣

∣

∣

x=4

x=2

= −1

2
cos(x2)

∣

∣

∣

∣

4

2

= −cos(16)

2
+

cos(4)

2
.

EXAMPLE 8.1.4 Evaluate

∫ 1/2

1/4

cos(πt)

sin2(πt)
dt. Let u = sin(πt) so du = π cos(πt) dt or

du/π = cos(πt) dt. We change the limits to sin(π/4) =
√
2/2 and sin(π/2) = 1. Then

∫ 1/2

1/4

cos(πt)

sin2(πt)
dt =

∫ 1

√
2/2

1

π

1

u2
du =

∫ 1

√
2/2

1

π
u−2 du =

1

π

u−1

−1

∣

∣

∣

∣

1

√
2/2

= − 1

π
+

√
2

π
.

Exercises 8.1.

Find the antiderivatives or evaluate the definite integral in each problem.

1.

∫

(1− t)9 dt ⇒ 2.

∫

(x2 + 1)2 dx ⇒

3.

∫

x(x2 + 1)100 dx ⇒ 4.

∫

1
3
√
1− 5t

dt ⇒

5.

∫

sin3 x cos x dx ⇒ 6.

∫

x
√

100− x2 dx ⇒

7.

∫

x2

√
1− x3

dx ⇒ 8.

∫

cos(πt) cos
(

sin(πt)
)

dt ⇒

9.

∫

sin x

cos3 x
dx ⇒ 10.

∫

tanx dx ⇒

11.

∫ π

0

sin5(3x) cos(3x) dx ⇒ 12.

∫

sec2 x tan xdx ⇒

13.

∫

√
π/2

0

x sec2(x2) tan(x2) dx ⇒ 14.

∫

sin(tanx)

cos2 x
dx ⇒

15.

∫

4

3

1

(3x− 7)2
dx ⇒ 16.

∫ π/6

0

(cos2 x− sin2 x) dx ⇒

17.

∫

6x

(x2 − 7)1/9
dx ⇒ 18.

∫

1

−1

(2x3 − 1)(x4 − 2x)6 dx ⇒

19.

∫ 1

−1

sin7 xdx ⇒ 20.

∫

f(x)f ′(x) dx ⇒
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8.2 Powers of sine and osine

Functions consisting of products of the sine and cosine can be integrated by using substi-

tution and trigonometric identities. These can sometimes be tedious, but the technique is

straightforward. Some examples will suffice to explain the approach.

EXAMPLE 8.2.1 Evaluate

∫

sin5 x dx. Rewrite the function:

∫

sin5 x dx =

∫

sinx sin4 x dx =

∫

sinx(sin2 x)2 dx =

∫

sinx(1− cos2 x)2 dx.

Now use u = cosx, du = − sinx dx:

∫

sinx(1− cos2 x)2 dx =

∫

−(1− u2)2 du

=

∫

−(1− 2u2 + u4) du

= −u+
2

3
u3 − 1

5
u5 + C

= − cosx+
2

3
cos3 x− 1

5
cos5 x+ C.

EXAMPLE 8.2.2 Evaluate

∫

sin6 x dx. Use sin2 x = (1 − cos(2x))/2 to rewrite the

function:

∫

sin6 x dx =

∫

(sin2 x)3 dx =

∫

(1− cos 2x)3

8
dx

=
1

8

∫

1− 3 cos 2x+ 3 cos2 2x− cos3 2x dx.

Now we have four integrals to evaluate:

∫

1 dx = x

and
∫

−3 cos 2x dx = −3

2
sin 2x
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are easy. The cos3 2x integral is like the previous example:
∫

− cos3 2x dx =

∫

− cos 2x cos2 2x dx

=

∫

− cos 2x(1− sin2 2x) dx

=

∫

−1

2
(1− u2) du

= −1

2

(

u− u3

3

)

= −1

2

(

sin 2x− sin3 2x

3

)

.

And finally we use another trigonometric identity, cos2 x = (1 + cos(2x))/2:
∫

3 cos2 2x dx = 3

∫

1 + cos 4x

2
dx =

3

2

(

x+
sin 4x

4

)

.

So at long last we get
∫

sin6 x dx =
x

8
− 3

16
sin 2x− 1

16

(

sin 2x− sin3 2x

3

)

+
3

16

(

x+
sin 4x

4

)

+ C.

EXAMPLE 8.2.3 Evaluate

∫

sin2 x cos2 x dx. Use the formulas sin2 x = (1−cos(2x))/2

and cos2 x = (1 + cos(2x))/2 to get:
∫

sin2 x cos2 x dx =

∫

1− cos(2x)

2
· 1 + cos(2x)

2
dx.

The remainder is left as an exercise.

Exercises 8.2.

Find the antiderivatives.

1.

∫

sin2 xdx ⇒ 2.

∫

sin3 xdx ⇒

3.

∫

sin4 xdx ⇒ 4.

∫

cos2 x sin3 x dx ⇒

5.

∫

cos3 xdx ⇒ 6.

∫

sin2 x cos2 x dx ⇒

7.

∫

cos3 x sin2 x dx ⇒ 8.

∫

sinx(cos x)3/2 dx ⇒

9.

∫

sec2 x csc2 x dx ⇒ 10.

∫

tan3 x sec xdx ⇒
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8.3 Trigonometri Substitutions

So far we have seen that it sometimes helps to replace a subexpression of a function by

a single variable. Occasionally it can help to replace the original variable by something

more complicated. This seems like a “reverse” substitution, but it is really no different in

principle than ordinary substitution.

EXAMPLE 8.3.1 Evaluate

∫

√

1− x2 dx. Let x = sinu so dx = cosu du. Then

∫

√

1− x2 dx =

∫

√

1− sin2 u cosu du =

∫ √
cos2 u cosu du.

We would like to replace
√
cos2 u by cosu, but this is valid only if cosu is positive, since√

cos2 u is positive. Consider again the substitution x = sinu. We could just as well think

of this as u = arcsinx. If we do, then by the definition of the arcsine, −π/2 ≤ u ≤ π/2, so

cosu ≥ 0. Then we continue:

∫ √
cos2 u cosu du =

∫

cos2 u du =

∫

1 + cos 2u

2
du =

u

2
+

sin 2u

4
+ C

=
arcsinx

2
+

sin(2 arcsinx)

4
+ C.

This is a perfectly good answer, though the term sin(2 arcsinx) is a bit unpleasant. It is

possible to simplify this. Using the identity sin 2x = 2 sinx cosx, we can write sin 2u =

2 sinu cosu = 2 sin(arcsinx)
√

1− sin2 u = 2x

√

1− sin2(arcsinx) = 2x
√

1− x2. Then the

full antiderivative is

arcsinx

2
+

2x
√
1− x2

4
=

arcsinx

2
+

x
√
1− x2

2
+ C.

This type of substitution is usually indicated when the function you wish to integrate

contains a polynomial expression that might allow you to use the fundamental identity

sin2 x+ cos2 x = 1 in one of three forms:

cos2 x = 1− sin2 x sec2 x = 1 + tan2 x tan2 x = sec2 x− 1.

If your function contains 1−x2, as in the example above, try x = sinu; if it contains 1+x2

try x = tanu; and if it contains x2 − 1, try x = sec u. Sometimes you will need to try

something a bit different to handle constants other than one.
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EXAMPLE 8.3.2 Evaluate

∫

√

4− 9x2 dx. We start by rewriting this so that it looks

more like the previous example:

∫

√

4− 9x2 dx =

∫

√

4(1− (3x/2)2) dx =

∫

2
√

1− (3x/2)2 dx.

Now let 3x/2 = sinu so (3/2) dx = cosu du or dx = (2/3) cosu du. Then

∫

2
√

1− (3x/2)2 dx =

∫

2
√

1− sin2 u (2/3) cosu du =
4

3

∫

cos2 u du

=
4u

6
+

4 sin 2u

12
+ C

=
2 arcsin(3x/2)

3
+

2 sinu cosu

3
+ C

=
2 arcsin(3x/2)

3
+

2 sin(arcsin(3x/2)) cos(arcsin(3x/2))

3
+ C

=
2 arcsin(3x/2)

3
+

2(3x/2)
√

1− (3x/2)2

3
+ C

=
2 arcsin(3x/2)

3
+

x
√
4− 9x2

2
+ C,

using some of the work from example 8.3.1.

EXAMPLE 8.3.3 Evaluate

∫

√

1 + x2 dx. Let x = tanu, dx = sec2 u du, so

∫

√

1 + x2 dx =

∫

√

1 + tan2 u sec2 u du =

∫ √
sec2 u sec2 u du.

Since u = arctan(x), −π/2 ≤ u ≤ π/2 and sec u ≥ 0, so
√
sec2 u = secu. Then

∫ √
sec2 u sec2 u du =

∫

sec3 u du.

In problems of this type, two integrals come up frequently:

∫

sec3 u du and

∫

sec u du.

Both have relatively nice expressions but they are a bit tricky to discover.
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First we do
∫

sec u du, which we will need to compute

∫

sec3 u du:

∫

secu du =

∫

secu
secu+ tanu

secu+ tanu
du

=

∫

sec2 u+ secu tanu

sec u+ tanu
du.

Now let w = secu + tanu, dw = sec u tanu + sec2 u du, exactly the numerator of the

function we are integrating. Thus

∫

secu du =

∫

sec2 u+ secu tanu

sec u+ tanu
du =

∫

1

w
dw = ln |w|+ C

= ln | secu+ tanu|+ C.

Now for

∫

sec3 u du:

sec3 u =
sec3 u

2
+

sec3 u

2
=

sec3 u

2
+

(tan2 u+ 1) secu

2

=
sec3 u

2
+

secu tan2 u

2
+

secu

2
=

sec3 u+ secu tan2 u

2
+

secu

2
.

We already know how to integrate secu, so we just need the first quotient. This is “simply”

a matter of recognizing the product rule in action:

∫

sec3 u+ sec u tan2 u du = secu tanu.

So putting these together we get

∫

sec3 u du =
sec u tanu

2
+

ln | secu+ tanu|
2

+ C,

and reverting to the original variable x:

∫

√

1 + x2 dx =
secu tanu

2
+

ln | secu+ tanu|
2

+ C

=
sec(arctanx) tan(arctanx)

2
+

ln | sec(arctanx) + tan(arctanx)|
2

+ C

=
x
√
1 + x2

2
+

ln |
√
1 + x2 + x|

2
+ C,

using tan(arctanx) = x and sec(arctanx) =
√

1 + tan2(arctanx) =
√

1 + x2.
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Exercises 8.3.

Find the antiderivatives.

1.

∫

cscx dx ⇒ 2.

∫

csc3 xdx ⇒

3.

∫

√

x2 − 1 dx ⇒ 4.

∫

√

9 + 4x2 dx ⇒

5.

∫

x
√

1− x2 dx ⇒ 6.

∫

x2
√

1− x2 dx ⇒

7.

∫

1
√
1 + x2

dx ⇒ 8.

∫

√

x2 + 2x dx ⇒

9.

∫

1

x2(1 + x2)
dx ⇒ 10.

∫

x2

√
4− x2

dx ⇒

11.

∫ √
x

√
1− x

dx ⇒ 12.

∫

x3

√
4x2 − 1

dx ⇒

13. Compute

∫

√

x2 + 1 dx. (Hint: make the substitution x = sinh(u) and then use exercise 6

in section 4.11.)

14. Fix t > 0. The shaded region in the left-hand graph in figure 4.11.2 is bounded by y =
x tanh t, y = 0, and x2 − y2 = 1. Prove that twice the area of this region is t, as claimed in
section 4.11.

8.4 Integration by Parts

We have already seen that recognizing the product rule can be useful, when we noticed

that
∫

sec3 u+ sec u tan2 u du = secu tanu.

As with substitution, we do not have to rely on insight or cleverness to discover such

antiderivatives; there is a technique that will often help to uncover the product rule.

Start with the product rule:

d

dx
f(x)g(x) = f ′(x)g(x) + f(x)g′(x).

We can rewrite this as

f(x)g(x) =

∫

f ′(x)g(x) dx+

∫

f(x)g′(x) dx,

and then
∫

f(x)g′(x) dx = f(x)g(x)−
∫

f ′(x)g(x) dx.
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This may not seem particularly useful at first glance, but it turns out that in many cases

we have an integral of the form
∫

f(x)g′(x) dx

but that
∫

f ′(x)g(x) dx

is easier. This technique for turning one integral into another is called integration by

parts, and is usually written in more compact form. If we let u = f(x) and v = g(x) then

du = f ′(x) dx and dv = g′(x) dx and

∫

u dv = uv −
∫

v du.

To use this technique we need to identify likely candidates for u = f(x) and dv = g′(x) dx.

EXAMPLE 8.4.1 Evaluate

∫

x lnx dx. Let u = lnx so du = 1/x dx. Then we must

let dv = x dx so v = x2/2 and

∫

x lnx dx =
x2 lnx

2
−
∫

x2

2

1

x
dx =

x2 lnx

2
−
∫

x

2
dx =

x2 lnx

2
− x2

4
+ C.

EXAMPLE 8.4.2 Evaluate

∫

x sinx dx. Let u = x so du = dx. Then we must let

dv = sinx dx so v = − cosx and

∫

x sinx dx = −x cosx−
∫

− cosx dx = −x cosx+

∫

cosx dx = −x cosx+ sinx+ C.

EXAMPLE 8.4.3 Evaluate

∫

sec3 x dx. Of course we already know the answer to this,

but we needed to be clever to discover it. Here we’ll use the new technique to discover the

antiderivative. Let u = sec x and dv = sec2 x dx. Then du = secx tanx dx and v = tanx
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and
∫

sec3 x dx = secx tanx−
∫

tan2 x secx dx

= secx tanx−
∫

(sec2 x− 1) secx dx

= secx tanx−
∫

sec3 x dx+

∫

secx dx.

At first this looks useless—we’re right back to

∫

sec3 x dx. But looking more closely:

∫

sec3 x dx = sec x tanx−
∫

sec3 x dx+

∫

sec x dx

∫

sec3 x dx+

∫

sec3 x dx = sec x tanx+

∫

secx dx

2

∫

sec3 x dx = sec x tanx+

∫

secx dx

∫

sec3 x dx =
sec x tanx

2
+

1

2

∫

secx dx

=
sec x tanx

2
+

ln | secx+ tanx|
2

+ C.

EXAMPLE 8.4.4 Evaluate

∫

x2 sinx dx. Let u = x2, dv = sinx dx; then du = 2x dx

and v = − cosx. Now

∫

x2 sinx dx = −x2 cosx +

∫

2x cosx dx. This is better than the

original integral, but we need to do integration by parts again. Let u = 2x, dv = cosx dx;

then du = 2 and v = sinx, and

∫

x2 sinx dx = −x2 cosx+

∫

2x cosx dx

= −x2 cosx+ 2x sinx−
∫

2 sinx dx

= −x2 cosx+ 2x sinx+ 2 cosx+ C.

Such repeated use of integration by parts is fairly common, but it can be a bit tedious to

accomplish, and it is easy to make errors, especially sign errors involving the subtraction in

the formula. There is a nice tabular method to accomplish the calculation that minimizes

the chance for error and speeds up the whole process. We illustrate with the previous

example. Here is the table:
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sign u dv

x2 sinx

− 2x − cosx

2 − sinx

− 0 cosx

or

u dv

x2 sinx

−2x − cosx

2 − sinx

0 cosx

To form the first table, we start with u at the top of the second column and repeatedly

compute the derivative; starting with dv at the top of the third column, we repeatedly

compute the antiderivative. In the first column, we place a “−” in every second row. To

form the second table we combine the first and second columns by ignoring the boundary;

if you do this by hand, you may simply start with two columns and add a “−” to every

second row.

To compute with this second table we begin at the top. Multiply the first entry in

column u by the second entry in column dv to get −x2 cosx, and add this to the integral

of the product of the second entry in column u and second entry in column dv. This gives:

−x2 cosx+

∫

2x cosx dx,

or exactly the result of the first application of integration by parts. Since this integral is

not yet easy, we return to the table. Now we multiply twice on the diagonal, (x2)(− cosx)

and (−2x)(− sinx) and then once straight across, (2)(− sinx), and combine these as

−x2 cosx+ 2x sinx−
∫

2 sinx dx,

giving the same result as the second application of integration by parts. While this integral

is easy, we may return yet once more to the table. Now multiply three times on the diagonal

to get (x2)(− cosx), (−2x)(− sinx), and (2)(cosx), and once straight across, (0)(cosx).

We combine these as before to get

−x2 cosx+ 2x sinx+ 2 cosx+

∫

0 dx = −x2 cosx+ 2x sinx+ 2 cosx+ C.

Typically we would fill in the table one line at a time, until the “straight across” multipli-

cation gives an easy integral. If we can see that the u column will eventually become zero,

we can instead fill in the whole table; computing the products as indicated will then give

the entire integral, including the “+C ”, as above.
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Exercises 8.4.

Find the antiderivatives.

1.

∫

x cos xdx ⇒ 2.

∫

x2 cosx dx ⇒

3.

∫

xex dx ⇒ 4.

∫

xex
2

dx ⇒

5.

∫

sin2 xdx ⇒ 6.

∫

lnxdx ⇒

7.

∫

x arctan xdx ⇒ 8.

∫

x3 sinx dx ⇒

9.

∫

x3 cosx dx ⇒ 10.

∫

x sin2 x dx ⇒

11.

∫

x sin x cos x dx ⇒ 12.

∫

arctan(
√
x) dx ⇒

13.

∫

sin(
√
x) dx ⇒ 14.

∫

sec2 x csc2 x dx ⇒

8.5 Rational Funtions

A rational function is a fraction with polynomials in the numerator and denominator.

For example,

x3

x2 + x− 6
,

1

(x− 3)2
,

x2 + 1

x2 − 1
,

are all rational functions of x. There is a general technique called “partial fractions”

that, in principle, allows us to integrate any rational function. The algebraic steps in the

technique are rather cumbersome if the polynomial in the denominator has degree more

than 2, and the technique requires that we factor the denominator, something that is not

always possible. However, in practice one does not often run across rational functions with

high degree polynomials in the denominator for which one has to find the antiderivative

function. So we shall explain how to find the antiderivative of a rational function only

when the denominator is a quadratic polynomial ax2 + bx+ c.

We should mention a special type of rational function that we already know how to

integrate: If the denominator has the form (ax + b)n, the substitution u = ax + b will

always work. The denominator becomes un, and each x in the numerator is replaced by

(u − b)/a, and dx = du/a. While it may be tedious to complete the integration if the

numerator has high degree, it is merely a matter of algebra.
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EXAMPLE 8.5.1 Find

∫

x3

(3− 2x)5
dx. Using the substitution u = 3− 2x we get

∫

x3

(3− 2x)5
dx =

1

−2

∫

(

u−3
−2

)3

u5
du =

1

16

∫

u3 − 9u2 + 27u− 27

u5
du

=
1

16

∫

u−2 − 9u−3 + 27u−4 − 27u−5 du

=
1

16

(

u−1

−1
− 9u−2

−2
+

27u−3

−3
− 27u−4

−4

)

+ C

=
1

16

(

(3− 2x)−1

−1
− 9(3− 2x)−2

−2
+

27(3− 2x)−3

−3
− 27(3− 2x)−4

−4

)

+ C

= − 1

16(3− 2x)
+

9

32(3− 2x)2
− 9

16(3− 2x)3
+

27

64(3− 2x)4
+ C

We now proceed to the case in which the denominator is a quadratic polynomial. We

can always factor out the coefficient of x2 and put it outside the integral, so we can assume

that the denominator has the form x2 + bx+ c. There are three possible cases, depending

on how the quadratic factors: either x2 + bx+ c = (x− r)(x− s), x2 + bx+ c = (x− r)2,

or it doesn’t factor. We can use the quadratic formula to decide which of these we have,

and to factor the quadratic if it is possible.

EXAMPLE 8.5.2 Determine whether x2 + x+ 1 factors, and factor it if possible. The

quadratic formula tells us that x2 + x+ 1 = 0 when

x =
−1±

√
1− 4

2
.

Since there is no square root of −3, this quadratic does not factor.

EXAMPLE 8.5.3 Determine whether x2 − x− 1 factors, and factor it if possible. The

quadratic formula tells us that x2 − x− 1 = 0 when

x =
1±

√
1 + 4

2
=

1±
√
5

2
.

Therefore

x2 − x− 1 =

(

x− 1 +
√
5

2

)(

x− 1−
√
5

2

)

.
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If x2 + bx+ c = (x− r)2 then we have the special case we have already seen, that can

be handled with a substitution. The other two cases require different approaches.

If x2 + bx+ c = (x− r)(x− s), we have an integral of the form
∫

p(x)

(x− r)(x− s)
dx

where p(x) is a polynomial. The first step is to make sure that p(x) has degree less than

2.

EXAMPLE 8.5.4 Rewrite

∫

x3

(x− 2)(x+ 3)
dx in terms of an integral with a numerator

that has degree less than 2. To do this we use long division of polynomials to discover that

x3

(x− 2)(x+ 3)
=

x3

x2 + x− 6
= x− 1 +

7x− 6

x2 + x− 6
= x− 1 +

7x− 6

(x− 2)(x+ 3)
,

so
∫

x3

(x− 2)(x+ 3)
dx =

∫

x− 1 dx+

∫

7x− 6

(x− 2)(x+ 3)
dx.

The first integral is easy, so only the second requires some work.

Now consider the following simple algebra of fractions:

A

x− r
+

B

x− s
=

A(x− s) +B(x− r)

(x− r)(x− s)
=

(A+B)x−As−Br

(x− r)(x− s)
.

That is, adding two fractions with constant numerator and denominators (x−r) and (x−s)

produces a fraction with denominator (x− r)(x− s) and a polynomial of degree less than

2 for the numerator. We want to reverse this process: starting with a single fraction, we

want to write it as a sum of two simpler fractions. An example should make it clear how

to proceed.

EXAMPLE 8.5.5 Evaluate

∫

x3

(x− 2)(x+ 3)
dx. We start by writing

7x− 6

(x− 2)(x+ 3)
as the sum of two fractions. We want to end up with

7x− 6

(x− 2)(x+ 3)
=

A

x− 2
+

B

x+ 3
.

If we go ahead and add the fractions on the right hand side we get

7x− 6

(x− 2)(x+ 3)
=

(A+B)x+ 3A− 2B

(x− 2)(x+ 3)
.

So all we need to do is find A and B so that 7x − 6 = (A + B)x+ 3A − 2B, which is to

say, we need 7 = A+B and −6 = 3A− 2B. This is a problem you’ve seen before: solve a
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system of two equations in two unknowns. There are many ways to proceed; here’s one: If

7 = A+B then B = 7−A and so −6 = 3A−2B = 3A−2(7−A) = 3A−14+2A = 5A−14.

This is easy to solve for A: A = 8/5, and then B = 7−A = 7− 8/5 = 27/5. Thus
∫

7x− 6

(x− 2)(x+ 3)
dx =

∫

8

5

1

x− 2
+

27

5

1

x+ 3
dx =

8

5
ln |x− 2|+ 27

5
ln |x+ 3|+ C.

The answer to the original problem is now
∫

x3

(x− 2)(x+ 3)
dx =

∫

x− 1 dx+

∫

7x− 6

(x− 2)(x+ 3)
dx

=
x2

2
− x+

8

5
ln |x− 2|+ 27

5
ln |x+ 3|+ C.

Now suppose that x2 + bx+ c doesn’t factor. Again we can use long division to ensure

that the numerator has degree less than 2, then we complete the square.

EXAMPLE 8.5.6 Evaluate

∫

x+ 1

x2 + 4x+ 8
dx. The quadratic denominator does not

factor. We could complete the square and use a trigonometric substitution, but it is simpler

to rearrange the integrand:
∫

x+ 1

x2 + 4x+ 8
dx =

∫

x+ 2

x2 + 4x+ 8
dx−

∫

1

x2 + 4x+ 8
dx.

The first integral is an easy substitution problem, using u = x2 + 4x+ 8:
∫

x+ 2

x2 + 4x+ 8
dx =

1

2

∫

du

u
=

1

2
ln |x2 + 4x+ 8|.

For the second integral we complete the square:

x2 + 4x+ 8 = (x+ 2)2 + 4 = 4

(

(

x+ 2

2

)2

+ 1

)

,

making the integral
1

4

∫

1
(

x+2
2

)2
+ 1

dx.

Using u =
x+ 2

2
we get

1

4

∫

1
(

x+2
2

)2
+ 1

dx =
1

4

∫

2

u2 + 1
du =

1

2
arctan

(

x+ 2

2

)

.

The final answer is now
∫

x+ 1

x2 + 4x+ 8
dx =

1

2
ln |x2 + 4x+ 8| − 1

2
arctan

(

x+ 2

2

)

+ C.
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Exercises 8.5.

Find the antiderivatives.

1.

∫

1

4− x2
dx ⇒ 2.

∫

x4

4− x2
dx ⇒

3.

∫

1

x2 + 10x+ 25
dx ⇒ 4.

∫

x2

4− x2
dx ⇒

5.

∫

x4

4 + x2
dx ⇒ 6.

∫

1

x2 + 10x+ 29
dx ⇒

7.

∫

x3

4 + x2
dx ⇒ 8.

∫

1

x2 + 10x+ 21
dx ⇒

9.

∫

1

2x2 − x− 3
dx ⇒ 10.

∫

1

x2 + 3x
dx ⇒

8.6 Numerial Integration

We have now seen some of the most generally useful methods for discovering antiderivatives,

and there are others. Unfortunately, some functions have no simple antiderivatives; in such

cases if the value of a definite integral is needed it will have to be approximated. We will

see two methods that work reasonably well and yet are fairly simple; in some cases more

sophisticated techniques will be needed.

Of course, we already know one way to approximate an integral: if we think of the

integral as computing an area, we can add up the areas of some rectangles. While this

is quite simple, it is usually the case that a large number of rectangles is needed to get

acceptable accuracy. A similar approach is much better: we approximate the area under a

curve over a small interval as the area of a trapezoid. In figure 8.6.1 we see an area under

a curve approximated by rectangles and by trapezoids; it is apparent that the trapezoids

give a substantially better approximation on each subinterval.
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Figure 8.6.1 Approximating an area with rectangles and with trapezoids. (AP)

As with rectangles, we divide the interval into n equal subintervals of length ∆x. A

typical trapezoid is pictured in figure 8.6.2; it has area
f(xi) + f(xi+1)

2
∆x. If we add up
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the areas of all trapezoids we get

f(x0) + f(x1)

2
∆x+

f(x1) + f(x2)

2
∆x+ · · ·+ f(xn−1) + f(xn)

2
∆x =

(

f(x0)

2
+ f(x1) + f(x2) + · · ·+ f(xn−1) +

f(xn)

2

)

∆x.

This is usually known as the Trapezoid Rule. For a modest number of subintervals this

is not too difficult to do with a calculator; a computer can easily do many subintervals.

xi xi+1

(xi, f(xi))

(xi+1, f(xi+1))

......................................................................................................................

........................................................................

Figure 8.6.2 A single trapezoid.

In practice, an approximation is useful only if we know how accurate it is; for example,

we might need a particular value accurate to three decimal places. When we compute a

particular approximation to an integral, the error is the difference between the approxi-

mation and the true value of the integral. For any approximation technique, we need an

error estimate, a value that is guaranteed to be larger than the actual error. If A is an

approximation and E is the associated error estimate, then we know that the true value

of the integral is between A − E and A + E. In the case of our approximation of the

integral, we want E = E(∆x) to be a function of ∆x that gets small rapidly as ∆x gets

small. Fortunately, for many functions, there is such an error estimate associated with the

trapezoid approximation.

THEOREM 8.6.1 Suppose f has a second derivative f ′′ everywhere on the interval

[a, b], and |f ′′(x)| ≤ M for all x in the interval. With ∆x = (b − a)/n, an error estimate

for the trapezoid approximation is

E(∆x) =
b− a

12
M(∆x)2 =

(b− a)3

12n2
M.

Let’s see how we can use this.
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EXAMPLE 8.6.2 Approximate

∫ 1

0

e−x2

dx to two decimal places. The second deriva-

tive of f = e−x2

is (4x2−2)e−x2

, and it is not hard to see that on [0, 1], |(4x2−2)e−x2 | ≤ 2.

We begin by estimating the number of subintervals we are likely to need. To get two dec-

imal places of accuracy, we will certainly need E(∆x) < 0.005 or

1

12
(2)

1

n2
< 0.005

1

6
(200) < n2

5.77 ≈
√

100

3
< n

With n = 6, the error estimate is thus 1/63 < 0.0047. We compute the trapezoid approxi-

mation for six intervals:

(

f(0)

2
+ f(1/6) + f(2/6) + · · ·+ f(5/6) +

f(1)

2

)

1

6
≈ 0.74512.

So the true value of the integral is between 0.74512 − 0.0047 = 0.74042 and 0.74512 +

0.0047 = 0.74982. Unfortunately, the first rounds to 0.74 and the second rounds to 0.75,

so we can’t be sure of the correct value in the second decimal place; we need to pick a larger

n. As it turns out, we need to go to n = 12 to get two bounds that both round to the same

value, which turns out to be 0.75. For comparison, using 12 rectangles to approximate

the area gives 0.7727, which is considerably less accurate than the approximation using six

trapezoids.

In practice it generally pays to start by requiring better than the maximum possible

error; for example, we might have initially required E(∆x) < 0.001, or

1

12
(2)

1

n2
< 0.001

1

6
(1000) < n2

12.91 ≈
√

500

3
< n

Had we immediately tried n = 13 this would have given us the desired answer.

The trapezoid approximation works well, especially compared to rectangles, because

the tops of the trapezoids form a reasonably good approximation to the curve when ∆x is

fairly small. We can extend this idea: what if we try to approximate the curve more closely,
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by using something other than a straight line? The obvious candidate is a parabola: if we

can approximate a short piece of the curve with a parabola with equation y = ax2+bx+c,

we can easily compute the area under the parabola.

There are an infinite number of parabolas through any two given points, but only

one through three given points. If we find a parabola through three consecutive points

(xi, f(xi)), (xi+1, f(xi+1)), (xi+2, f(xi+2)) on the curve, it should be quite close to the

curve over the whole interval [xi, xi+2], as in figure 8.6.3. If we divide the interval [a, b]

into an even number of subintervals, we can then approximate the curve by a sequence of

parabolas, each covering two of the subintervals. For this to be practical, we would like a

simple formula for the area under one parabola, namely, the parabola through (xi, f(xi)),

(xi+1, f(xi+1)), and (xi+2, f(xi+2)). That is, we should attempt to write down the parabola

y = ax2 + bx + c through these points and then integrate it, and hope that the result is

fairly simple. Although the algebra involved is messy, this turns out to be possible. The

algebra is well within the capability of a good computer algebra system like Sage, so we

will present the result without all of the algebra; you can see how to do it in this Sage

worksheet.

To find the parabola, we solve these three equations for a, b, and c:

f(xi) = a(xi+1 −∆x)2 + b(xi+1 −∆x) + c

f(xi+1) = a(xi+1)
2 + b(xi+1) + c

f(xi+2) = a(xi+1 +∆x)2 + b(xi+1 +∆x) + c

Not surprisingly, the solutions turn out to be quite messy. Nevertheless, Sage can easily

compute and simplify the integral to get

∫ xi+1+∆x

xi+1−∆x

ax2 + bx+ c dx =
∆x

3
(f(xi) + 4f(xi+1) + f(xi+2)).

Now the sum of the areas under all parabolas is

∆x

3
(f(x0)+4f(x1)+f(x2)+f(x2)+4f(x3)+f(x4)+ · · ·+f(xn−2)+4f(xn−1)+f(xn)) =

∆x

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)).

This is just slightly more complicated than the formula for trapezoids; we need to remember

the alternating 2 and 4 coefficients; note that n must be even for this to make sense. This

approximation technique is referred to as Simpson’s Rule.

As with the trapezoid method, this is useful only with an error estimate:
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xi xi+1 xi+2

(xi, f(xi))

(xi+2, f(xi+2))
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Figure 8.6.3 A parabola (dashed) approximating a curve (solid). (AP)

THEOREM 8.6.3 Suppose f has a fourth derivative f (4) everywhere on the interval

[a, b], and |f (4)(x)| ≤ M for all x in the interval. With ∆x = (b− a)/n, an error estimate

for Simpson’s approximation is

E(∆x) =
b− a

180
M(∆x)4 =

(b− a)5

180n4
M.

EXAMPLE 8.6.4 Let us again approximate

∫ 1

0

e−x2

dx to two decimal places. The

fourth derivative of f = e−x2

is (16x2 − 48x2 + 12)e−x2

; on [0, 1] this is at most 12 in

absolute value. We begin by estimating the number of subintervals we are likely to need.

To get two decimal places of accuracy, we will certainly need E(∆x) < 0.005, but taking

a cue from our earlier example, let’s require E(∆x) < 0.001:

1

180
(12)

1

n4
< 0.001

200

3
< n4

2.86 ≈ 4

√

200

3
< n

So we try n = 4, since we need an even number of subintervals. Then the error estimate

is 12/180/44 < 0.0003 and the approximation is

(f(0) + 4f(1/4) + 2f(1/2) + 4f(3/4) + f(1))
1

3 · 4 ≈ 0.746855.

So the true value of the integral is between 0.746855− 0.0003 = 0.746555 and 0.746855 +

0.0003 = 0.7471555, both of which round to 0.75.
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Exercises 8.6.

In the following problems, compute the trapezoid and Simpson approximations using 4 subin-
tervals, and compute the error estimate for each. (Finding the maximum values of the second
and fourth derivatives can be challenging for some of these; you may use a graphing calculator
or computer software to estimate the maximum values.) If you have access to Sage or similar
software, approximate each integral to two decimal places. You can use this Sage worksheet to
get started.

1.

∫

3

1

x dx ⇒ 2.

∫

3

0

x2 dx ⇒

3.

∫

4

2

x3 dx ⇒ 4.

∫

3

1

1

x
dx ⇒

5.

∫

2

1

1

1 + x2
dx ⇒ 6.

∫

1

0

x
√
1 + xdx ⇒

7.

∫

5

1

x

1 + x
dx ⇒ 8.

∫

1

0

√

x3 + 1 dx ⇒

9.

∫

1

0

√

x4 + 1 dx ⇒ 10.

∫

4

1

√

1 + 1/x dx ⇒

11. Using Simpson’s rule on a parabola f(x), even with just two subintervals, gives the exact value
of the integral, because the parabolas used to approximate f will be f itself. Remarkably,
Simpson’s rule also computes the integral of a cubic function f(x) = ax3 + bx2 + cx + d
exactly. Show this is true by showing that

∫ x2

x0

f(x)dx =
x2 − x0

3 · 2
(f(x0) + 4f((x0 + x2)/2) + f(x2)).

Note that the right hand side of this equation is exactly the Simpson approximation for the
cubic. This does require a bit of messy algebra, so you may prefer to use Sage.

8.7 Additional exerises

These problems require the techniques of this chapter, and are in no particular order. Some

problems may be done in more than one way.

1.

∫

(t+ 4)3 dt ⇒ 2.

∫

t(t2 − 9)3/2 dt ⇒

3.

∫

(et
2

+ 16)tet
2

dt ⇒ 4.

∫

sin t cos 2t dt ⇒

5.

∫

tan t sec2 t dt ⇒ 6.

∫

2t+ 1

t2 + t+ 3
dt ⇒

7.

∫

1

t(t2 − 4)
dt ⇒ 8.

∫

1

(25− t2)3/2
dt ⇒

9.

∫

cos 3t
√
sin 3t

dt ⇒ 10.

∫

t sec2 t dt ⇒

11.

∫

et
√
et + 1

dt ⇒ 12.

∫

cos4 t dt ⇒
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13.

∫

1

t2 + 3t
dt ⇒ 14.

∫

1

t2
√
1 + t2

dt ⇒

15.

∫

sec2 t

(1 + tan t)3
dt ⇒ 16.

∫

t3
√

t2 + 1 dt ⇒

17.

∫

et sin t dt ⇒ 18.

∫

(t3/2 + 47)3
√
t dt ⇒

19.

∫

t3

(2− t2)5/2
dt ⇒ 20.

∫

1

t(9 + 4t2)
dt ⇒

21.

∫

arctan 2t

1 + 4t2
dt ⇒ 22.

∫

t

t2 + 2t− 3
dt ⇒

23.

∫

sin3 t cos4 t dt ⇒ 24.

∫

1

t2 − 6t+ 9
dt ⇒

25.

∫

1

t(ln t)2
dt ⇒ 26.

∫

t(ln t)2 dt ⇒

27.

∫

t3et dt ⇒ 28.

∫

t+ 1

t2 + t− 1
dt ⇒



**Functions and Their Graphs 

Functions are a tool for describing the real world in mathematical 

terms. A function can be represented by an equation, a graph, a 

numerical table, or a verbal description. 

 

**DEFINITION Function 

A function ƒ(x) from a set D to a set Y is a rule that assigns a unique 

value ƒ(x) in Y to each x in D. In symbols: 

Where: the symbol )f( represents the function, and )x( is the 

independent variable, which represent  the input value of f. Also, )y( is 

the dependent variable, and represents the corresponding output  value 

of f at x. 

The set D of all possible input values is called the domain of the 

function. The set of  all values of ƒ(x) as x varies throughout D is called 

the range of the function. The range  may not include every element in 

the set Y. 

 

 

 



 

(b) The formula y = 1/x gives a real y-value for every x except x = 0. 

For consistency in the rules of arithmetic, we cannot divide any number 

by zero. The range of y = 1/x, the set of reciprocals of all nonzero real 

numbers, is the set of all nonzero real numbers 

 

 

 

 

 

 

 

 



 

 

 

**Piecewise-Defined Functions 

Sometimes a function is described by using different formulas on 

different parts of its domain. One example is the absolute value function. 

whose graph is given in Figure . The right-hand side of the equation 

means that the function equals x if x ≥ 0, and equals - x if x ˂ 0. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Real Numbers and the Real Line  
Calculus is based on the real number system. Real numbers are 

numbers that can be expressed as decimals.  

We distinguish three special subsets of real numbers:  

1. The natural numbers, namely 1, 2, 3, 4,…  

2. The integers, namely 0, ±1, ±2, ±3,…  

3. The rational numbers, which are ratios of integers. These numbers 
can be expressed in the form of a function m/n, where m and n are 

integers and n≠0. Examples are:  
2

3
 ,

−4

9
,

2

1
 

The rational numbers are real numbers with decimal expressions that 

are: 

· Terminating (ending in an infinite string), for example: 

3

4
 = 0.75000… = 0.75 

· Repeating (ending with a block of digits that repeats over and over), 

for example: 

23

11
 = 2.090909… = 2.202292 

4.  the irrational numbers  

√2   , √5
3

   , 𝜋 

 

 



The real numbers can be represented geometrically as points on a 

number line called the real line. 

 

 

Intervals 
The interval is a subset of the real line. It contains at least two numbers, 

and contains all the real numbers lying between any two of its elements. 
A finite interval is said to be closed if it contains both of its endpoints, 

half-open if it contains one endpoint, but not the other, and open if it 

contains neither end points. 
 

 

 
 

 



 

 

 

 

 

 

 

 

 

 

 

 



The solution set is the open interval (- 3  ̸7 , ∞ ) 

 

 

 

(c) The inequality can hold only if x>1, because otherwise 6/(x-1) is 

undefined or negative. 

 

 

 

 

 

 



Absolute Value 

The absolute value of a number x, denoted by |𝑋| is defined by the 

formula 
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vJust as a mountaineer climbs a mountain – because it is there, so

a good mathematics student studies new material because

it is there. — JAMES B. BRISTOL v

7.1  Introduction

Differential Calculus is centred on the concept of the

derivative. The original motivation for the derivative was

the problem of defining tangent lines to the graphs of

functions and calculating the slope of such lines. Integral

Calculus is motivated by the problem of defining and

calculating the area of the region bounded by the graph of

the functions.

If a function f  is differentiable in an interval I, i.e., its

derivative f ′exists at each point of I, then a natural question

arises that given f ′at each point of I, can we determine

the function? The functions that could possibly have given

function as a derivative are called anti derivatives (or

primitive) of the function. Further, the formula that gives

all these anti derivatives is called the indefinite integral of the function and such

process of finding anti derivatives is called integration. Such type of problems arise in

many practical situations. For instance, if we know the instantaneous velocity of an

object at any instant, then there arises a natural question, i.e., can we determine the

position of the object at any instant? There are several such practical and theoretical

situations where the process of integration is involved. The development of integral

calculus arises out of the efforts of solving the problems of the following types:

(a) the problem of finding a function whenever its derivative is given,

(b) the problem of finding the area bounded by the graph of a function under certain
conditions.

These  two problems lead to the two forms of the integrals, e.g., indefinite and
definite integrals, which together constitute the Integral Calculus.

Chapter 7

INTEGRALS

G .W. Leibnitz

(1646 -1716)
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There is a connection, known as the Fundamental Theorem of Calculus, between

indefinite integral and definite integral which makes the definite integral as a practical

tool for science and engineering. The definite integral is also used to solve many interesting

problems from various disciplines like economics, finance and probability.

In this Chapter, we shall confine ourselves to the study of indefinite and definite

integrals and their elementary properties including some techniques of integration.

7.2  Integration as an Inverse Process of Differentiation

Integration is the inverse process of differentiation. Instead of differentiating a function,

we are given the derivative of a function and asked to find its primitive, i.e., the original

function. Such a process is called integration or anti differentiation.

Let us consider the following examples:

We know that (sin )
d

x
dx

 = cos x ... (1)

3

( )
3

d x

dx
 = x 2 ... (2)

and ( )
xd

e
dx

= ex ... (3)

We observe that in (1), the function cos x is the derived function of sin x. We say

that sin x is an anti derivative (or an integral) of cos x. Similarly, in (2) and (3), 
3

3

x
 and

ex are the anti derivatives (or integrals) of x2 and ex, respectively. Again, we note that

for any real number C, treated as constant function, its derivative is zero and hence, we

can write (1), (2) and (3) as follows :

(sin + C) cos=
d

x x
dx

, 
3

2( + C)
3

=
d x

x
dx

and ( + C) =x xd
e e

dx
Thus, anti derivatives (or integrals) of the above cited functions are not unique.

Actually, there exist infinitely many anti derivatives of each of these functions which

can be obtained by choosing C arbitrarily from the set of real numbers. For this reason

C is customarily referred to as arbitrary constant. In fact, C is the parameter by

varying which one gets different anti derivatives (or integrals) of the given function.

More generally, if there is a function F such that F ( ) = ( )
d

x f x
dx

, ∀ x ∈ I (interval),

then for any arbitrary real number C, (also called constant of integration)

[ ]F ( ) + C
d

x
dx

 = f (x), x ∈ I
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Thus, {F + C, C ∈ R} denotes a family of anti derivatives of f.

Remark  Functions with same derivatives differ by a constant. To show this, let g and h

be two functions having the same derivatives on an interval I.

Consider the function f = g – h defined by f (x) = g(x) – h (x), ∀ x ∈ I

Then
df

dx
= f′ = g′  – h′ giving  f′ (x) = g′ (x) – h′ (x) ∀ x ∈ I

or f ′ (x) = 0, ∀x ∈ I by hypothesis,

i.e., the rate of change of f with respect to x is zero on I and hence f is constant.

In view of the above remark, it is justified to infer that the family {F + C, C ∈ R}

provides all possible anti derivatives of f.

We introduce a new symbol, namely, ( )f x dx∫  which will represent the entire

class of anti derivatives read as the indefinite integral of f with respect to x.

Symbolically, we write ( ) = F ( ) + Cf x dx x∫ .

Notation Given that  ( )
dy

f x
dx

= , we write y = ( )f x dx∫ .

For the sake of convenience, we mention below the following symbols/terms/phrases

with their meanings as given in the Table (7.1).

Table 7.1

Symbols/Terms/Phrases Meaning

( )f x dx∫ Integral of f  with respect to x

f (x) in  ( )f x dx∫ Integrand

x in  ( )f x dx∫ Variable of integration

Integrate Find the  integral

An integral of f A function F such that

F′(x) = f (x)

Integration The process of finding the integral

Constant of Integration Any real number C, considered as

constant function
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We already know the formulae for the derivatives of many important functions.

From these formulae, we can write down immediately the corresponding formulae

(referred to as standard formulae) for the integrals of these functions, as listed below

which will be used to find integrals of other functions.

Derivatives Integrals (Anti derivatives)

(i)

1

1

n
nd x

x
dx n

+ 
= 

+ 
 ;

1

C
1

n
n x

x dx
n

+

= +
+∫ , n ≠ –1

Particularly, we note that

( ) 1
d

x
dx

=  ;       Cdx x= +∫

(ii) ( )sin cos
d

x x
dx

=  ; cos sin Cx dx x= +∫

(iii) ( )– cos sin
d

x x
dx

=  ; sin cos Cx dx – x= +∫

(iv) ( ) 2tan sec
d

x x
dx

=  ;
2

sec tan Cx dx x= +∫

(v) ( ) 2
– cot cosec

d
x x

dx
=  ;

2
cosec cot Cx dx – x= +∫

(vi) ( )sec sec tan
d

x x x
dx

=  ; sec tan sec Cx x dx x= +∫

(vii) ( )– cosec cosec cot
d

x x x
dx

=  ; cosec cot – cosec Cx x dx x= +∫

(viii) ( )– 1

2

1
sin

1

d
x

dx – x
=

 ;
– 1

2
sin C

1

dx
x

– x
= +∫

(ix) ( )– 1

2

1
– cos

1

d
x

dx – x
=

 ;
– 1

2
cos C

1

dx
– x

– x
= +∫

(x) ( )– 1

2

1
tan

1

d
x

dx x
=

+
 ;

– 1

2
tan C

1

dx
x

x
= +

+∫

(xi) ( )– 1

2

1
– cot

1

d
x

dx x
=

+
 ;

– 1

2
cot C

1

dx
– x

x
= +

+∫
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(xii) ( )– 1

2

1
sec

1

d
x

dx x x –
=

 ;
– 1

2
sec C

1

dx
x

x x –
= +∫

(xiii) ( )– 1

2

1
– cosec

1

d
x

dx x x –
=

 ;
– 1

2
cosec C

1

dx
– x

x x –
= +∫

(xiv) ( )
x xd

e e
dx

=  ; C
x x

e dx e= +∫

(xv) ( )
1

log | |
d

x
dx x

= ;
1

log | | Cdx x
x

= +∫

(xvi)

x
xd a

a
dx log a

 
= 

 
 ; C

x
x a

a dx
log a

= +∫

ANote  In practice, we normally do not mention the interval over which the various

functions are defined. However, in any specific problem one has to keep it in mind.

7.2.1 Geometrical interpretation of indefinite integral

Let f (x) = 2x. Then 
2

( ) Cf x dx x= +∫ . For different values of C, we get different

integrals. But these integrals are very similar geometrically.

Thus, y = x2 + C, where C is arbitrary constant, represents a family of integrals. By

assigning different values to C, we get different members of the family. These together

constitute the indefinite integral. In this case, each integral represents a parabola with

its axis along y-axis.

Clearly, for C = 0, we obtain y = x2, a parabola with its vertex on the origin. The

curve y = x2 + 1 for C = 1 is obtained by shifting the parabola y = x2 one unit along

y-axis in positive direction. For C = – 1, y = x2 – 1 is obtained by shifting the parabola

y = x2 one unit along y-axis in the negative direction. Thus, for each positive value of C,

each parabola of the family has its vertex on the positive side of the y-axis and for

negative values of C, each has its vertex along the negative side of the y-axis. Some of

these have been shown in the Fig 7.1.

Let us consider the intersection of all these parabolas by a line x = a. In the Fig 7.1,

we have taken a > 0. The same is true when a < 0. If the line x = a intersects the

parabolas y = x2, y = x2 + 1, y = x2 + 2, y = x2 – 1, y = x2 – 2 at P
0
, P

1
, P

2
, P

–1
, P

–2
 etc.,

respectively, then 
dy

dx
 at these points equals 2a. This indicates that the tangents to the

curves at these points are parallel. Thus, 
2

C2 C F ( )x dx x x= + =∫ (say), implies that
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the tangents to all the curves y = F
C 

(x), C ∈ R, at the points of intersection of the
curves by the line x = a, (a ∈ R), are parallel.

Further, the following equation (statement) ( ) F ( ) C (say)f x dx x y= + =∫ ,

represents a family of curves. The different values of C will correspond to different

members of this family and these members can be obtained by shifting any one of the

curves parallel to itself. This is the geometrical interpretation of indefinite integral.

7.2.2 Some properties of indefinite integral

In this sub section, we shall derive some properties of indefinite integrals.

(I) The process of differentiation and integration are inverses of each other in the

sense of the following results :

( )
d

f x dx
dx
∫  = f (x)

and ( )f x dx′∫  = f (x) + C, where C is any arbitrary constant.

Fig 7.1
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Proof Let F be any anti derivative of f, i.e.,

F( )
d

x
dx

 = f (x)

Then ( )f x dx∫  = F(x) + C

Therefore ( )
d

f x dx
dx ∫

 = ( )F ( ) + C
d

x
dx

= F ( ) = ( )
d

x f x
dx

Similarly, we note that

f ′(x) = ( )
d

f x
dx

and hence ( )f x dx′∫  = f (x) + C

where C is arbitrary constant called constant of integration.

(II) Two indefinite integrals with the same derivative lead to the same family of

curves and so they are equivalent.

Proof Let f and g be two functions such that

( )
d

f x dx
dx
∫  = ( )

d
g x dx

dx ∫

or ( ) ( )
d

f x dx – g x dx
dx
 
 ∫ ∫  = 0

Hence ( ) ( )f x dx – g x dx∫ ∫ = C, where C is any real number   (Why?)

or ( )f x dx∫  = ( ) Cg x dx +∫

So the families of curves { }1 1( ) C ,C Rf x dx + ∈∫

and { }2 2( ) C , C Rg x dx + ∈∫  are identical.

Hence, in this sense, ( ) and ( )f x dx g x dx∫ ∫  are equivalent.
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A Note The equivalence of the families { }1 1( ) + C ,Cf x dx ∈∫ R  and

{ }2 2( ) + C ,Cg x dx ∈∫ R  is customarily expressed by writing ( ) = ( )f x dx g x dx∫ ∫ ,

without mentioning the parameter.

(III) [ ]( ) + ( ) ( ) + ( )f x g x dx f x dx g x dx=∫ ∫ ∫
Proof By Property (I), we have

[ ( ) + ( )]
d

f x g x dx
dx
 
 ∫  = f (x) + g (x) ... (1)

 On the otherhand, we find that

( ) + ( )
d

f x dx g x dx
dx

 
 ∫ ∫  = ( ) + ( )

d d
f x dx g x dx

dx dx
∫ ∫

= f (x) + g (x) ... (2)

  Thus, in view of Property (II), it follows by (1) and (2)  that

( )( ) ( )f x g x dx+∫ = ( ) ( )f x dx g x dx+∫ ∫ .

(IV)  For any real number k, ( ) ( )k f x dx k f x dx=∫ ∫

Proof By the Property (I), ( ) ( )
d

k f x dx k f x
dx

=∫ .

Also ( )
d

k f x dx
dx

 
 ∫  =  ( ) = ( )

d
k f x dx k f x

dx
∫

 Therefore, using the Property (II), we have ( ) ( )k f x dx k f x dx=∫ ∫ .

(V) Properties (III) and (IV) can be generalised to a finite number of functions

f
1
, f

2
, ..., f

n
 and the real numbers, k

1
, k

2
, ..., k

n
 giving

[ ]1 1 2 2( ) ( ) ( )n nk f x k f x ... k f x dx+ + +∫

= 1 1 2 2( ) ( ) ( )n nk f x dx k f x dx ... k f x dx+ + +∫ ∫ ∫ .

To find an anti derivative of a given function, we search intuitively for a function

whose derivative is the given function. The search for the requisite function for finding

an anti derivative is known as integration by the method of inspection. We illustrate it

through some examples.
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Example 1 Write an anti derivative for each of the following functions using the

method of inspection:

(i) cos 2x (ii) 3x2 + 4x3 (iii)
1

x
, x ≠ 0

Solution

(i) We look for a function whose derivative is cos 2x. Recall that

d

dx
 sin 2x = 2 cos 2x

or cos 2x = 
1

2

d

dx
 (sin 2x) =

1
sin 2

2

d
x

dx

 
 
 

Therefore, an anti derivative of cos 2x is 
1

sin 2
2

x .

(ii) We look for a function whose derivative is 3x2 + 4x3. Note that

( )3 4d
x x

dx
+ = 3x2 + 4x3.

Therefore, an anti derivative of 3x2 + 4x3  is  x3 + x4.

(iii) We know that

1 1 1
(log ) 0 and [log ( )] ( 1) 0

d d
x ,x – x – ,x

dx x dx – x x
= > = = <

Combining above, we get ( )
1

log 0
d

x , x
dx x

= ≠

Therefore, 
1

logdx x
x

=∫  is one of the anti derivatives of 
1

x
.

Example 2 Find the following integrals:

(i)

3

2

1x –
dx

x
∫ (ii)   

2

3( 1)x dx+∫ (iii)   ∫
3

2
1

( 2 – )+∫
x

x e dx
x

Solution

(i) We have

3
2

2

1 –x –
dx x dx – x dx

x
=∫ ∫ ∫ (by Property V)
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= 

1 1 2 1

1 2C C
1 1 2 1

–
x x

–
–

+ +   
+ +   

+ +   
;  C

1
, C

2
 are constants of integration

= 

2 1

1 2C C
2 1

–
x x

– –
–

+  = 

2

1 2

1
+ C C

2

x
–

x
+

= 
2

1
+ C

2

x

x
+ , where C = C

1
 – C

2
 is another constant of integration.

ANote  From now onwards, we shall write only one constant of integration in the

final answer.

(ii) We have
2 2

3 3( 1)x dx x dx dx+ = +∫ ∫ ∫

=

2
1

3

C
2

1
3

x
x

+

+ +

+
 = 

5

3
3

C
5

x x+ +

(iii) We have 

3 3

2 2
1 1

( 2 ) 2
x x

x e – dx x dx e dx – dx
x x

+ = +∫ ∫ ∫ ∫

=

3
1

2

2 – log + C
3

1
2

xx
e x

+

+

+

=

5

2
2

2 – log + C
5

x
x e x+

Example 3 Find the following integrals:

(i) (sin cos )x x dx+∫ (ii) cosec (cosec cot )x x x dx+∫

(iii) 2

1 sin

cos

– x
dx

x
∫

Solution

(i) We have

(sin cos ) sin cosx x dx x dx x dx+ = +∫ ∫ ∫
= – cos sin Cx x+ +
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(ii) We have

2
(cosec (cosec + cot ) cosec cosec cotx x x dx x dx x x dx= +∫ ∫ ∫

= – cot cosec Cx – x +

(iii) We have

2 2 2

1 sin 1 sin

cos cos cos

– x x
dx dx – dx

x x x
=∫ ∫ ∫

= 
2

sec tan secx dx – x x dx∫ ∫
= tan sec Cx – x +

Example 4 Find the anti derivative F of  f defined by f (x) = 4x3 – 6, where F (0) = 3

Solution One anti derivative of f (x) is x4 – 6x since

4
( 6 )

d
x – x

dx
 = 4x3 – 6

Therefore, the anti derivative F is given by

F(x) = x4 – 6x + C, where C is constant.

Given that F(0) = 3, which gives,

3 = 0 – 6 × 0 + C    or    C = 3

Hence, the required anti derivative is the unique function F defined by

F(x) = x4 – 6x + 3.

Remarks

(i) We see that if F is an anti derivative of f, then so is F + C, where C is any

constant. Thus, if we know one anti derivative F of a function f, we can write

down an infinite number of anti derivatives of f by adding any constant to F

expressed by F(x)  + C, C ∈ R. In applications, it is often necessary to satisfy an

additional condition which then determines a specific value of C giving unique

anti derivative of the given function.

(ii) Sometimes, F is not expressible in terms of elementary functions viz., polynomial,

logarithmic, exponential, trigonometric functions and their inverses etc. We are

therefore blocked for finding ( )f x dx∫ . For example, it is not possible to find

2– x
e dx∫  by inspection since we can not find a function whose derivative is 

2
– xe
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(iii) When the variable of integration is denoted by a variable other than x, the integral

formulae are modified accordingly. For instance

4 1
4 51

C C
4 1 5

y
y dy y

+

= + = +
+∫

7.2.3 Comparison between differentiation and integration

1. Both are operations on functions.

2. Both satisfy the property of linearity, i.e.,

(i) [ ]1 1 2 2 1 1 2 2( ) ( ) ( ) ( )
d d d

k f x k f x k f x k f x
dx dx dx

+ = +

(ii) [ ]1 1 2 2 1 1 2 2( ) ( ) ( ) ( )k f x k f x dx k f x dx k f x dx+ = +∫ ∫ ∫
Here k

1
 and k

2
 are constants.

3. We have already seen that all functions are not differentiable. Similarly, all functions

are not integrable. We will learn more about nondifferentiable functions and

nonintegrable functions in higher classes.

4. The derivative of a function, when it exists, is a unique function. The integral of

a function is not so. However, they are unique upto an additive constant, i.e., any

two integrals of a function differ by a constant.

5. When a polynomial function P is differentiated, the result is a polynomial whose

degree is 1 less than the degree of  P. When a polynomial function P is integrated,

the result is a polynomial whose degree is 1 more than that of P.

6. We can speak of the derivative at a point. We never speak of the integral at a

point, we speak of the integral of a function over an interval on which the integral

is defined as will be seen in Section 7.7.

7. The derivative of a function has a geometrical meaning, namely, the slope of the

tangent to the corresponding curve at a point. Similarly, the indefinite integral of

a function represents geometrically, a family of curves placed parallel to each

other having parallel tangents at the points of intersection of the curves of the

family with the lines orthogonal (perpendicular) to the axis representing the variable

of integration.

8. The derivative is used for finding some physical quantities like the velocity of a

moving particle, when the distance traversed at any time t is known. Similarly,

the integral is used in calculating the distance traversed when the velocity at time

t is known.

9. Differentiation is a process involving limits. So is integration, as will be seen in

Section 7.7.
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10. The process of differentiation and integration are inverses of each other as

discussed in Section 7.2.2 (i).

EXERCISE 7.1

Find an anti derivative (or integral) of the following functions by the method of inspection.

1. sin 2x 2. cos 3x 3. e 2x

4. (ax + b)2 5. sin 2x – 4 e3x

Find the following integrals in Exercises 6 to 20:

6.
3

(4 + 1) 
x

e dx∫ 7.
2

2

1
(1 – )x dx

x
∫ 8.

2
( )ax bx c dx+ +∫

9.
2

(2 )
x

x e dx+∫ 10.

2
1

x – dx
x

 
 
 
∫ 11.

3 2

2

5 4x x –
dx

x

+
∫

12.

3
3 4x x

dx
x

+ +
∫ 13.

3 2
1

1

x x x –
dx

x –

− +
∫ 14. (1 )– x x dx∫

15.
2

( 3 2 3)x x x dx+ +∫ 16. (2 3cos )
x

x – x e dx+∫
17.

2
(2 3sin 5 )x – x x dx+∫ 18. sec (sec tan )x x x dx+∫

19.

2

2

sec

cosec

x
dx

x
∫ 20.

2

2 – 3sin

cos

x

x∫ dx.

Choose the correct answer in Exercises 21 and 22.

21. The anti derivative of 
1

x
x

 
+ 

 
 equals

(A)

1 1

3 2
1

2 C
3

x x+ + (B)

2
23

2 1
C

3 2
x x+ +

(C)

3 1

2 2
2

2 C
3

x x+ + (D)

3 1

2 2
3 1

C
2 2

x x+ +

22. If 
3

4

3
( ) 4

d
f x x

dx x
= −  such that f (2) = 0. Then f (x) is

(A)
4

3

1 129

8
x

x
+ − (B)

3

4

1 129

8
x

x
+ +

(C)
4

3

1 129

8
x

x
+ + (D)

3

4

1 129

8
x

x
+ −
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7.3  Methods of Integration

In previous section, we discussed integrals of those functions which were readily

obtainable from derivatives of some functions. It was based on inspection, i.e., on the
search of a function F whose derivative is f which led us to the integral of f. However,

this method, which depends on inspection, is not very suitable for many functions.
Hence, we need to develop additional techniques or methods for finding the integrals

by reducing them into standard forms. Prominent among them are methods based on:

1. Integration by Substitution

2. Integration using Partial Fractions

3. Integration by Parts

7.3.1 Integration by substitution

In this section, we consider the method of integration by substitution.

The given integral ( )f x dx∫  can be transformed into another form by changing

the independent variable x to t by substituting x = g ( t).

Consider I = ( )f x dx∫

Put x = g(t) so that 
dx

dt
 =  g′(t).

We write dx = g′(t) dt

Thus I = ( ) ( ( )) ( )f x dx f g t g t dt= ′∫ ∫
This change of variable formula is one of the important tools available to us in the

name of integration by substitution. It is often important to guess what will be the useful
substitution. Usually, we make a substitution for a function whose derivative also occurs
in the integrand as illustrated in the following examples.

Example 5 Integrate the following functions w.r.t. x:

(i) sin mx (ii) 2x sin (x2 + 1)

(iii)

4 2
tan secx x

x
(iv)

1

2

sin (tan )

1

–
x

x+

Solution

(i) We know that derivative of mx is m. Thus, we make the substitution
mx = t so that mdx = dt.

Therefore,      
1

sin sinmx dx t dt
m

=∫ ∫  =  – 
1

m
cos t + C  = – 

1

m
cos mx + C
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(ii) Derivative of x2 + 1 is 2x. Thus, we use the substitution x2 + 1 = t so that
2x dx = dt.

Therefore,  
2

2 sin ( 1) sinx x dx t dt+ =∫ ∫  =  – cos t + C  = – cos (x2 + 1) + C

(iii) Derivative of x  is 

1

2
1 1

2 2

–

x
x

= . Thus, we use the substitution

1
so that giving

2
x t dx dt

x
= =  dx = 2 t dt.

Thus,

4 2 4 2
tan sec 2 tan secx x t t t dt

dx
tx

=∫ ∫  = 
4 2

2 tan sect t dt∫
Again, we make another substitution tan t = u so that sec2 t dt = du

Therefore,
4 2 4

2 tan sec 2t t dt u du=∫ ∫  = 

5

2 C
5

u
+

=
52

tan C
5

t +  (since u = tan t)

=
52

tan C (since )
5

x t x+ =

Hence,

4 2
tan secx x

dx
x

∫  =
52

tan C
5

x +

Alternatively, make the substitution tan x t=

(iv) Derivative of  1

2

1
tan

1

– x
x

=
+

. Thus, we use the substitution

tan–1  x = t so that 
21

dx

x+
 = dt.

Therefore ,  

1

2

sin (tan )
sin

1

–
x

dx t dt
x

=
+∫ ∫  =  – cos t + C = – cos (tan –1x) + C

Now, we discuss some important integrals involving trigonometric functions and
their standard integrals using substitution technique. These will be used later without
reference.

(i) ∫ tan = log sec + Cx dx x

We have

sin
tan

cos

x
x dx dx

x
=∫ ∫
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Put  cos x = t so that sin x dx = – dt

Then tan log C log cos C
dt

x dx – – t – x
t

= = + = +∫ ∫

or tan log sec Cx dx x= +∫
(ii) ∫ cot = log sin + Cx dx x

We have
cos

cot
sin

x
x dx dx

x
=∫ ∫

Put  sin x = t so that cos x dx = dt

Then cot
dt

x dx
t

=∫ ∫  = log Ct +  = log sin Cx +

(iii) ∫ sec = log sec + tan + Cx dx x x

We have

sec (sec tan )
sec

sec + tan

x x x
x dx dx

x x

+
=∫ ∫

Put sec x + tan x = t so that sec x (tan x + sec x) dx  = dt

Therefore, sec log + C = log sec tan C
dt

x dx t x x
t

= = + +∫ ∫

(iv) ∫ cosec = log cosec – cot + Cx dx x x

We have

cosec (cosec cot )
cosec

(cosec cot )

x x x
x dx dx

x x

+
=

+∫ ∫
Put cosec x + cot x = t so that – cosec x (cosec x + cot x) dx = dt

So cosec – – log | | – log |cosec cot | C
dt

x dx t x x
t

= = = + +∫ ∫

=

2 2
cosec cot

– log C
cosec cot

x x

x x

−
+

−

= log cosec cot Cx – x +

Example 6 Find the following integrals:

(i)
3 2

sin cosx x dx∫ (ii)    
sin

sin ( )

x
dx

x a+∫     (iii)  
1

1 tan
dx

x+∫
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Solution

(i) We have

3 2 2 2
sin cos sin cos ( sin )x x dx x x x dx=∫ ∫

= 
2 2

(1 – cos ) cos (sin )x x x dx∫
Put t = cos x so that dt = – sin x dx

Therefore,    
2 2

sin cos (sin )x x x dx∫  = 
2 2

(1 – )t t dt− ∫

= 

3 5
2 4

( – ) C
3 5

t t
– t t dt – –

 
= + 

 
∫

= 
3 51 1

cos cos C
3 5

– x x+ +

(ii) Put x + a = t. Then dx = dt. Therefore

sin sin ( )

sin ( ) sin

x t – a
dx dt

x a t
=

+∫ ∫

= 
sin cos cos sin

sin

t a – t a
dt

t∫

= cos – sin cota dt a t dt∫ ∫

= 1(cos ) (sin ) log sin Ca t – a t + 

= 1(cos ) ( ) (sin ) log sin ( ) Ca x a – a x a + + + 

= 1cos cos (sin ) log sin ( ) C sinx a a a – a x a – a+ +

Hence, 
sin

sin ( )

x
dx

x a+∫  = x cos a – sin a log |sin (x + a)| + C,

where,  C = – C
1
 sin a + a cos a, is another arbitrary constant.

(iii)
cos

1 tan cos sin

dx x dx

x x x
=

+ +∫ ∫

= 
1 (cos + sin + cos – sin )

2 cos sin

x x x x dx

x x+∫
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= 
1 1 cos – sin

2 2 cos sin

x x
dx dx

x x
+

+∫ ∫

= 
1C 1 cos sin

2 2 2 cos sin

x x – x
dx

x x
+ +

+∫ ... (1)

Now, consider 
cos sin

I
cos sin

x – x
dx

x x
=

+∫
Put cos x + sin x = t so that (cos x – sin x) dx = dt

Therefore       2I log C
dt

t
t

= = +∫ = 2log cos sin Cx x+ +

Putting it in (1), we get

1 2C C1
+ + log cos sin

1 tan 2 2 2 2

dx x
x x

x
= + +

+∫

= 
1 2C C1

+ log cos sin
2 2 2 2

x
x x+ + +

= 
1 2C C1

+ log cos sin C C
2 2 2 2

x
x x ,

 
+ + = + 

 

EXERCISE 7.2

Integrate the functions in Exercises 1 to 37:

1. 2

2

1

x

x+
2.

( )
2

log x

x
3.

1

logx x x+

4. sin sin (cos )x x 5. sin ( ) cos ( )ax b ax b+ +

6. ax b+ 7. 2x x + 8.
2

1 2x x+

9. 2
(4 2) 1x x x+ + + 10.

1

x – x
11.

4

x

x +
, x > 0

12.

1
3 53( 1)x – x 13.

2

3 3
(2 3 )

x

x+
14.

1

(log )
m

x x
, x > 0, 1≠m

15. 29 4

x

– x
16. 2 3x

e
+ 17. 2x

x

e
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18.

1

2
1

–tan x
e

x+
19.

2

2

1

1

x

x

e –

e +
20.

2 2

2 2

x – x

x – x

e – e

e e+

21. tan2 (2x – 3) 22. sec2 (7 – 4x) 23.
1

2

sin

1

–
x

– x

24.
2cos 3sin

6cos 4sin

x – x

x x+
25. 2 2

1

cos (1 tan )x – x
26.

cos x

x

27. sin 2 cos 2x x 28.
cos

1 sin

x

x+
29. cot x log sin x

30.
sin

1 cos

x

x+ 31. ( )
2

sin

1 cos

x

x+ 32.
1

1 cot x+

33.
1

1 tan– x
34.

tan

sin cos

x

x x
35.

( )2
1 log x

x

+

36.
( )

2
( 1) logx x x

x

+ +
37.

( )3 1 4
sin tan

1

–
x x

x
8+

Choose the correct answer in Exercises 38 and 39.

38.
10

9

10

10 10 log

10

x

e

x

x dx

x

+

+∫  equals

(A) 10x – x10 + C (B) 10x + x10  + C

(C) (10x – x10)–1  + C (D) log (10x + x10) + C

39. 2 2
equals

sin cos

dx

x x∫
(A) tan x + cot x + C (B)  tan x – cot x + C

(C) tan x cot x + C (D)  tan x – cot 2x + C

7.3.2  Integration using trigonometric identities

When the integrand involves some trigonometric functions, we use some known identities

to find the integral as illustrated through the following example.

Example 7 Find (i) 
2

cos x dx∫  (ii) sin 2 cos 3x x dx∫  (iii) 
3

sin x dx∫
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Solution

(i) Recall the identity cos 2x = 2 cos2 x – 1, which gives

cos2x = 
1 cos 2

2

x+

Therefore,      
2cos∫ x dx  = 

1
(1 + cos 2 )

2
x dx∫ = 

1 1
cos 2

2 2
dx x dx+∫ ∫

= 
1

sin 2 C
2 4

x
x+ +

(ii) Recall the identity sin x cos y = 
1

2
[sin (x + y) + sin (x – y)] (Why?)

Then   sin 2 cos 3∫ x xdx  = 
1

sin 5 sin
2

• 
 ∫ ∫x dx x dx

= 
1 1

cos 5 cos C
2 5

– x x
 

+ + 
 

= 
1 1

cos 5 cos C
10 2

– x x+ +

(iii) From the identity sin 3x = 3 sin x – 4 sin3 x, we find that

sin3x = 
3sin sin 3

4

x – x

Therefore,      
3

sin x dx∫  = 
3 1

sin sin 3
4 4

x dx – x dx∫ ∫

                                      = 
3 1

– cos cos 3 C
4 12

x x+ +

Alternatively, 
3 2

sin sin sinx dx x x dx=∫ ∫  = 
2

(1 – cos ) sinx x dx∫
Put cos x = t so that – sin x dx = dt

Therefore,     
3

sin x dx∫  = ( )2
1 – t dt− ∫  = 

3
2

C
3

t
– dt t dt – t+ = + +∫ ∫

= 
31

cos cos C
3

– x x+ +

Remark It can be shown using trigonometric identities that both answers are equivalent.



INTEGRALS         307

EXERCISE 7.3

Find the integrals of the functions in Exercises 1 to 22:

1. sin2 (2x + 5) 2. sin 3x cos 4x 3. cos 2x cos 4x cos 6x

4. sin3 (2x + 1) 5. sin3 x cos3 x 6. sin x sin 2x sin 3x

7. sin 4x sin 8x 8.
1 cos

1 cos

– x

x+
9.

cos

1 cos

x

x+

10. sin4 x 11. cos4 2x 12.
2

sin

1 cos

x

x+

13.
cos 2 cos 2

cos cos

x –

x –

α

α
14.

cos sin

1 sin 2

x – x

x+
15. tan3 2x sec 2x

16. tan4x 17.

3 3

2 2

sin cos

sin cos

x x

x x

+
18.

2

2

cos 2 2sin

cos

x x

x

+

19. 3

1

sin cosx x
20.

( )
2

cos 2

cos sin

x

x x+
21. sin – 1 (cos x)

22.
1

cos ( ) cos ( )x – a x – b

Choose the correct answer in Exercises 23 and 24.

23.
2 2

2 2

sin cos
is equal to

sin cos

x x
dx

x x

−
∫

(A) tan x + cot x + C (B) tan x + cosec x + C

(C) – tan x + cot x + C (D) tan x + sec x + C

24.
2

(1 )
equals

cos ( )

x

x

e x
dx

e x

+
∫

(A) – cot (exx) + C (B) tan (xex) + C

(C) tan (ex) + C (D) cot (ex) + C

7.4  Integrals of Some Particular Functions

In this section, we mention below some important formulae of integrals and apply them

for integrating many other related standard integrals:

(1) ∫ 2 2

1 –
= log + C

2 +–

dx x a

a x ax a
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(2) ∫ 2 2

1 +
= log + C

2 ––

dx a x

a a xa x

(3) ∫
– 1

2 2

1
tan C

dx x
= +

a ax + a

(4) ∫
2 2

2 2
= log + – + C

–

dx
x x a

x a

(5) ∫
– 1

2 2
= sin + C

–

dx x

aa x

(6) ∫
2 2

2 2
= log + + + C

+

dx
x x a

x a

We now prove the above results:

(1) We have  2 2

1 1

( ) ( )x – a x ax – a
=

+

= 
1 ( ) – ( ) 1 1 1

2 ( ) ( ) 2

x a x – a
–

a x – a x a a x – a x a

 +  
=   + +  

Therefore,  2 2

1

2

dx dx dx
–

a x – a x ax – a

 
=  

+ 
∫ ∫ ∫

= [ ]
1

log ( )| log ( )| C
2

| x – a – | x a
a

+ +

= 
1

log C
2

x – a

a x a
+

+

(2) In view of (1) above, we have

2 2

1 1 ( ) ( )

2 ( ) ( )–

a x a x

a a x a xa x

 + + −
=  

+ − 
 = 

1 1 1

2a a x a x

 
+ − + 
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      Therefore, 2 2
–

dx

a x
∫  = 

1

2

dx dx

a a x a x

 
+ − + 

∫ ∫

= 
1

[ log | | log | |] C
2

a x a x
a

− − + + +

= 
1

log C
2

a x

a a x

+
+

−

ANote  The technique used in (1) will be explained in Section 7.5.

(3) Put x = a tan θ. Then dx = a sec2 θ dθ.

Therefore,      2 2

dx

x a+∫  = 

2

2 2 2

θ θ

θ

sec

tan

a d

a a+∫

=
11 1 1

θ θ C tan C– x
d

a a a a
= + = +∫

(4) Let x = a secθ. Then dx = a secθ tan θ d θ.

Therefore,
2 2

dx

x a−
∫  =

2 2 2

secθ tanθ θ

sec θ

a d

a a−
∫

= 1secθ θ log secθ + tanθ + Cd =∫

=

2

12
log 1 C

x x
–

a a
+ +

=
2 2

1log log Cx x – a a+ − +

=
2 2

log + Cx x – a+ , where C = C
1
 – log |a|

(5) Let x = a sinθ. Then dx  = a cosθ dθ.

Therefore,  
2 2

dx

a x−
∫  =

2 2 2

θ θ

θ

cos

sin

a d

a – a
∫

=
1

θ= θ + C = sin C
– x

d
a

+∫
(6) Let x = a tan θ. Then dx = a sec2θ dθ.

Therefore,
2 2

dx

x a+
∫  =

2

2 2 2

θ θ

θ

sec

tan

a d

a a+
∫

  = 1θ θsecθ θ = log (sec tan ) Cd + +∫



310 MATHEMATICS

=

2

12
log 1 C

x x

a a
+ + +

=
2

1log log Cx x a |a |
2+ + − +

=
2

log Cx x a
2+ + + , where C = C

1
 – log |a|

Applying these standard formulae, we now obtain some more formulae which

are useful from applications point of view and can be applied directly to evaluate

other integrals.

(7) To find the integral 2

dx

ax bx c+ +∫ , we write

ax 2 + bx + c = 

2 2
2

2
2 4

b c b c b
a x x a x –

a a a a a

     
+ + = + +    

      

Now, put 
2

b
x t

a
+ = so that dx = dt and writing 

2
2

2
4

c b
– k

a a
= ± . We find the

integral reduced to the form 2 2

1 dt

a t k±∫  depending upon the sign of 

2

2
4

c b
–

a a

 
 
 

and hence can be evaluated.

(8) To find the integral of the type  
2

dx

ax bx c+ +
∫ , proceeding as in (7), we

obtain the integral using the standard formulae.

(9) To find the integral of the type 2

px q
dx

ax bx c

+

+ +∫ , where p, q, a, b, c are

constants, we are to find real numbers A, B such that

2
+ = A ( ) + B = A (2 ) + B

d
px q ax bx c ax b

dx
+ + +

To determine A and B, we equate from both sides the coefficients of x and the

constant terms. A and B are thus obtained and hence the integral is reduced to
one of the known forms.
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(10) For the evaluation of the integral of the type 
2

( )px q dx

ax bx c

+

+ +
∫ , we proceed

as in (9) and transform the integral into known standard forms.

Let us illustrate the above methods by some examples.

Example 8 Find the following integrals:

(i) 2
16

dx

x −∫ (ii)
2

2

dx

x x−
∫

Solution

(i) We have 2 2 2
16 4

dx dx

x x –
=

−∫ ∫  = 
4

log C
8 4

x –

x

1
+

+
[by 7.4 (1)]

(ii)

( )2 22 1 1

=
−

∫ ∫
dx dx

x x – x –

Put x – 1 = t. Then dx = dt.

Therefore,
2

2

dx

x x−
∫  =

2
1

dt

– t
∫  = 

1
sin ( ) C

–
t + [by 7.4 (5)]

=
1

sin ( – 1) C
–

x +

Example 9 Find the following integrals :

(i) 2
6 13

dx

x x− +∫ (ii) 2
3 13 10

dx

x x+ −∫ (iii) 2
5 2

dx

x x−
∫

Solution

(i) We have  x2 – 6x + 13 = x2 – 6x + 32 – 32 + 13 = (x – 3)2 + 4

So,
6 13

dx

x x
2 − +∫  =

( )2 2

1

3 2
dx

x – +
∫

Let x – 3 = t. Then dx = dt

Therefore,
6 13

dx

x x
2 − +∫  =  

1

2 2

1
tan C

2 22

–dt t

t
= +

+∫ [by 7.4 (3)]

=
11 3

tan C
2 2

– x –
+
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(ii) The given integral is of the form 7.4 (7). We write the denominator of the integrand,

2
3 13 10x x –+  =

2 13 10
3

3 3

x
x –
 

+ 
 

=

2 2
13 17

3
6 6

x –
    

+    
     

(completing the square)

Thus
3 13 10

dx

x x
2 + −∫  = 2 2

1

3 13 17

6 6

dx

x
   

+ −   
   

∫

Put 
13

6
x t+ = . Then dx = dt.

Therefore,
3 13 10

dx

x x
2 + −∫  = 2

2

1

3 17

6

dt

t
 

−  
 

∫

= 1

17

1 6log C
17 17

3 2
6 6

t –

t

+

× × +
[by 7.4 (i)]

= 1

13 17

1 6 6log C
13 1717

6 6

x –

x

+
+

+ +

= 1

1 6 4
log C

17 6 30

x

x

−
+

+

= 1

1 3 2 1 1
log C log

17 5 17 3

x

x

−
+ +

+

=
1 3 2

log C
17 5

x

x

−
+

+
, where C = 1

1 1
C log

17 3
+
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(iii) We have 
2 25 2

5
5

dx dx

xx x
x –

2
=

 −
 
 

∫ ∫

=
2 2

1

5 1 1

5 5

dx

x – –
   
   
   

∫  (completing the square)

Put 
1

5
x – t= . Then dx  = dt.

Therefore,
5 2

dx

x x
2 −

∫  =
2

2

1

5 1

5

dt

t –
 
 
 

∫

=

2
21 1

log C
55

t t –
 

+ + 
 

[by 7.4 (4)]

=
21 1 2

log C
5 55

x
x – x –+ +

Example 10 Find the following integrals:

(i)
2

2 6 5

x
dx

x x
2

+

+ +∫ (ii) 2

3

5 4

x
dx

x x

+

− +
∫

Solution

(i) Using the formula 7.4 (9), we express

x + 2 = ( )2
A 2 6 5 B

d
x x

dx
+ + +  = A (4 6) Bx + +

Equating the coefficients of x and the constant terms from both sides, we get

4A = 1 and 6A + B = 2   or    A = 
1

4
 and B = 

1

2
.

Therefore,
2

2 6 5

x

x x
2

+

+ +∫  =
1 4 6 1

4 22 6 5 2 6 5

x dx
dx

x x x x
2 2

+
+

+ + + +∫ ∫

= 1 2

1 1
I I

4 2
+     (say) ... (1)
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In I
1
, put 2x2 + 6x + 5 = t, so that (4x + 6) dx  = dt

Therefore, I
1
 = 1log C

dt
t

t
= +∫

=
2

1log | 2 6 5 | Cx x+ + +        ... (2)

and I
2
 = 2

2

1

522 6 5
3

2

dx dx

x x
x x

=
+ + + +

∫ ∫

= 2 2

1

2 3 1

2 2

dx

x
   

+ +   
   

∫

Put 
3

2
x t+ = , so that dx  = dt, we get

I
2
 = 2

2

1

2 1

2

dt

t
 

+  
 

∫  = 
1

2

1
tan 2 C

1
2

2

–
t +

×
[by 7.4 (3)]

=
1

2

3
tan 2 + C

2

–
x
 

+ 
 

 = ( )1
2tan 2 3 + C

–
x + ... (3)

Using (2) and (3) in (1), we get

( )2 12 1 1
log 2 6 5 tan 2 3 C

4 22 6 5

–x
dx x x x

x x
2

+
= + + + + +

+ +∫

where, C =
1 2C C

4 2
+

(ii) This integral is of the form given in 7.4 (10). Let us express

x + 3 = 
2

A (5 4 ) + B
d

– x – x
dx

= A (– 4 – 2x) + B

Equating the coefficients of x and the constant terms from both sides, we get

– 2A = 1 and – 4 A + B = 3, i.e., A = 
1

2
–  and B = 1
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Therefore,
2

3

5 4

x
dx

x x

+

− −
∫  =

( )
2 2

4 21

2 5 4 5 4

– – x dx dx
–

x x x x
+

− − − −
∫ ∫

=
1

2
–  I

1
 + I

2
... (1)

In I
1
, put 5 – 4x – x2 = t, so that (– 4 – 2x) dx = dt.

Therefore, I
1
=  

( )
2

4 2

5 4

– x dx dt

tx x

−
=

− −
∫ ∫  = 12 Ct +

= 2
12 5 4 C– x – x + ... (2)

Now consider I
2
 =

2 2
5 4 9 ( 2)

dx dx

x x – x
=

− − +
∫ ∫

Put x + 2 = t, so that dx  = dt.

Therefore, I
2
 =

1

22 2
sin + C

33

–dt t

t
=

−
∫ [by 7.4 (5)]

=
1

2

2
sin C

3

– x +
+ ... (3)

Substituting (2) and (3) in (1), we obtain

2 1

2

3 2
5 – 4 – + sin C

35 4

–x x
– x x

– x – x

+ +
= +∫ , where 1

2

C
C C

2
–=

EXERCISE 7.4

Integrate the functions in Exercises 1 to 23.

1.

2

6

3

1

x

x +
2.

2

1

1 4x+
3.

( )
2

1

2 1– x +

4.
2

1

9 25– x
5. 4

3

1 2

x

x+
6.

2

6
1

x

x−

7.
2

1

1

x –

x –
8.

2

6 6

x

x a+
9.

2

2

sec

tan 4

x

x +
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10.
2

1

2 2x x+ +
11. 2

1

9 6 5x x+ +
12. 2

1

7 6– x – x

13.
( ) ( )

1

1 2x – x –
14.

2

1

8 3x – x+
15.

( )( )

1

x – a x – b

16.
2

4 1

2 3

x

x x –

+

+
17.

2

2

1

x

x –

+
18. 2

5 2

1 2 3

x

x x

−

+ +

19.
( )( )

6 7

5 4

x

x – x –

+
20.

2

2

4

x

x – x

+
21.

2

2

2 3

x

x x

+

+ +

22. 2

3

2 5

x

x – x

+

−
23. 2

5 3

4 10

x

x x

+

+ +
.

Choose the correct answer in Exercises 24 and 25.

24. 2
equals

2 2

dx

x x+ +∫
(A) x tan–1 (x + 1) + C (B) tan–1  (x + 1) + C

(C) (x + 1) tan–1x + C (D) tan–1x + C

25.
2

equals
9 4

dx

x x−
∫

(A) –11 9 8
sin C

9 8

x − 
+ 

 
(B) –11 8 9

sin C
2 9

x − 
+ 

 

(C)
–11 9 8

sin C
3 8

x − 
+ 

 
(D)

–11 9 8
sin C

2 9

x − 
+ 

 

7.5  Integration by Partial Fractions

Recall that a rational function is defined as the ratio of two polynomials in the form

P( )

Q( )

x

x
, where P (x) and Q(x) are polynomials in x and Q(x) ≠ 0. If the degree of P(x)

is less than the degree of Q(x), then the rational function is called proper, otherwise, it

is called improper. The improper rational functions can be reduced to the proper rational
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functions by long division process. Thus, if 
P( )

Q( )

x

x
 is improper, then 1P ( )P( )

T( )
Q( ) Q( )

xx
x

x x
= + ,

where T(x) is a polynomial in x and 
1P ( )

Q( )

x

x
is a proper rational function. As we know

how to integrate polynomials, the integration of any rational function is reduced to the

integration of a proper rational function. The rational functions which we shall consider

here for integration purposes will be those whose denominators can be factorised into

linear and quadratic factors. Assume that we want to evaluate 
P( )

Q( )

x
dx

x∫ , where 
P( )

Q( )

x

x

is proper rational function. It is always possible to write the integrand as a sum of

simpler rational functions by a method called partial fraction decomposition. After this,

the integration can be carried out easily using the already known methods. The following

Table 7.2 indicates the types of simpler partial fractions that are to be associated with

various kind of rational functions.

Table 7.2

 S.No. Form of the rational function Form of the partial fraction

1.
( – ) ( – )

px q

x a x b

+
, a ≠ b

A B

x – a x – b
+

2. 2
( – )

px q

x a

+
( )

2

A B

x – a x – a
+

3.

2

( – ) ( ) ( )

px qx r

x a x – b x – c

+ + A B C

x – a x – b x – c
+ +

4.

2

2
( – ) ( )

px qx r

x a x – b

+ +
2

A B C

( )x – a x – bx – a
+ +

5.

2

2( – ) ( )

px qx r

x a x bx c

+ +

+ + 2

A B + Cx

x – a x bx c
+

+ +
,

where x2 + bx  + c cannot be factorised further

In the above table, A, B and C are real numbers to be determined suitably.
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Example 11 Find ( 1) ( 2)

dx

x x+ +∫

Solution The integrand is a proper rational function. Therefore, by using the form of

partial fraction [Table 7.2 (i)], we write

1

( 1) ( 2)x x+ +
 =

A B

1 2x x
+

+ +
... (1)

where, real numbers A and B are to be determined suitably. This gives

1 = A (x + 2) + B (x + 1).

Equating the coefficients of x and the constant term, we get

A + B = 0

and 2A + B = 1

Solving these equations, we get A =1 and B = – 1.

Thus, the integrand is given by

1

( 1) ( 2)x x+ +
 =

1 – 1

1 2x x
+

+ +

Therefore,
( 1) ( 2)

dx

x x+ +∫  =
1 2

dx dx
–

x x+ +∫ ∫

= log 1 log 2 Cx x+ − + +

=
1

log C
2

x

x

+
+

+

Remark The equation (1) above is an identity, i.e. a statement true for all (permissible)

values of x. Some authors use the symbol ‘≡’ to indicate that the statement is an

identity and use the symbol ‘=’ to indicate that the statement is an equation, i.e., to

indicate that the statement is true only for certain values of x.

Example 12 Find 

2

2

1

5 6

x
dx

x x

+

− +∫

Solution Here the integrand 

2

2

1

5 6

x

x – x

+

+
 is not proper rational function, so we divide

x2 + 1 by x2 – 5x + 6 and find that
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2

2

1

5 6

x

x – x

+

+
 = 2

5 5 5 5
1 1

( 2) ( 3)5 6

x – x –

x – x –x – x
+ = +

+

Let
5 5

( 2) ( 3)

x –

x – x –
 =

A B

2 3x – x –
+

So that 5x – 5 = A (x – 3) + B (x – 2)

Equating the coefficients of x and constant terms on both sides, we get A + B = 5
and 3A + 2B = 5. Solving these equations, we get A = – 5  and B = 10

Thus,

2

2

1

5 6

x

x – x

+

+
 =

5 10
1

2 3x – x –
− +

Therefore,

2

2

1

5 6

x
dx

x – x

+

+∫  =
1

5 10
2 3

dx
dx dx

x – x –
− +∫ ∫ ∫

= x – 5 log |x – 2 | + 10 log |x – 3 | + C.

Example 13 Find 2

3 2

( 1) ( 3)

x
dx

x x

−

+ +∫

Solution The integrand is of the type as given in Table 7.2 (4). We write

2

3 2

( 1) ( 3)

x –

x x+ +
 = 2

A B C

1 3( 1)x xx
+ +

+ ++

So that 3x – 2 = A (x + 1) (x + 3) + B (x + 3) + C (x + 1)2

= A (x2 + 4x + 3) + B (x + 3) + C (x2 + 2x + 1 )

Comparing coefficient of x 2, x and constant term on both sides, we get
A + C = 0, 4A + B + 2C = 3 and 3A + 3B + C = – 2. Solving these equations, we get

11 5 11
A B and C

4 2 4

– –
,= = = . Thus the integrand is given by

2

3 2

( 1) ( 3)

x

x x

−

+ +
 = 2

11 5 11

4 ( 1) 4 ( 3)2 ( 1)
– –

x xx+ ++

Therefore, 2

3 2

( 1) ( 3)

x

x x

−

+ +∫  = 2

11 5 11

4 1 2 4 3( 1)

dx dx dx
–

x xx
−

+ ++∫ ∫ ∫

=
11 5 11

log +1 log 3 C
4 2 ( + 1) 4

x x
x

+ − + +

=
11 +1 5

log + C
4 + 3 2 ( +1)

x

x x
+
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Example 14 Find 

2

2 2
( 1) ( 4)

x
dx

x x+ +∫

Solution  Consider 
2

2 2
( 1) ( 4)

x

x x+ +
 and put x2 = y.

Then

2

2 2
( 1) ( 4)

x

x x+ +
 =

( 1) ( 4)

y

y y+ +

Write
( 1) ( 4)

y

y y+ +
 =

A B

1 4y y
+

+ +

So that y =  A (y + 4) + B (y + 1)

Comparing coefficients of y and constant terms on both sides, we get A + B = 1

and 4A + B = 0, which give

A =
1 4

and B
3 3

− =

Thus,

2

2 2
( 1) ( 4)

x

x x+ +
 = 2 2

1 4

3 ( 1) 3 ( 4)
–

x x
+

+ +

Therefore,

2

2 2
( 1) ( 4)

x dx

x x+ +∫  = 2 2

1 4

3 31 4

dx dx
–

x x
+

+ +∫ ∫

=
1 11 4 1

tan tan C
3 3 2 2

– – x
– x + × +

=
1 11 2

tan tan C
3 3 2

– – x
– x + +

In the above example, the substitution was made only for the partial fraction part

and not for the integration part. Now, we consider an example, where the integration

involves a combination of the substitution method and the partial fraction method.

Example 15 Find 
( )

2

3 sin 2 cos

5 cos 4 sin

–
d

– –

φ φ
φ

φ φ∫

Solution Let y = sin φ

Then dy = cosφ  dφ
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Therefore,
( )

2

3 sin 2 cos

5 cos 4 sin

–
d

– –

φ φ
φ

φ φ∫  = 2

(3 – 2)

5 (1 ) 4

y dy

– – y – y∫

= 2

3 2

4 4

y –
dy

y – y +∫

= ( )
2

3 2
I (say)

2

y –

y –
=∫

Now, we write
( )2

3 2

2

y –

y –
 = 2

A B

2 ( 2)y y
+

− −
[by Table 7.2 (2)]

Therefore, 3y – 2 = A (y – 2) + B

Comparing the coefficients of y and constant term, we get A = 3 and B – 2A = – 2,

which gives A = 3 and B = 4.

Therefore, the required integral is given by

I = 2

3 4
[ + ]

2 ( 2)
dy

y – y –∫  = 2
3 + 4

2 ( 2)

dy dy

y – y –
∫ ∫

=
1

3 log 2 4 C
2

y –
y

 
− + + 

− 

=
4

3 log sin 2 C
2 sin–

φ − + +
φ

=
4

3 log (2 sin ) + C
2 sin

− φ +
− φ

 (since, 2 – sin φ is always positive)

Example 16 Find 

2

2

1

( 2) ( 1)

x x dx

x x

+ +

+ +∫

Solution The integrand is a proper rational function. Decompose the rational function

into partial fraction [Table 2.2(5)]. Write

2

2

1

( 1) ( 2)

x x

x x

+ +

+ +
 = 2

A B + C

2 ( 1)

x

x x
+

+ +

Therefore, x2 + x + 1 = A (x2 + 1) + (Bx + C) (x + 2)
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Equating the coefficients of x2, x and of constant term of both sides, we get

A + B =1, 2B + C = 1 and A + 2C = 1. Solving these equations, we get

3 2 1
A , B and C

5 5 5
= = =

Thus, the integrand is given by

2

2

1

( 1) ( 2)

x x

x x

+ +

+ +
 = 2

2 1

3 5 5

5 ( 2) 1

x

x x

+
+

+ +
 = 2

3 1 2 1

5 ( 2) 5 1

x

x x

+ 
+  

+ + 

Therefore,

2

2

1

( +1) ( 2)

x x
dx

x x

+ +

+∫  = 2 2

3 1 2 1 1

5 2 5 51 1

dx x
dx dx

x x x
+ +

+ + +∫ ∫ ∫

=
2 13 1 1

log 2 log 1 tan C
5 5 5

–x x x+ + + + +

EXERCISE 7.5

Integrate the rational functions in Exercises 1 to 21.

1.
( 1) ( 2)

x

x x+ +
2. 2

1

9x –
3.

3 1

( 1) ( 2) ( 3)

x –

x – x – x –

4.
( 1) ( 2) ( 3)

x

x – x – x –
5. 2

2

3 2

x

x x+ +
6.

2
1

(1 2 )

– x

x – x

7. 2( 1) ( – 1)

x

x x+
8. 2( 1) ( 2)

x

x – x +
9. 3 2

3 5

1

x

x – x x

+

− +

10. 2

2 3

( 1) (2 3)

x

x – x

−

+
11. 2

5

( 1) ( 4)

x

x x+ −
12.

3

2

1

1

x x

x

+ +

−

13. 2

2

(1 ) (1 )x x− +
14. 2

3 1

( 2)

x –

x +
15. 4

1

1x −

16.
1

( 1)nx x +
 [Hint:  multiply numerator and denominator by x n – 1  and put xn = t ]

17.
cos

(1 – sin ) (2 – sin )

x

x x
[Hint : Put sin x = t]
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18.

2 2

2 2

( 1) ( 2)

( 3) ( 4)

x x

x x

+ +

+ +
19. 2 2

2

( 1) ( 3)

x

x x+ +
20. 4

1

( 1)x x –

21.
1

( 1)
x

e –
[Hint : Put ex = t]

Choose the correct answer in each of the Exercises 22 and 23.

22.
( 1) ( 2)

x dx

x x− −∫  equals

(A)

2
( 1)

log C
2

x

x

−
+

−
(B)

2
( 2)

log C
1

x

x

−
+

−

(C)

2
1

log C
2

x

x

− 
+ 

− 
(D) log ( 1) ( 2) Cx x− − +

23.
2

( 1)

dx

x x +∫ equals

(A)
21

log log ( +1) + C
2

x x− (B)
21

log log ( +1) + C
2

x x+

(C) 21
log log ( +1) + C

2
x x− + (D)

21
log log ( +1) + C

2
x x+

7.6  Integration by Parts

In this section, we describe one more method of integration, that is found quite useful in
integrating products of functions.

If u and v are any two differentiable functions of a single variable x (say). Then, by
the product rule of differentiation, we have

( )
d

uv
dx

 =
dv du

u v
dx dx

+

Integrating both sides, we get

uv =
dv du

u dx v dx
dx dx

+∫ ∫

or
dv

u dx
dx

∫  =
du

uv – v dx
dx

∫ ... (1)

Let u = f (x) and 
dv

dx
= g (x). Then

du

dx
= f ′(x) and v = ( )g x dx∫
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Therefore, expression (1) can be rewritten as

( ) ( )f x g x dx∫  = ( ) ( ) [ ( ) ] ( )f x g x dx – g x dx f x dx′∫ ∫ ∫

i.e., ( ) ( )f x g x dx∫  = ( ) ( ) [ ( ) ( ) ]f x g x dx – f x g x dx dx′∫ ∫ ∫
If we take f as the first function and g as the second function, then this formula

may be stated as follows:

“The integral of the product of two functions = (first function) × (integral

of the second function) – Integral of [(differential coefficient of the first function)

× (integral of the second function)]”

Example 17 Find cosx x dx∫
Solution Put f (x) = x (first function) and g (x) = cos x (second function).

Then, integration by parts gives

cosx x dx∫  = cos [ ( ) cos ]
d

x x dx – x x dx dx
dx

∫ ∫ ∫

= sin sinx x – x dx∫  = x sin x + cos x + C

Suppose, we take f (x) = cos x and g (x) = x. Then

cosx x dx∫  = cos [ (cos ) ]
d

x x dx – x x dx dx
dx∫ ∫ ∫

= ( )
2 2

cos sin
2 2

x x
x x dx+ ∫

Thus, it shows that the integral cosx x dx∫  is reduced to the comparatively more

complicated integral having more power of x. Therefore, the proper choice of the first

function and the second function is significant.

Remarks

(i) It is worth mentioning that integration by parts is not applicable to product of

functions in all cases. For instance, the method does not work for sinx x dx∫ .

The reason is that there does not exist any function whose derivative is

x  sin x.

(ii) Observe that while finding the integral of the second function, we did not add

any constant of integration. If we write the integral of the second function cos x
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as sin x + k, where k is any constant, then

cosx x dx∫  = (sin ) (sin )x x k x k dx+ − +∫
= (sin ) (sinx x k x dx k dx+ − −∫ ∫
= (sin ) cos Cx x k x – kx+ − +  = sin cos Cx x x+ +

This shows that adding a constant to the integral of the second function is

superfluous so far as the final result is concerned while applying the method of

integration by parts.

(iii) Usually, if any function is a power of x or a polynomial in x, then we take it as the

first function. However, in cases where other function is inverse trigonometric

function or logarithmic function, then we take them as first function.

Example 18 Find log x dx∫
Solution To start with, we are unable to guess a function whose derivative is log x. We

take log x as the first function and the constant function 1 as the second function. Then,

the integral of the second function is x.

Hence, (log .1)x dx∫  = log 1 [ (log ) 1 ]
d

x dx x dx dx
dx

−∫ ∫ ∫

=
1

(log ) – log Cx x x dx x x – x
x

⋅ = +∫ .

Example 19 Find 
x

x e dx∫
Solution Take first function as x and second function as ex. The integral of the second

function is ex.

Therefore,
x

x e dx∫  = 1
x x

x e e dx− ⋅∫  = xex – ex + C.

Example 20 Find 

1

2

sin

1

–
x x

dx
x−

∫

Solution Let first function be sin – 1x and second function be 
2

1

x

x−
.

First we find the integral of the second function, i.e., 
2

1

x dx

x−
∫ .

Put t =1 – x2. Then dt = – 2x dx
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Therefore,
2

1

x dx

x−
∫  =

1

2

dt
–

t
∫  = 

2
– 1t x= − −

Hence,

1

2

sin

1

–
x x

dx
x−

∫  = ( )1 2 2

2

1
(sin ) 1 ( 1 )

1

–
x – x – x dx

x
− − −

−
∫

=
2 11 sin C– x x x−− + +  = 

2 1
1 sin Cx – x x

−− +

Alternatively, this integral can also be worked out by making substitution sin–1 x  = θ and

then integrating by parts.

Example 21  Find sin
x

e x dx∫

Solution  Take ex as the first function and sin x as second function. Then, integrating

by parts, we have

I sin ( cos ) cos
x x x

e x dx e – x e x dx= = +∫ ∫
= – e x cos x + I

1
 (say) ... (1)

Taking ex
 
and cos x as the first and second functions, respectively, in I

1
, we get

I
1
 = sin sin

x x
e x – e x dx∫

Substituting the value of I
1
 in (1), we get

I = – ex cos x + ex sin x – I  or  2I = ex (sin x – cos x)

Hence, I = sin (sin cos ) + C
2

x
x e

e x dx x – x=∫
Alternatively, above integral can also be determined by taking sin x as the first function

and ex the second function.

7.6.1 Integral of the type [ ( ) + ( )]
x

e f x f x dx′∫

We have I = [ ( ) + ( )]
x

e f x f x dx′∫  = ( ) + ( )
x x

e f x dx e f x dx′∫ ∫

= 1 1I ( ) , where I = ( )
x x

e f x dx e f x dx′+ ∫ ∫ ... (1)

Taking f(x) and ex as the first function and second function, respectively, in I
1
 and

integrating it by parts, we have I
1
 = f  (x) ex – ( ) C

x
f x e dx′ +∫

Substituting I
1
 in (1), we get

I = ( ) ( ) ( ) C
x x x

e f x f x e dx e f x dx′ ′− + +∫ ∫  = ex f (x) + C
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Thus, ′∫ [ ( ) ( )]
x

e  f x + f x dx  = ( ) C
x

e f x +

Example 22 Find (i) 
1

2

1
(tan )

1

x –
e x

x
+

+∫ dx   (ii) 
2

2

( + 1)

( + 1)

x
x e

x
∫  dx

Solution

(i) We have I =
1

2

1
(tan )

1

x –
e x dx

x
+

+∫

Consider f (x) = tan– 1x, then  f ′(x) = 2

1

1 x+

Thus, the given integrand is of the form ex [ f (x) + f ′(x)].

Therefore, 
1

2

1
I (tan )

1

x –
e x dx

x
= +

+∫  = ex tan– 1x + C

(ii) We have 
2

2

( +1)
I

( +1)

x
x e

x
= ∫ dx

2

2

1 +1+1)
[ ]

( +1)

x x –
e dx

x
= ∫

2

2 2

1 2
[ ]

( +1) ( +1)

x x –
e dx

x x
= +∫  2

1 2
[ + ]

+1 ( +1)

x x –
e dx

x x
= ∫

Consider 
1

( )
1

x
f x

x

−
=

+
, then  2

2
( )

( 1)
f x

x
′ =

+

Thus, the given integrand is of the form ex [f (x) + f ′(x)].

Therefore,
2

2

1 1
C

1( 1)

x xx x
e dx e

xx

+ −
= +

++∫

EXERCISE 7.6

Integrate the functions in Exercises 1 to 22.

1. x sin x 2. x sin 3x 3. x2 ex 4. x log x

5. x log 2x 6. x2 log x 7. x sin– 1x 8. x tan–1  x

9. x cos–1 x 10. (sin–1x)2 11.

1

2

cos

1

x x

x

−

−
12. x sec2 x

13. tan –1x 14. x (log x)2 15. (x2 + 1) log x
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16. ex (sinx + cosx) 17. 2
(1 )

x
x e

x+
18.

1 sin

1 cos

x x
e

x

 +
 

+ 

19. 2

1 1
–xe

x x

 
 
 

20. 3

( 3)

( 1)

x
x e

x

−

−
21. e2x sin x

22.
1

2

2
sin

1

– x

x

 
 

+ 

Choose the correct answer in Exercises 23 and 24.

23.
32 x

x e dx∫  equals

(A)
31

C
3

x
e + (B)

21
C

3

x
e +

(C)
31

C
2

x
e + (D)

21
C

2

x
e +

24. sec (1 tan )
x

e x x dx+∫  equals

(A) ex cos x + C (B) ex sec x + C

(C) ex sin x + C (D) ex tan x + C

7.6.2 Integrals of some more types

Here, we discuss some special types of standard integrals based on the technique of

integration  by parts :

(i) 2 2
x a dx−∫ (ii) 2 2

x a dx+∫ (iii) 2 2a x dx−∫

(i)  Let 
2 2I x a dx= −∫

Taking constant function 1 as the second function and integrating by parts, we

have

I =
2 2

2 2

1 2

2

x
x x a x dx

x a
− −

−
∫

=

2
2 2

2 2

x
x x a dx

x a
− −

−
∫  = 

2 2 2
2 2

2 2

x a a
x x a dx

x a

− +
− −

−
∫
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=
2 2 2 2 2

2 2

dx
x x a x a dx a

x a
− − − −

−
∫ ∫

=
2 2 2

2 2
I

dx
x x a a

x a
− − −

−
∫

or 2I =
2 2 2

2 2

dx
x x a a

x a
− −

−
∫

or I = ∫
2 2x – a dx = 

2
2 2 2 2

– – log + – + C
2 2

x a
x a x x a

Similarly, integrating other two integrals by parts, taking constant function 1 as the

second function, we get

(ii) ∫
2

2 2 2 2 2 21
+ = + + log + + + C

2 2

a
x a dx x x a x x a

(iii) ∫
2

2 2 2 2 –11
– = – + sin + C

2 2

a x
a x dx x a x

a

Alternatively, integrals (i), (ii) and (iii) can also be found by making trigonometric

substitution x = a secθ in (i), x = a tanθ in (ii) and x = a sin θ in (iii) respectively.

Example 23 Find 
2

2 5x x dx+ +∫
Solution Note that

2
2 5x x dx+ +∫  =

2( 1) 4x dx+ +∫
Put  x + 1 = y, so that dx = dy . Then

2
2 5x x dx+ +∫  =

2 2
2y dy+∫

=
2 21 4

4 log 4 C
2 2

y y y y+ + + + +         [using 7.6.2 (ii)]

=
2 21

( 1) 2 5 2 log 1 2 5 C
2

x x x x x x+ + + + + + + + +

Example 24 Find 
23 2x x dx− −∫

Solution Note that 
2 2

3 2 4 ( 1)x x dx x dx− − = − +∫ ∫
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Put x + 1 = y so that dx = dy.

Thus
23 2x x dx− −∫  =

24 y dy−∫

=
2 11 4

4 sin C
2 2 2

– y
y y− + + [using 7.6.2 (iii)]

=
2 11 1

( 1) 3 2 2 sin C
2 2

– x
x x x

+ 
+ − − + + 

 

EXERCISE 7.7

Integrate the functions in Exercises 1 to 9.

1. 24 x− 2. 21 4x− 3. 2 4 6x x+ +

4. 2
4 1x x+ + 5. 2

1 4x x− − 6. 2
4 5x x+ −

7. 2
1 3x x+ − 8. 2

3x x+ 9.

2

1
9

x
+

Choose the correct answer in Exercises 10 to 11.

10.
2

1 x dx+∫ is equal to

(A) ( )2 21
1 log 1 C

2 2

x
x x x+ + + + +

(B)

3

2 22
(1 ) C

3
x+ + (C)

3

2 22
(1 ) C

3
x x+ +

(D)
2

2 2 21
1 log 1 C

2 2

x
x x x x+ + + + +

11.
2

8 7x x dx− +∫  is equal to

(A)
2 21

( 4) 8 7 9log 4 8 7 C
2

x x x x x x− − + + − + − + +

(B)
2 21

( 4) 8 7 9 log 4 8 7 C
2

x x x x x x+ − + + + + − + +

(C)
2 21

( 4) 8 7 3 2log 4 8 7 C
2

x x x x x x− − + − − + − + +

(D)
2 21 9

( 4) 8 7 log 4 8 7 C
2 2

x x x x x x− − + − − + − + +



INTEGRALS         331

7.7   Definite Integral

In the previous sections, we have studied about the indefinite integrals and discussed

few methods of finding them including integrals of some special functions. In this

section, we shall study what is called definite integral of a function. The definite integral

has a unique value. A definite integral is denoted by ( )
b

a
f x dx∫ , where a is called the

lower limit of the integral and b is called the upper limit of the integral. The definite

integral is introduced either as the limit of a sum or if it has an anti derivative F in the

interval [a, b], then its value is the difference  between the values of F at the end

points, i.e., F(b) – F(a). Here, we shall consider these two cases separately as discussed

below:

7.7.1  Definite integral as the limit of a sum

Let f be a continuous function defined on close interval [a, b]. Assume that all the

values taken by the function are non negative, so the graph of the function is a curve

above the x-axis.

The definite integral ( )
b

a
f x dx∫  is the area bounded by the curve y = f (x), the

ordinates x = a, x = b and the x-axis. To evaluate this area, consider the region PRSQP

between this curve, x-axis and the ordinates x = a and x = b (Fig 7.2).

Divide the interval [a, b] into n equal subintervals denoted by [x
0
, x

1
], [x

1
, x

2
] ,...,

[x
r – 1

, x
r
], ..., [x

n – 1
, x

n
], where x

0
 = a, x

1
 = a + h, x

2
 = a + 2h, ... , x

r
 = a + rh and

x
n
 = b = a + nh or .

b a
n

h

−
=  We note that as n → ∞, h → 0.

Fig 7.2

O

Y

XX'

Y'

Q

P

C

M
D
L

S

A B R
a = x0 x1 x2 xr-1 xr x =bn

y
f x

 = ( )
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The region PRSQP under consideration is the sum of n subregions, where each

subregion is defined on subintervals [x
r – 1

, x
r
], r = 1, 2, 3, …, n.

From Fig 7.2, we have

area of the rectangle (ABLC) < area of the region (ABDCA) < area of the rectangle

(ABDM)         ... (1)

Evidently as x
r
 – x

r–1
 → 0, i.e., h → 0 all the three areas shown in (1) become

nearly equal to each other. Now we form the following sums.

s
n
 = h [ f(x

0
) + … + f (x

n - 1
)] = 

1

0

( )
n

r

r

h f x
−

=
∑ ... (2)

and  S
n
 = 1 2

1

[ ( ) ( ) ( )] ( )
n

n r

r

h f x f x f x h f x
=

+ +…+ = ∑ ... (3)

Here, s
n
 and S

n
 denote the sum of areas of all lower rectangles and upper rectangles

raised over subintervals [x
r–1

, x
r
] for r = 1, 2, 3, …, n, respectively.

In view of the inequality (1) for an arbitrary subinterval [x
r–1

, x
r
], we have

s
n
 < area of the region PRSQP < S

n
... (4)

As n → ∞ strips become narrower and narrower, it is assumed that the limiting

values of (2) and (3) are the same in both cases and the common limiting value is the

required area under the curve.

Symbolically, we write

lim Sn
n→∞

 = lim n
n

s
→∞

 = area of the region PRSQP = ( )
b

a
f x dx∫ ... (5)

It follows that this area is also the limiting value of any area which is between that

of the rectangles below the curve and that of the rectangles above the curve. For

the sake of convenience, we shall take rectangles with height equal to that of the

curve at the left hand edge of each subinterval. Thus, we rewrite (5) as

( )
b

a
f x dx∫  =

0
lim [ ( ) ( ) ... ( ( – 1) ]
h

h f a f a h f a n h
→

+ + + + +

or ( )
b

a
f x dx∫  =

1
( – ) lim [ ( ) ( ) ... ( ( – 1) ]

n
b a f a f a h f a n h

n→∞
+ + + + +      ... (6)

where h =
–

0
b a

as n
n

→ → ∞

The above expression (6) is known as the definition of definite integral as the limit

of sum.

Remark The value of the definite integral of a function over any particular interval

depends on the function and the interval, but not on the variable of integration that we
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choose to represent the independent variable. If the independent variable is denoted by

t or u instead of x, we simply write the integral as ( )
b

a
f t dt∫  or ( )

b

a
f u du∫ instead of

( )
b

a
f x dx∫ . Hence, the variable of integration is called a dummy variable.

Example 25 Find 
2

2

0
( 1)x dx+∫  as the limit of a sum.

Solution By definition

( )
b

a
f x dx∫  =

1
( – ) lim [ ( ) ( ) ... ( ( – 1) ],

n
b a f a f a h f a n h

n→∞
+ + + + +

where, h =
–b a

n

In this example, a = 0, b = 2, f (x) = x2 + 1, 
2 – 0 2

h
n n

= =

Therefore,

2 2

0
( 1)x dx+∫  =  

1 2 4 2 ( – 1)
2 lim [ (0) ( ) ( ) ... ( )]

n

n
f f f f

n n n n→∞
+ + + +

=

2 2 2

2 2 2

1 2 4 (2 – 2)
2 lim [1 ( 1) ( 1) ... 1 ]

n

n

n n n n→∞

 
+ + + + + + + 

 

=
2 2 2

-

1 1
2 lim [(1 1 ... 1) (2 4 ... (2 – 2) ]

2→ ∞
+ + + + + + +

1442443n
n terms

n
n n

=
2

2 2 21 2
2 lim [ (1 2 ... ( – 1) ]

n
n n

n n
2→∞

+ + + +

=
1 4 ( 1) (2 – 1)

2 lim [ ]
6n

n n n
n

n n
2→∞

−
+

=
1 2 ( 1) (2 –1)

2 lim [ ]
3n

n n
n

n n→∞

−
+

=
2 1 1

2 lim [1 (1 ) (2 – )]
3n n n→∞

+ −  = 
4

2 [1 ]
3

+  = 
14

3
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Example 26 Evaluate 
2

0

x
e dx∫ as the limit of a sum.

Solution By definition

2

0

xe dx∫  =

2 4 2 – 2
01

(2 – 0) lim ...

n

n n n

n
e e e e

n→ ∞

 
+ + + + 

  

Using the sum to n terms of a G.P., where a = 1, 

2

nr e= , we have

2

0

xe dx∫ =

2

2

1 – 1
2 lim [ ]

1

n

n

n
n

e

n
e

→∞

−

 = 

2

2

1 – 1
2 lim

– 1
n

n

e

n
e

→∞

 
 
 
 

=

2

2

2 ( – 1)

– 1
lim 2

2

n

n

e

e

n

→∞

 
 

⋅ 
 
 

 = e2 – 1 [using 
0

( 1)
lim 1

h

h

e

h→

−
= ]

EXERCISE 7.8

Evaluate the following definite integrals as limit of sums.

1.
b

a
x dx∫ 2.

5

0
( 1)x dx+∫ 3.

3 2

2
x dx∫

4.
4 2

1
( )x x dx−∫ 5.

1

1

x
e dx

−∫ 6.
4 2

0
( )

x
x e dx+∫

7.8  Fundamental Theorem of Calculus

7.8.1  Area function

We have defined ( )
b

a
f x dx∫  as the area of

the region bounded by the curve y = f(x),

the ordinates x = a and x = b and x-axis. Let x

be a given point in [a, b]. Then ( )
x

a
f x dx∫

represents the area of the light shaded region Fig 7.3
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in Fig 7.3 [Here it is assumed that f (x) > 0 for x ∈ [a, b], the assertion made below is

equally true for other functions as well]. The area of this shaded region depends upon

the value of x.

In other words, the area of this shaded region is a function of x. We denote this

function of x by A(x). We call the function A(x) as Area function and is given by

A (x) = ∫ ( )
x

a
f x dx ... (1)

Based on this definition, the two basic fundamental theorems have been given.

However, we only state them as their proofs are beyond the scope of this text book.

7.8.2  First fundamental theorem of integral calculus

Theorem 1 Let f be a continuous function on the closed interval [a, b] and let A (x) be

the area function. Then A′′′′′(x) = f (x), for all x ∈∈∈∈∈ [a, b].

7.8.3  Second fundamental theorem of integral calculus

We state below an important theorem which enables us to evaluate definite integrals

by making use of anti derivative.

Theorem 2 Let f  be continuous function defined on the closed interval [a, b] and F be

an anti derivative of f. Then ∫ ( )
b

a
f x dx = [F( )] =

b
ax  F (b) – F(a).

Remarks

(i) In words, the Theorem 2 tells us that ( )
b

a
f x dx∫ = (value of the anti derivative F

of f at the upper limit b – value of the same anti derivative at the lower limit a).

(ii) This theorem is very useful, because it gives us a method of calculating the

definite integral more easily, without calculating the limit of a sum.

(iii) The crucial operation in evaluating a definite integral is that of finding a function

whose derivative is equal to the integrand. This strengthens the relationship

between differentiation and integration.

(iv) In ( )
b

a
f x dx∫ , the function f  needs to be well defined and continuous in [a, b].

For instance, the consideration of definite integral 
1

3 2 2

2
( – 1)x x dx

−∫  is erroneous

since the function f expressed by f(x) = 

1

2 2( –1)x x  is not defined in a portion

– 1 < x < 1 of the closed interval [– 2, 3].
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Steps for calculating ( )
b

a
f x dx∫ .

(i) Find the indefinite integral ( )f x dx∫ . Let this be F(x). There is no need to keep

integration constant C because if we consider F(x) + C instead of F(x), we get

( ) [F ( ) C] [F( ) C]– [F( ) C] F( ) – F( )
b b

aa
f x dx x b a b a= + = + + =∫ .

Thus, the arbitrary constant disappears in evaluating the value of the definite
integral.

(ii) Evaluate F(b) – F(a) = [F ( )]
b

ax , which is the value of  ( )
b

a
f x dx∫ .

We now consider some examples

Example 27 Evaluate the following integrals:

(i)
3

2

2
x dx∫ (ii)

9

34
22(30 – )

x
dx

x

∫

(iii)
2

1 ( 1) ( 2)

x dx

x x+ +∫ (iv)   
34

0
sin 2 cos 2t t dt

π

∫

Solution

(i) Let 
3 2

2
I x dx= ∫ . Since 

3
2

F ( )
3

x
x dx x= =∫ ,

Therefore, by the second fundamental theorem, we get

I = 
27 8 19

F (3) – F (2) –
3 3 3

= =

(ii) Let 
9

34
22

I

(30 – )

x
dx

x

= ∫ . We first find the anti derivative of the integrand.

Put 

3

2
3

30 – . Then –
2

x t x dx dt= =  or 
2

–
3

x dx dt=

Thus,  
3 2

22

2
–

3
(30 – )

x dt
dx

t
x

=∫ ∫  = 
2 1

3 t

 
 
 

 = 3

2

2 1
F ( )

3
(30 – )

x

x

 
  = 
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Therefore, by the second fundamental theorem of calculus, we have

I =

9

3

2

4

2 1
F(9) – F(4)

3
(30 – )x

 
 =  
  

=
2 1 1

3 (30 – 27) 30 – 8

 
− 

 
 = 

2 1 1 19

3 3 22 99

 
− = 

 

(iii) Let 
2

1
I

( 1) ( 2)

x dx

x x
=

+ +∫

Using partial fraction, we get  
–1 2

( 1) ( 2) 1 2

x

x x x x
= +

+ + + +

So
( 1) ( 2)

x dx

x x+ +∫  = – log 1 2 log 2 F( )x x x+ + + =

Therefore, by the second fundamental theorem of calculus, we have

I = F(2) – F(1) = [– log 3 + 2 log 4] – [– log 2 + 2 log 3]

= – 3 log 3 + log 2 + 2 log 4 = 
32

log
27

 
 
 

(iv) Let 
34

0
I sin 2 cos2t t dt

π

= ∫ . Consider 
3

sin 2 cos2t t dt∫

Put sin 2t = u so that 2 cos 2t  dt = du or cos 2t dt = 
1

2
 du

So
3

sin 2 cos2t t dt∫  =
31

2
u du∫

=
4 41 1

[ ] sin 2 F ( ) say
8 8

u t t= =

Therefore, by the second fundamental theorem of integral calculus

I =
4 41 1

F ( ) – F (0) [sin – sin 0]
4 8 2 8

π π
= =
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EXERCISE 7.9

Evaluate the definite integrals in Exercises 1 to 20.

1.
1

1
( 1)x dx

−
+∫ 2.

3

2

1
dx

x
∫ 3.

2 3 2

1
(4 – 5 6 9)x x x dx+ +∫

4.
4

0
sin 2x dx

π

∫ 5.
2

0
cos 2x dx

π

∫ 6.
5

4

x
e dx∫ 7.

4

0
tanx dx

π

∫

8.
4

6

cosec x dx

π

π∫ 9.
1

0 2
1–

dx

x
∫ 10.

1

20 1

dx

x+∫ 11.
3

22 1

dx

x −∫

12. 22

0
cos x dx

π

∫ 13.
3

22 1

x dx

x +∫ 14.
1

20

2 3

5 1

x
dx

x

+

+∫ 15.
21

0

x
x e dx∫

16.

2
2

21

5

4 3

x

x x+ +∫ 17.
2 34

0
(2 sec 2)x x dx

π

+ +∫ 18.
2 2

0
(sin – cos )

2 2

x x
dx

π

∫

19.
2

20

6 3

4

x
dx

x

+

+∫ 20.
1

0
( sin )

4

x x
x e dx

π
+∫

Choose the correct answer in Exercises 21 and 22.

21.
3

21 1

dx

x+∫  equals

(A)
3

π
(B)

2

3

π
(C)

6

π
(D)

12

π

22.

2

3
20 4 9

dx

x+∫  equals

(A)
6

π
(B)

12

π
(C)

24

π
(D)

4

π

7.9  Evaluation of Definite Integrals by Substitution

In the previous sections, we have discussed several methods for finding the indefinite

integral. One of the important methods for finding the indefinite integral is the method

of substitution.
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To evaluate ( )
b

a
f x dx∫ , by substitution, the steps could be as follows:

1. Consider the integral without limits and substitute, y = f (x) or x = g(y) to reduce

the given integral to a known form.

2. Integrate the new integrand with respect to the new variable without mentioning

the constant of integration.

3. Resubstitute for the new variable and write the answer in terms of the original

variable.

4. Find the values of answers obtained in (3) at the given limits of integral and find

the difference of the values at the upper and lower limits.

ANote  In order to quicken this method, we can proceed as follows: After

performing steps 1, and 2, there is no need of step 3. Here, the integral will be kept

in the new variable itself, and the limits of the integral will accordingly be changed,

so that we can perform the last step.

Let us illustrate this by examples.

Example 28 Evaluate 
1 4 5

1
5 1x x dx

−
+∫ .

Solution Put  t =  x5 + 1, then dt = 5x4 dx .

Therefore,
4 5

5 1x x dx+∫  = t dt∫  = 

3

2
2

3
t  = 

3
5 2

2
( 1)

3
x +

Hence,
1 4 5

1
5 1x x dx

−
+∫  =

1
3

5 2

– 1

2
( 1)

3
x

 
+ 

  

= ( )
3 3

5 52 2
2

(1 1) – (– 1) 1
3

 
+ + 

  

=

3 3

2 2
2

2 0
3

 
− 

  
 = 

2 4 2
(2 2)

3 3
=

Alternatively, first we transform the integral and then evaluate the transformed integral

with new limits.
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Let t = x5 + 1. Then dt = 5 x4 dx.

Note that, when x = – 1, t = 0 and when x = 1, t = 2
Thus,  as x varies from – 1 to 1, t varies from 0 to 2

Therefore
1 4 5

1
5 1x x dx

−
+∫  =

2

0
t dt∫

=

23 3 3

2 2 2

0

2 2
2 – 0

3 3
t
   

=   
      

 = 
2 4 2

(2 2)
3 3

=

Example 29 Evaluate 
– 1

1

20

tan

1

x
dx

x+∫

Solution Let t = tan – 1x, then 
2

1

1
dt dx

x
=

+
. The new limits are, when x = 0, t = 0 and

when x = 1, 
4

t
π

= . Thus, as x varies from 0 to 1, t varies from 0 to 
4

π
.

Therefore
–1

1

20

tan

1

x
dx

x+∫ =

2 4
4

0
0

2

t
t dt

π
π

 
 
 

∫  = 
2 2

1
– 0

2 16 32

 π π
= 

 

EXERCISE 7.10

Evaluate the integrals in Exercises 1 to 8 using substitution.

1.
1

20 1

x
dx

x +∫ 2. 52

0
sin cos d

π

φ φ φ∫ 3.
1 – 1

20

2
sin

1

x
dx

x

 
 

+ 
∫

4.
2

0
2x x +∫  (Put x + 2 = t2) 5.

2
20

sin

1 cos

x
dx

x

π

+∫

6.
2

20 4 –

dx

x x+∫ 7.
1

21 2 5

dx

x x− + +∫ 8.
2 2

21

1 1
–

2

x
e dx

x x

 
 
 

∫
Choose the correct answer in Exercises 9 and 10.

9. The value of the integral 

1
3 31

1 4

3

( )x x
dx

x

−
∫  is

(A) 6 (B) 0 (C) 3 (D) 4

10. If f (x) = 
0

sin
x

t t dt∫ , then f ′(x) is

(A) cosx + x sin x (B) x sinx

(C) x cosx (D) sinx + x cosx
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7.10  Some Properties of Definite Integrals

We list below some important properties of definite integrals. These will be useful in
evaluating the definite integrals more easily.

P
0 
: ( ) ( )

b b

a a
f x dx f t dt=∫ ∫

P
1 
: ( ) – ( )

b a

a b
f x dx f x dx=∫ ∫ . In particular, ( ) 0

a

a
f x dx =∫

P
2
 : ( ) ( ) ( )

b c b

a a c
f x dx f x dx f x dx= +∫ ∫ ∫

P
3
 : ( ) ( )

b b

a a
f x dx f a b x dx= + −∫ ∫

P
4
 :

0 0
( ) ( )

a a

f x dx f a x dx= −∫ ∫
(Note that P

4
 is a particular case of P

3
)

P
5
 :

2

0 0 0
( ) ( ) (2 )

a a a

f x dx f x dx f a x dx= + −∫ ∫ ∫

P
6
 :

2

0 0
( ) 2 ( ) , if (2 ) ( )

a a

f x dx f x dx f a x f x= − =∫ ∫   and

                 0 if f (2a – x) = – f (x)

P
7
 : (i)  

0
( ) 2 ( )

a a

a
f x dx f x dx

−
=∫ ∫ , if f is an even function, i.e., if f (– x) = f (x).

(ii)  ( ) 0
a

a
f x dx

−
=∫ , if f is an odd function, i.e., if f (– x) = – f (x).

We give the proofs of these properties one by one.

Proof of P
0
 It follows directly by making the substitution x = t.

Proof of P
1
 Let F be anti derivative of f. Then, by the second fundamental theorem of

calculus, we have ( ) F ( ) – F ( ) – [F ( ) F ( )] ( )
b a

a b
f x dx b a a b f x dx= = − = −∫ ∫

Here, we observe that, if a = b, then ( ) 0
a

a
f x dx =∫ .

Proof of P
2
 Let F be anti derivative of f. Then

( )
b

a
f x dx∫  = F(b) – F(a) ... (1)

( )
c

a
f x dx∫  = F(c) – F(a) ... (2)

and ( )
b

c
f x dx∫  = F(b) – F(c) ... (3)
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Adding (2) and (3), we get ( ) ( ) F( ) – F( ) ( )
c b b

a c a
f x dx f x dx b a f x dx+ = =∫ ∫ ∫

This proves the property P
2
.

Proof of P
3
  Let t = a + b – x. Then dt = – dx. When x = a, t = b and when x = b, t = a.

Therefore

( )
b

a
f x dx∫  = ( – )

a

b
f a b t dt− +∫

= ( – )
b

a
f a b t dt+∫  (by P

1
)

= ( – )
b

a
f a b x+∫ dx by P

0

Proof of P
4
 Put t = a – x. Then dt = – dx. When x = 0, t = a and when x = a, t = 0. Now

proceed as in P
3
.

Proof of P
5
 Using P

2
, we have 

2 2

0 0
( ) ( ) ( )

a a a

a
f x dx f x dx f x dx= +∫ ∫ ∫ .

Let t = 2a – x in the second integral on the right hand side. Then
dt = – dx. When x = a, t = a and when x = 2a, t = 0. Also x = 2a – t.

Therefore, the second integral becomes

2
( )

a

a
f x dx∫  =

0

– (2 – )
a

f a t dt∫  = 
0

(2 – )
a

f a t dt∫  = 
0

(2 – )
a

f a x dx∫

Hence
2

0
( )

a

f x dx∫  =
0 0

( ) (2 )
a a

f x dx f a x dx+ −∫ ∫

Proof of P
6
 Using P

5
, we have 

2

0 0 0
( ) ( ) (2 )

a a a

f x dx f x dx f a x dx= + −∫ ∫ ∫        ... (1)

Now, if f (2a – x) = f (x), then (1) becomes

2

0
( )

a

f x dx∫  =
0 0 0

( ) ( ) 2 ( ) ,
a a a

f x dx f x dx f x dx+ =∫ ∫ ∫
and if f(2a – x) = – f (x), then (1) becomes

2

0
( )

a

f x dx∫  =  
0 0

( ) ( ) 0
a a

f x dx f x dx− =∫ ∫
Proof of P

7
 Using P

2
, we have

( )
a

a
f x dx

−∫  =
0

0
( ) ( )

a

a
f x dx f x dx

−
+∫ ∫ . Then

Let t = – x in the first integral on the right hand side.

dt = – dx. When x = – a, t = a and when

x = 0, t = 0. Also x = – t.
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Therefore ( )
a

a
f x dx

−∫  =
0

0
– (– ) ( )

a

a
f t dt f x dx+∫ ∫

=
0 0

(– ) ( )
a a

f x dx f x dx+∫ ∫        (by P
0
)  ... (1)

(i) Now, if f is an even function, then f (–x) = f (x) and so (1) becomes

0 0 0
( ) ( ) ( ) 2 ( )

a a a a

a
f x dx f x dx f x dx f x dx

−
= + =∫ ∫ ∫ ∫

(ii) If f is an odd function, then f (–x) = –  f(x) and so (1) becomes

0 0
( ) ( ) ( ) 0

a a a

a
f x dx f x dx f x dx

−
= − + =∫ ∫ ∫

Example 30 Evaluate 
2

3

1
–x x dx

−∫

Solution We note that x3 – x ≥ 0 on [– 1, 0] and x3 – x ≤  0 on [0, 1] and that

x3 – x ≥ 0 on [1, 2]. So by P
2
 we write

2 3

1
–x x dx

−∫  =
0 1 23 3 3

1 0 1
( – ) – ( – ) ( – )x x dx x x dx x x dx

−
+ +∫ ∫ ∫

=
0 1 23 3 3

1 0 1
( – ) ( – ) ( – )x x dx x x dx x x dx

−
+ +∫ ∫ ∫

=

0 1 24 2 2 4 4 2

–1 0 1

– – –
4 2 2 4 4 2

x x x x x x     
+ +     

     

= ( )
1 1 1 1 1 1

– – – 4 – 2 – –
4 2 2 4 4 2

     
+ +     

     

=
1 1 1 1 1 1

– 2
4 2 2 4 4 2

+ + − + − +  = 
3 3 11

2
2 4 4

− + =

Example 31 Evaluate 
24

–

4

sin x dx

π

π∫

Solution We observe that sin2 x is an even function. Therefore, by P
7
 (i), we get

24

–

4

sin x dx

π

π∫  =
24

0
2 sin x dx

π

∫
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= 4

0

(1 cos 2 )
2

2

x
dx

π
−

∫  = 4

0
(1 cos 2 )x dx

π

−∫

=
4

0

1
– sin 2

2
x x

π

 
 
 

 = 
1 1

– sin –0 –
4 2 2 4 2

π π π 
= 

 

Example 32 Evaluate 
20

sin

1 cos

x x
dx

x

π

+∫

Solution Let I = 20

sin

1 cos

x x
dx

x

π

+∫ . Then, by P
4
, we have

I =  20

( ) sin ( )

1 cos ( )

x x dx

x

π π − π −

+ π −∫

= 20

( ) sin

1 cos

x x dx

x

π π −

+∫  = 20

sin
I

1 cos

x dx

x

π
π −

+∫

or 2 I = 20

sin

1 cos

x dx

x

π
π

+∫

or I = 20

sin

2 1 cos

x dx

x

ππ

+∫
Put cos x = t so that – sin x dx = dt. When x = 0, t = 1 and when x = π, t = – 1.

Therefore, (by P
1
) we get

I =
1

21

–

2 1

dt

t

−π

+∫ = 
1

212 1

dt

t−

π

+∫

=
1

20 1

dt

t
π

+∫  (by P
7
,
 2

1
since

1 t+
 is even function)

=

2
1– 1 – 1 1

0
tan tan 1 – tan 0 – 0

4 4
t

− π π    π = π = π =      

Example 33 Evaluate 
1 5 4

1
sin cosx x dx

−∫

Solution Let I = 
1

5 4

1
sin cosx x dx

−∫ . Let f(x) = sin5 x cos4 x. Then

f (– x) = sin5 (– x) cos4 (– x) = – sin5 x cos4 x = – f (x), i.e., f is an odd function.

Therefore, by P
7
 (ii), I = 0
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Example 34 Evaluate 
4

2
4 40

sin

sin cos

x
dx

x x

π

+∫

Solution Let I = 
4

2
4 40

sin

sin cos

x
dx

x x

π

+∫ ... (1)

Then, by P
4

I =

4

2

0 4 4

sin ( )
2

sin ( ) cos ( )
2 2

x
dx

x x

π
π

−

π π
− + −

∫  = 
4

2
4 40

cos

cos sin

x
dx

x x

π

+∫       ... (2)

Adding (1) and (2), we get

2I =
4 4

22 2
4 40 0 0

sin cos
[ ]

2sin cos

x x
dx dx x

x x

ππ π
+ π

= = =
+∫ ∫

Hence I =
4

π

Example 35 Evaluate 
3

6
1 tan

dx

x

π

π +
∫

Solution  Let I = 
3 3

6 6

cos

1 tan cos sin

x dxdx

x x x

π π

π π
=

+ +
∫ ∫ ... (1)

Then, by P
3

I =
3

6

cos
3 6

cos sin
3 6 3 6

x dx

x x

π

π

π π 
+ − 

 

π π π π   
+ − + + −   

   

∫

=
3

6

sin

sin cos

x
dx

x x

π

π +
∫ ... (2)

Adding (1) and (2), we get

2I = [ ]3 3

6 6
3 6 6

dx x

π π

π π

π π π
= = − =∫ . Hence I

12

π
=
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Example 36 Evaluate 2

0
log sin x dx

π

∫

Solution Let I =
2

0
logsinx dx

π

∫
Then, by P

4

I = 2 2

0 0
log sin log cos

2
x dx x dx

π π
π 

− = 
 

∫ ∫

Adding the two values of I, we get

2I = ( )2

0
log sin log cosx x dx

π

+∫

= ( )2

0
log sin cos log 2 log 2x x dx

π

+ −∫ (by adding and subtracting log 2)

=
2 2

0 0
log sin2 log2x dx dx

π π

−∫ ∫ (Why?)

Put 2x = t in the first integral. Then 2 dx  = dt, when x = 0, t  = 0 and when 
2

x
π

= ,

t = π.

Therefore 2I =
0

1
log sin log 2

2 2
t dt

π π
−∫

=
2

0

2
log sin log 2

2 2
t dt

π
π

−∫  [by P
6
 as sin (π – t) = sin t)

= 2

0
log sin log 2

2
x dx

π
π

−∫  (by changing variable t  to x)

= I log 2
2

π
−

Hence
2

0
log sin x dx

π

∫  =
–

log2
2

π
.
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EXERCISE 7.11

By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.

1. 22

0
cos x dx

π

∫ 2.
2

0

sin

sin cos

x
dx

x x

π

+
∫ 3.

3

2
2

3 30
2 2

sin

sin cos

x dx

x x

π

+
∫

4.
5

2

5 50

cos

sin cos

x dx

x x

π

+∫ 5.
5

5
| 2 |x dx

−
+∫ 6.

8

2
5x dx−∫

7.
1

0
(1 )nx x dx−∫ 8.

4

0
log (1 tan )x dx

π

+∫ 9.
2

0
2x x dx−∫

10.
2

0
(2 log sin log sin 2 )x x dx

π

−∫ 11.
22

–

2

sin x dx

π

π∫

12.
0 1 sin

x dx

x

π

+∫ 13.
72

–

2

sin x dx

π

π∫ 14.
2 5

0
cos x dx

π

∫

15. 2

0

sin cos

1 sin cos

x x
dx

x x

π
−

+∫ 16.
0

log (1 cos )x dx
π

+∫ 17.
0

a x
dx

x a x+ −
∫

18.
4

0
1x dx−∫

19. Show that 
0 0

( ) ( ) 2 ( )
a a

f x g x dx f x dx=∫ ∫ , if f and g are defined as f(x) = f(a – x)

and g(x) + g(a – x) = 4

Choose the correct answer in Exercises 20 and 21.

20. The value of 3 52

2

( cos tan 1)x x x x dx

π

−π
+ + +∫  is

(A) 0 (B) 2 (C) π (D) 1

21. The value of 2

0

4 3 sin
log

4 3 cos

x
dx

x

π
 +
 

+ 
∫  is

(A) 2 (B)
3

4
(C) 0 (D) –2
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Miscellaneous Examples

Example 37 Find cos 6 1 sin 6x x dx+∫
Solution Put t = 1 + sin 6x, so that dt = 6 cos 6x dx

Therefore

1

2
1

cos 6 1 sin 6
6

x x dx t dt+ =∫ ∫

=

3 3

2 2
1 2 1

( ) C = (1 sin 6 ) C
6 3 9

t x× + + +

Example 38 Find 

1

4 4

5

( )x x
dx

x

−
∫

Solution We have 

1
1

4
4 4 3

5 4

1
(1 )

( )x x xdx dx
x x

−
−

=∫ ∫

Put 
– 3

3 4

1 3
1 1 – , so thatx t dx dt

x x
− = = =

Therefore 

1
14 4
4

5

( ) 1

3

x x
dx t dt

x

−
=∫ ∫  = 

5
5

4
4

3

1 4 4 1
C = 1 C

3 5 15
t

x

 
× + − + 

 

Example 39 Find 

4

2( 1) ( 1)

x dx

x x− +∫

Solution We have

4

2
( 1) ( 1)

x

x x− +
 = 3 2

1
( 1)

1
x

x x x
+ +

− + −

= 2

1
( 1)

( 1) ( 1)
x

x x
+ +

− +
... (1)

Now express 2

1

( 1) ( 1)x x− +
 = 2

A B C

( 1) ( 1)

x

x x

+
+

− +
... (2)
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So 1 = A (x2 + 1) + (Bx + C) (x – 1)

= (A + B) x2 + (C – B) x + A – C

Equating coefficients on both sides, we get A + B = 0, C – B = 0 and A – C = 1,

which give 
1 1

A , B C –
2 2

= = = . Substituting values of A, B and C in (2), we get

2

1

( 1) ( 1)x x− +
 = 2 2

1 1 1

2( 1) 2 ( 1) 2( 1)

x

x x x
− −

− + +
... (3)

Again, substituting (3) in (1), we have

4

2
( 1) ( 1)

x

x x x− + +
 = 2 2

1 1 1
( 1)

2( 1) 2 ( 1) 2( 1)

x
x

x x x
+ + − −

− + +

Therefore

4 2
2 – 1

2

1 1 1
log 1 – log ( 1) – tan C

2 2 4 2( 1) ( 1)

x x
dx x x x x

x x x
= + + − + +

− + +∫

Example 40 Find 2

1
log (log )

(log )
x dx

x

 
+ 

 
∫

Solution Let 
2

1
I log (log )

(log )
x dx

x

 
= + 

 
∫

= 2

1
log (log )

(log )
x dx dx

x
+∫ ∫

In the first integral, let us take 1 as the second function. Then integrating it by

parts, we get

I = 2

1
log (log )

log (log )

dx
x x x dx

x x x
− +∫ ∫

= 2
log (log )

log (log )

dx dx
x x

x x
− +∫ ∫ ... (1)

Again, consider 
log

dx

x
∫ , take 1 as the second function and integrate it by parts,

we have 2

1 1
– –

log log (log )

dx x
x dx

x x xx

   =    
    

∫ ∫         ... (2)
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Putting (2) in (1), we get

2 2
I log (log )

log (log ) (log )

x dx dx
x x

x x x
= − − +∫ ∫  = log (log ) C

log

x
x x

x
− +

Example 41 Find cot tanx x dx + ∫
Solution We have

I = cot tanx x dx + ∫ tan (1 cot )x x dx= +∫
Put tan x = t2, so that sec2 x dx = 2t dt

or dx =  4

2

1

t dt

t+

Then I = 2 4

1 2
1

(1 )

t
t dt

t t

 
+ 

+ 
∫

=

2 2 2

4 2
2

2

1 1
1 1

( 1)
2 = 2 = 2

11 1
2

dt dt
t t t

dt
t

t t
t t

   
+ +   +    

 +  + − +      

∫ ∫ ∫

Put 
1

t
t

−  = y, so that 2

1
1

t

 
+ 

 
 dt = dy . Then

I =

( )
– 1 – 1

2
2

1

2 2 tan C = 2 tan C
2 22

t
dy y t

y

 
− 

 = + +
+

∫

=

2
– 1 – 11 tan 1

2 tan C = 2 tan C
2 2 tan

t x

t x

 − − 
+ +    

  

Example 42 Find 
4

sin 2 cos 2

9 – cos (2 )

x x dx

x
∫

Solution Let 
4

sin 2 cos 2
I

9 – cos 2

x x
dx

x
= ∫
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Put cos2 (2x) = t so that 4 sin 2x cos 2x dx  = – dt

Therefore
–1 1 2

2

1 1 1 1
I – – sin C sin cos 2 C

4 4 3 4 39 –

dt t
x

t

−   
= = + = − +   

   
∫

Example 43 Evaluate 

3

2

1
sin ( )x x dx

−
π∫

Solution Here f (x) = | x sin πx | = 

sin for 1 1

3
sin for 1

2

x x x

x x x

π − ≤ ≤



− π ≤ ≤


Therefore

3

2

1
| sin |x x dx

−
π∫  =

3
1

2

1 1
sin sinx x dx x x dx

−
π + − π∫ ∫

=

3
1

2

1 1
sin sinx x dx x x dx

−
π − π∫ ∫

Integrating both integrals on righthand side, we get

3

2

1
| sin |x x dx

−
π∫  =

3
1

2

2 2
1 1

– cos sin cos sinx x x x x x

−

π π − π π   
+ − +   π ππ π   

= 2 2

2 1 1 3 1 
− − − = + π π ππ π 

Example 44 Evaluate 2 2 2 20 cos sin

x dx

a x b x

π

+∫

Solution Let I = 2 2 2 2 2 2 2 20 0

( )

cos sin cos ( ) sin ( )

x dx x dx

a x b x a x b x

π π π −
=

+ π − + π −∫ ∫ (using P
4
)

=
2 2 2 2 2 2 2 20 0cos sin cos sin

dx x dx

a x b x a x b x

π π
π −

+ +∫ ∫

= 2 2 2 20
I

cos sin

dx

a x b x

π
π −

+∫

Thus 2I = 2 2 2 20 cos sin

dx

a x b x

π
π

+∫
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or I = 2
2 2 2 2 2 2 2 20 0

2
2 2cos sin cos sin

dx dx

a x b x a x b x

π
ππ π

= ⋅
+ +∫ ∫ (using P

6
)

=
24

2 2 2 2 2 2 2 2
0

4

cos sin cos sin

ππ

π

 
π + 

+ +  
∫ ∫

dx dx

a x b x a x b x

= 

2 2
24

2 2 2 2 2 2
0

4

sec cosec

tan cot

ππ

π

 
π + 

+ +  
∫ ∫

xdx xdx

a b x a x b

= ( )
01

2 2 2 2 2 2
0 1

tan t cot
 

π − = = + + 
∫ ∫

dt du
put x and x u

a b t a u b

= 

1 0
–1 –1

0 1

tan – tan
π π   
   
   

bt au

ab a ab b
 =  

–1 –1
tan tan

π  
+ 

 

b a

ab a b
= 

2

2

π

ab

Miscellaneous Exercise on Chapter 7

Integrate the functions in Exercises 1 to 24.

1. 3

1

x x−
2.

1

x a x b+ + +
3.

2

1

x ax x−
 [Hint: Put x = 

a

t
]

4. 3
2 4 4

1

( 1)x x +

5. 11

32

1

x x+

      [Hint: 11 1 1

32 3 6

1 1

1x x x x

=
 

+ + 
 
 

, put x = t6]

6. 2

5

( 1) ( 9)

x

x x+ +
7.

sin

sin ( )

x

x a−
8.

5 log 4 log

3 log 2 log

x x

x x

e e

e e

−

−

9.
2

cos

4 sin

x

x−
10.

8 8

2 2

sin cos

1 2 sin cos

x

x x

−

−
11.

1

cos ( ) cos ( )x a x b+ +

12.

3

8
1

x

x−
13.

(1 ) (2 )

x

x x

e

e e+ +
14. 2 2

1

( 1) ( 4)x x+ +

15. cos 3x elog sinx 16. e3 logx (x4 + 1)– 1 17.  f ′ (ax  + b) [f (ax + b)] n

18. 3

1

sin sin ( )x x + α
19.

1 1

1 1

sin cos

sin cos

x x

x x

− −

− −

−

+
, x ∈ [0, 1]
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20.
1

1

x

x

−

+
21.

2 sin 2

1 cos 2

xx
e

x

+

+
22.

2

2

1

( 1) ( 2)

x x

x x

+ +

+ +

23.
– 1 1

tan
1

x

x

−

+
24.

2 2

4

1 log ( 1) 2 logx x x

x

 + + − 

Evaluate the definite integrals in Exercises 25 to 33.

25.

2

1 sin

1 cos

π

π

− 
 − 

∫
x x

e dx
x

26. 4
4 40

sin cos

cos sin

x x
dx

x x

π

+∫ 27.
2

2
2 20

cos

cos 4 sin

x dx

x x

π

+∫

28.
3

6

sin cos

sin 2

x x
dx

x

π

π

+
∫ 29.

1

0 1

dx

x x+ −
∫ 30.

4

0

sin cos

9 16 sin 2

x x
dx

x

π
+

+∫

31.
12

0
sin 2 tan (sin )x x dx

π

−

∫ 32.
0

tan

sec tan

x x
dx

x x

π

+∫

33.
4

1
[ 1| | 2 | | 3|]x x x dx− + − + −∫

Prove the following (Exercises 34 to 39)

34.
3

21

2 2
log

3 3( 1)

dx

x x
= +

+∫ 35.
1

0
1

x
x e dx =∫

36.
1 17 4

1
cos 0x x dx

−
=∫ 37. 32

0

2
sin

3
x dx

π

=∫

38.
34

0
2 tan 1 log 2x dx

π

= −∫ 39.
1 1

0
sin 1

2
x dx

− π
= −∫

40. Evaluate 
1 2 3

0

x
e dx

−

∫  as a limit of a sum.

Choose the correct answers in Exercises 41 to 44.

41.
x x

dx

e e
−+∫  is equal to

(A) tan–1  (ex) + C (B) tan–1  (e–x) + C

(C) log (ex – e–x) + C (D) log (ex + e–x) + C

42.
2

cos2

(sin cos )

x
dx

x x+∫  is equal to

(A)
–1

C
sin cosx x

+
+

(B) log |sin cos | Cx x+ +

(C) log |sin cos | Cx x− + (D)
2

1

(sin cos )x x+
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43. If f (a + b – x) = f (x), then ( )
b

a
x f x dx∫  is equal to

(A) ( )
2

b

a

a b
f b x dx

+
−∫ (B) ( )

2

b

a

a b
f b x dx

+
+∫

(C) ( )
2

b

a

b a
f x dx

−
∫ (D) ( )

2

b

a

a b
f x dx

+
∫

44. The value of 
1

1

20

2 1
tan

1

x
dx

x x

− − 
 

+ − ∫  is

(A) 1 (B) 0 (C) –1 (D)
4

π

Summary

® Integration is the inverse process of differentiation. In the differential calculus,

we are given a function and we have to find the derivative or differential of

this function, but in the integral calculus, we are to find a function whose

differential is given. Thus, integration is a process which is the inverse of

differentiation.

Let F( ) ( )
d

x f x
dx

= . Then we write ( ) F ( ) Cf x dx x= +∫ . These integrals

are called indefinite integrals or general integrals, C is called constant of

integration. All these integrals differ by a constant.

® From the geometric point of view, an indefinite integral is collection of family

of curves, each of which is obtained by translating one of the curves parallel

to itself upwards or downwards along the y-axis.

® Some properties of indefinite integrals are as follows:

1. [ ( ) ( )] ( ) ( )f x g x dx f x dx g x dx+ = +∫ ∫ ∫

2. For any real number k, ( ) ( )k f x dx k f x dx=∫ ∫
More generally, if f

1
, f

2
, f

3
, ... , f

n
 are functions and k

1
, k

2
, ... ,k

n
 are real

numbers. Then

1 1 2 2[ ( ) ( ) ... ( )]n nk f x k f x k f x dx+ + +∫

= 1 1 2 2( ) ( ) ... ( )n nk f x dx k f x dx k f x dx+ + +∫ ∫ ∫
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® Some standard integrals

(i)

1

C
1

n
n x

x dx
n

+

= +
+∫ , n ≠ – 1. Particularly, Cdx x= +∫

(ii) cos sin Cx dx x= +∫ (iii) sin – cos Cx dx x= +∫

(iv)
2

sec tan Cx dx x= +∫ (v)
2

cosec – cot Cx dx x= +∫

(vi) sec tan sec Cx x dx x= +∫

(vii) cosec cot – cosec Cx x dx x= +∫ (viii)
1

2
sin C

1

dx
x

x

−= +
−

∫

(ix)
1

2
cos C

1

dx
x

x

−= − +
−

∫ (x)
1

2
tan C

1

dx
x

x

−= +
+∫

(xi)
1

2
cot C

1

dx
x

x

−= − +
+∫ (xii) C

x x
e dx e= +∫

(xiii) C
log

x
x a

a dx
a

= +∫ (xiv)
1

2
sec C

1

dx
x

x x

−= +
−

∫

(xv)
1

2
cosec C

1

dx
x

x x

−= − +
−

∫ (xvi)
1

log | | Cdx x
x

= +∫

® Integration by partial fractions

Recall that a rational function is ratio of two polynomials of the form 
P( )

Q( )

x

x
,

where P(x) and Q (x) are polynomials in x and Q (x) ≠ 0. If degree of the

polynomial P (x) is greater than the degree of the polynomial Q (x), then we

may divide P (x) by Q (x) so that 1P ( )P( )
T ( )

Q( ) Q( )

xx
x

x x
= + , where T(x) is a

polynomial in x and degree of P
1
(x) is less than the degree of Q(x). T (x)

being polynomial can be easily integrated. 
1P ( )

Q( )

x

x
 can be integrated by
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expressing 
1P ( )

Q( )

x

x
 as the sum of partial fractions of the following type:

1.
( ) ( )

px q

x a x b

+

− −
=

A B

x a x b
+

− −
, a ≠ b

2. 2( )

px q

x a

+

−
= 2

A B

( )x a x a
+

− −

3.

2

( ) ( ) ( )

px qx r

x a x b x c

+ +

− − −
=

A B C

x a x b x c
+ +

− − −

4.

2

2
( ) ( )

px qx r

x a x b

+ +

− −
= 2

A B C

( )x a x bx a
+ +

− −−

5.

2

2
( ) ( )

px qx r

x a x bx c

+ +

− + +
= 2

A B + Cx

x a x bx c
+

− + +

where x2 + bx + c can not be factorised further.

® Integration by substitution

A change in the variable of integration often reduces an integral to one of the

fundamental integrals. The method in which we change the variable to some

other variable is called the method of substitution. When the integrand involves

some trigonometric functions, we use some well known identities to find the

integrals. Using substitution technique, we obtain the following standard

integrals.

(i) tan log sec Cx dx x= +∫ (ii) cot log sin Cx dx x= +∫

(iii) sec log sec tan Cx dx x x= + +∫

(iv) cosec log cosec cot Cx dx x x= − +∫
® Integrals of some special functions

(i) 2 2

1
log C

2

dx x a

a x ax a

−
= +

+−∫

(ii) 2 2

1
log C

2

dx a x

a a xa x

+
= +

−−∫ (iii)
1

2 2

1
tan C

dx x

a ax a

−= +
+∫
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(iv) 2 2

2 2
log C

dx
x x a

x a
= + − +

−
∫ (v)

1

2 2
sin C

dx x

aa x

−= +
−

∫

(vi)
2 2

2 2
log | | C

dx
x x a

x a
= + + +

+
∫

® Integration by parts

For given functions f
1
 and  f

2
, we have

1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )
d

f x f x dx f x f x dx f x f x dx dx
dx

 
⋅ = − ⋅ 

 
∫ ∫ ∫ ∫ , i.e., the

integral of the product of two functions = first function × integral of the

second function – integral of {differential coefficient of the first function ×

integral of the second function}. Care must be taken in choosing the first

function and the second function. Obviously, we must take that function as

the second function whose integral is well known to us.

® [ ( ) ( )] ( ) C
x x

e f x f x dx e f x dx′+ = +∫ ∫
® Some special types of integrals

(i)

2
2 2 2 2 2 2

log C
2 2

x a
x a dx x a x x a− = − − + − +∫

(ii)
2

2 2 2 2 2 2log C
2 2

x a
x a dx x a x x a+ = + + + + +∫

(iii)
2

2 2 2 2 1
sin C

2 2

x a x
a x dx a x

a

−− = − + +∫

(iv) Integrals of the types 2 2
or

dx dx

ax bx c ax bx c+ + + +
∫ ∫ can be

transformed into standard form by expressing

ax2 + bx  + c = 

2 2
2

2
2 4

b c b c b
a x x a x

a a a a a

     
+ + = + + −    

      

(v) Integrals of the types 2 2
or

px q dx px q dx

ax bx c ax bx c

+ +

+ + + +
∫ ∫ can be
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transformed into standard form by expressing

2
A ( ) B A (2 ) B

d
px q ax bx c ax b

dx
+ = + + + = + + , where A and B are

determined by comparing coefficients on both sides.

® We have defined ( )
b

a
f x dx∫  as the area of the region bounded by the curve

y = f (x), a ≤ x ≤ b, the x-axis and the ordinates x = a and x = b. Let x be a

given point in [a, b]. Then ( )
x

a
f x dx∫  represents the Area function A (x).

This concept of area function leads to the Fundamental Theorems of Integral

Calculus.

® First fundamental theorem of integral calculus

Let the area function be defined by A(x) = ( )
x

a
f x dx∫  for all x ≥ a, where

the function f is assumed to be continuous on [a, b]. Then A′ (x) = f (x) for all

x ∈ [a, b].

® Second fundamental theorem of integral calculus

Let f be a continuous function of x defined on the closed interval [a, b] and

let F be another function such that F( ) ( )
d

x f x
dx

=  for all x in the domain of

f, then [ ]( ) F( ) C F ( ) F ( )
b b

aa
f x dx x b a= + = −∫ .

This is called the definite integral of f over the range [a, b], where a and b

are called the limits of integration, a being the lower limit and b the

upper limit.

—vvvvv—
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OVERVIEW In this chapter we extend our study of differential equations to those of second
order. Second-order differential equations arise in many applications in the sciences and
engineering. For instance, they can be applied to the study of vibrating springs and electric
circuits. You will learn how to solve such differential equations by several methods in this
chapter.

17-1

SECOND-ORDER

DIFFERENTIAL EQUATIONS

C h a p t e r

17

Second-Order Linear Equations

An equation of the form

(1)

which is linear in y and its derivatives, is called a second-order linear differential equa-
tion. We assume that the functions , and are continuous throughout some open
interval I. If is identically zero on I, the equation is said to be homogeneous; other-
wise it is called nonhomogeneous. Therefore, the form of a second-order linear homoge-
neous differential equation is

(2)

We also assume that is never zero for any .
Two fundamental results are important to solving Equation (2). The first of these says

that if we know two solutions and of the linear homogeneous equation, then any
linear combination is also a solution for any constants and .c2c1y = c1y1 + c2y2

y2y1

x H IP(x)

P(x)y– + Q(x)y¿ + R(x)y = 0.

G(x)
GP, Q, R

P(x)y–(x) + Q(x)y¿(x) + R(x)y(x) = G(x),

17.1

THEOREM 1—The Superposition Principle If and are two solutions
to the linear homogeneous equation (2), then for any constants and , the
function

is also a solution to Equation (2).

y(x) = c1y1(x) + c2y2(x)

c2c1

y2(x)y1(x)
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Proof Substituting y into Equation (2), we have

144442444443 144442444443
is a solution � 0, is a solution

Therefore, is a solution of Equation (2).

Theorem 1 immediately establishes the following facts concerning solutions to the
linear homogeneous equation.

1. A sum of two solutions to Equation (2) is also a solution. (Choose 
.)

2. A constant multiple of any solution to Equation (2) is also a solution. (Choose
and .)

3. The trivial solution is always a solution to the linear homogeneous equa-
tion. (Choose .)

The second fundamental result about solutions to the linear homogeneous equation
concerns its general solution or solution containing all solutions. This result says that
there are two solutions and such that any solution is some linear combination of them
for suitable values of the constants and . However, not just any pair of solutions will
do. The solutions must be linearly independent, which means that neither nor is a
constant multiple of the other. For example, the functions and are
linearly independent, whereas and are not (so they are linearly de-
pendent). These results on linear independence and the following theorem are proved in
more advanced courses.

g(x) = 7x2ƒ(x) = x2
g(x) = xexƒ(x) = ex

y2y1

c2c1

y2y1

c1 = c2 = 0
y(x) K 0

c2 = 0c1 = k
y1ky1

c2 = 1
c1 =y1 + y2

y = c1y1 + c2y2

= c1(0) + c2(0) = 0.

y2= 0,  y1

(P(x)y2– + Q(x)y2¿ + R(x)y2)c2(P(x)y1– + Q(x)y1¿ + R(x)y1) += c1

= P(x)(c1y1– + c2 y2–) + Q(x)(c1y1¿ + c2 y2¿) + R(x)(c1y1 + c2 y2)

= P(x)(c1y1 + c2 y2)– + Q(x)(c1y1 + c2 y2)¿ + R(x)(c1y1 + c2 y2)

P(x)y– + Q(x)y¿ + R(x)y

17-2 Chapter 17: Second-Order Differential Equations

THEOREM 2 If and are continuous over the open interval I and is
never zero on I, then the linear homogeneous equation (2) has two linearly
independent solutions and on I. Moreover, if and are any two linearly
independent solutions of Equation (2), then the general solution is given by

where and are arbitrary constants.c2c1

y(x) = c1y1(x) + c2 y2(x),

y2y1y2y1

P(x)RP, Q,

We now turn our attention to finding two linearly independent solutions to the special
case of Equation (2), where and are constant functions.

Constant-Coefficient Homogeneous Equations

Suppose we wish to solve the second-order homogeneous differential equation

(3)ay– + by¿ + cy = 0,

RP, Q,
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where a, b, and c are constants. To solve Equation (3), we seek a function which when
multiplied by a constant and added to a constant times its first derivative plus a constant
times its second derivative sums identically to zero. One function that behaves this way is
the exponential function , when r is a constant. Two differentiations of this expo-
nential function give and , which are just constant multiples of the
original exponential. If we substitute into Equation (3), we obtain

Since the exponential function is never zero, we can divide this last equation through by
. Thus, is a solution to Equation (3) if and only if r is a solution to the algebraic

equation
y = erxerx

ar2erx
+ brerx

+ cerx
= 0.

y = erx
y– = r2erxy¿ = rerx

y = erx

17.1 Second-Order Linear Equations 17-3

(4)ar2
+ br + c = 0.

Equation (4) is called the auxiliary equation (or characteristic equation) of the differen-
tial equation . The auxiliary equation is a quadratic equation with
roots

and

There are three cases to consider which depend on the value of the discriminant 

Case 1: In this case the auxiliary equation has two real and unequal roots
and . Then and are two linearly independent solutions to Equation

(3) because is not a constant multiple of (see Exercise 61). From Theorem 2 we
conclude the following result.

er1 xer2 x
y2 = er2 xy1 = er1 xr2r1

b2 � 4ac>0.

b2
- 4ac.

r2 =

-b - 2b2
- 4ac

2a
.r1 =

-b + 2b2
- 4ac

2a

ay– + by¿ + cy = 0

THEOREM 3 If and are two real and unequal roots to the auxiliary
equation , then

is the general solution to .ay– + by¿ + cy = 0

y = c1e
r1 x

+ c2e
r2 x

ar2
+ br + c = 0

r2r1

EXAMPLE 1 Find the general solution of the differential equation

Solution Substitution of into the differential equation yields the auxiliary
equation

which factors as

The roots are and Thus, the general solution is

y = c1e
3x

+ c2e
-2x.

r2 = -2.r1 = 3

(r - 3)(r + 2) = 0.

r2
- r - 6 = 0,

y = erx

y– - y¿ - 6y = 0.
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Case 2: In this case To simplify the notation, let
. Then we have one solution with . Since multiplication

of by a constant fails to produce a second linearly independent solution, suppose we try
multiplying by a function instead. The simplest such function would be , so let’s
see if is also a solution. Substituting into the differential equation gives

The first term is zero because ; the second term is zero because solves the
auxiliary equation. The functions and are linearly independent (see
Exercise 62). From Theorem 2 we conclude the following result.

y2 = xerxy1 = erx
rr = -b>2a

 = 0(erx) + (0)xerx
= 0.

 = (2ar + b)erx
+ (ar2

+ br + c)xerx

ay2– + by2¿ + cy2 = a(2rerx
+ r2xerx) + b(erx

+ rxerx) + cxerx

y2y2 = xerx
u(x) = x

erx
2ar + b = 0y1 = erxr = -b>2a

r1 = r2 = -b>2a.b2 � 4ac � 0.
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THEOREM 4 If r is the only (repeated) real root to the auxiliary equation
, then

is the general solution to .ay– + by¿ + cy = 0

y = c1e
rx

+ c2 xerx

ar2
+ br + c = 0

EXAMPLE 2 Find the general solution to

Solution The auxiliary equation is

which factors into

Thus, is a double root. Therefore, the general solution is

Case 3: In this case the auxiliary equation has two complex roots
and , where and are real numbers and . (These real

numbers are and .) These two complex roots then give
rise to two linearly independent solutions

and

(The expressions involving the sine and cosine terms follow from Euler’s identity in Sec-
tion 9.9.) However, the solutions and are complex valued rather than real valued.
Nevertheless, because of the superposition principle (Theorem 1), we can obtain from
them the two real-valued solutions

and

The functions and are linearly independent (see Exercise 63). From Theorem 2 we
conclude the following result.

y4y3

y4 =
1
2i

 y1 -
1
2i

 y2 = eax sin bx.y3 =
1
2

 y1 +
1
2

 y2 = eaxcos bx

y2y1

y2 = e (a- ib)x
= eax(cos bx - i sin bx).y1 = e (a+ ib)x

= eax(cos bx + i sin bx)

b = 24ac - b2>2aa = -b>2a

i2
= -1bar2 = a - ibr1 = a + ib

b2�4ac<0.

y = c1e
-2x

+ c2 xe-2x.

r = -2

(r + 2)2
= 0.

r2
+ 4r + 4 = 0,

y– + 4y¿ + 4y = 0.

 Copyright © 2010 Pearson Education, Inc.  All rights reserved 



EXAMPLE 3 Find the general solution to the differential equation

Solution The auxiliary equation is

The roots are the complex pair or and 
Thus, and give the general solution

Initial Value and Boundary Value Problems

To determine a unique solution to a first-order linear differential equation, it was sufficient
to specify the value of the solution at a single point. Since the general solution to a second-
order equation contains two arbitrary constants, it is necessary to specify two conditions.
One way of doing this is to specify the value of the solution function and the value of its
derivative at a single point: and . These conditions are called initial
conditions. The following result is proved in more advanced texts and guarantees the exis-
tence of a unique solution for both homogeneous and nonhomogeneous second-order
linear initial value problems.

y¿(x0) = y1y(x0) = y0

y = e2x(c1 cos x + c2 sin x).

b = 1a = 2
r2 = 2 - i.r1 = 2 + ir = (4 ; 216 - 20)>2

r2
- 4r + 5 = 0.

y– - 4y¿ + 5y = 0.
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THEOREM 5 If and are two complex roots to the
auxiliary equation , then

is the general solution to ay– + by¿ + cy = 0.

y = eax(c1 cos bx + c2 sin bx)

ar2
+ br + c = 0

r2 = a - ibr1 = a + ib

THEOREM 6 If and are continuous throughout an open interval I,
then there exists one and only one function satisfying both the differential
equation

on the interval I, and the initial conditions

and

at the specified point .x0 H I

y¿(x0) = y1y(x0) = y0

P(x)y–(x) + Q(x)y¿(x) + R(x)y(x) = G(x)

y(x)
GP, Q, R,

It is important to realize that any real values can be assigned to and and Theorem 6
applies. Here is an example of an initial value problem for a homogeneous equation.

y1y0
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EXAMPLE 4 Find the particular solution to the initial value problem

Solution The auxiliary equation is

.

The repeated real root is giving the general solution

Then,

From the initial conditions we have

Thus, and The unique solution satisfying the initial conditions is

The solution curve is shown in Figure 17.1.

Another approach to determine the values of the two arbitrary constants in the general
solution to a second-order differential equation is to specify the values of the solution
function at two different points in the interval I. That is, we solve the differential equation
subject to the boundary values

and ,

where and both belong to I. Here again the values for and can be any real
numbers. The differential equation together with specified boundary values is called a
boundary value problem. Unlike the result stated in Theorem 6, boundary value prob-
lems do not always possess a solution or more than one solution may exist (see Exercise
65). These problems are studied in more advanced texts, but here is an example for which
there is a unique solution.

EXAMPLE 5 Solve the boundary value problem

.

Solution The auxiliary equation is , which has the complex roots .
The general solution to the differential equation is

.

The boundary conditions are satisfied if

.

It follows that and . The solution to the boundary value problem is

.y = 2 sin 2x

c2 = 2c1 = 0

y ap
12
b = c1 cos ap

6
b + c2 sin ap

6
b = 1

 y(0) = c1
#  1 + c2

#  0 = 0

y = c1 cos 2x + c2 sin 2x

r = ;2ir2
+ 4 = 0

y– + 4y = 0,    y(0) = 0,  y ap
12
b = 1

y2y1x2x1

y(x2) = y2y(x1) = y1

y = ex
- 2xex.

c2 = -2.c1 = 1

1 = c1 + c2
# 0  and  -1 = c1 + c2

# 1.

y¿ = c1e
x

+ c2(x + 1)ex.

y = c1e
x

+ c2 xex.

r = 1,

r2
- 2r + 1 = (r - 1)2

= 0

y– - 2y¿ + y = 0,  y(0) = 1, y¿(0) = -1.
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–4 –3 –2 –1 0 1

–6

–8

–4

–2

y

x

y = ex – 2xex

FIGURE 17.1 Particular solution curve
for Example 4.
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17.1 Second-Order Linear Equations 17-7

EXERCISES 17.1

In Exercises 1–30, find the general solution of the given equation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

In Exercises 31–40, find the unique solution of the second-order
initial value problem.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40. 9
d2y

dx2 - 12
dy

dx
+ 4y = 0, y(0) = -1, 

dy

dx
(0) = 1

4
d2y

dx2 + 12
dy

dx
+ 9y = 0, y(0) = 2, 

dy

dx
(0) = 1

4y– - 4y¿ + y = 0, y(0) = 4, y¿(0) = 4

y– - 4y¿ + 4y = 0, y(0) = 1, y¿(0) = 0

y– + 4y¿ + 4y = 0, y(0) = 0, y¿(0) = 1

y– + 8y = 0, y(0) = -1, y¿(0) = 2

12y– + 5y¿ - 2y = 0, y(0) = 1, y¿(0) = -1

y– + 12y = 0, y(0) = 0, y¿(0) = 1

y– + 16y = 0, y(0) = 2, y¿(0) = -2

y– + 6y¿ + 5y = 0, y(0) = 0, y¿(0) = 3

9
d2y

dx2 - 12
dy

dx
+ 4y = 09

d2y

dx2 + 6
dy

dx
+ y = 0

4
d2y

dx2 - 4
dy

dx
+ y = 04

d2y

dx2 + 4
dy

dx
+ y = 0

4
d2y

dx2 - 12
dy

dx
+ 9y = 0

d2y

dx2 + 6
dy

dx
+ 9y = 0

d2y

dx2 - 6
dy

dx
+ 9y = 0

d2y

dx2 + 4
dy

dx
+ 4y = 0

y– + 8y¿ + 16y = 0y– = 0

4y– - 4y¿ + 13y = 0y– + 4y¿ + 9y = 0

y– - 2y¿ + 3y = 0y– + 2y¿ + 4y = 0

y– + 16y = 0y– - 2y¿ + 5y = 0

y– + y = 0y– + 25y = 0

y– + 4y¿ + 5y = 0y– + 9y = 0

3y– - 20y¿ + 12y = 08y– - 10y¿ - 3y = 0

9y– - y = 02y– - y¿ - 3y = 0

y– - 64y = 0y– - 4y = 0

y– - 9y = 0y– + 3y¿ - 4y = 0

3y– - y¿ = 0y– - y¿ - 12y = 0

In Exercises 41–55, find the general solution.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55.

In Exercises 56–60, solve the initial value problem.

56.

57.

58.

59.

60.

61. Prove that the two solution functions in Theorem 3 are linearly in-
dependent.

62. Prove that the two solution functions in Theorem 4 are linearly in-
dependent.

63. Prove that the two solution functions in Theorem 5 are linearly in-
dependent.

64. Prove that if and are linearly independent solutions to the
homogeneous equation (2), then the functions and

are also linearly independent solutions.

65. a. Show that there is no solution to the boundary value problem

b. Show that there are infinitely many solutions to the boundary
value problem

66. Show that if a, b, and c are positive constants, then all solutions of
the homogeneous differential equation

approach zero as x : q .

ay– + by¿ + cy = 0

y– + 4y = 0, y(0) = 0, y(p) = 0.

y– + 4y = 0, y(0) = 0, y(p) = 1.

y4 = y1 - y2

y3 = y1 + y2

y2y1

4y– + 4y¿ + 5y = 0, y(p) = 1, y¿(p) = 0

3y– + y¿ - 14y = 0, y(0) = 2, y¿(0) = -1

4y– - 4y¿ + y = 0, y(0) = -1, y¿(0) = 2

y– + 2y¿ + y = 0, y(0) = 1, y¿(0) = 1

y– - 2y¿ + 2y = 0, y(0) = 0, y¿(0) = 2

6y– - 5y¿ - 4y = 0

4y– + 16y¿ + 52y = 09y– + 24y¿ + 16y = 0

6y– - 5y¿ - 6y = 016y– - 24y¿ + 9y = 0

y– + 4y¿ + 6y = 04y– + 4y¿ + 5y = 0

6y– + 13y¿ - 5y = 025y– + 10y¿ + y = 0

y– + 2y¿ + 2y = 04y– + 20y = 0

9y– + 12y¿ + 4y = 04y– + 4y¿ + y = 0

6y– - y¿ - y = 0y– - 2y¿ - 3y = 0
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Nonhomogeneous Linear Equations

In this section we study two methods for solving second-order linear nonhomogeneous
differential equations with constant coefficients. These are the methods of undetermined
coefficients and variation of parameters. We begin by considering the form of the general
solution.

Form of the General Solution

Suppose we wish to solve the nonhomogeneous equation

(1)

where a, b, and c are constants and G is continuous over some open interval I. Let
be the general solution to the associated complementary equation

(2)

(We learned how to find in Section 17.1.) Now suppose we could somehow come up
with a particular function that solves the nonhomogeneous equation (1). Then the sum

(3)

also solves the nonhomogeneous equation (1) because

Moreover, if is the general solution to the nonhomogeneous equation (1), it must
have the form of Equation (3). The reason for this last statement follows from the observa-
tion that for any function satisfying Equation (1), we have

Thus, is the general solution to the homogeneous equation (2). We have
established the following result.

yc = y - yp

 = G(x) - G(x) = 0.

 = (ay– + by¿ + cy) - (ayp– + byp¿ + cyp)

a(y - yp)– + b(y - yp)¿ + c(y - yp)

yp

y = y(x)

 = G(x).

 = 0 + G(x)

 = (ayc– + byc¿ + cyc) + (ayp– + byp¿ + cyp)

a(yc + yp)– + b(yc + yp)¿ + c(yc + yp)

y = yc + yp

yp

yc

ay– + by¿ + cy = 0.

yc = c1y1 + c2y2

ay– + by¿ + cy = G(x),

17.2

solves Eq. (2) and solves Eq. (1)ypyc

THEOREM 7 The general solution to the nonhomogeneous differen-
tial equation (1) has the form

,

where the complementary solution is the general solution to the associated
homogeneous equation (2) and is any particular solution to the nonhomoge-
neous equation (1).

yp

yc

y = yc + yp

y = y(x)

 Copyright © 2010 Pearson Education, Inc.  All rights reserved 



The Method of Undetermined Coefficients

This method for finding a particular solution to the nonhomogeneous equation (1) ap-
plies to special cases for which is a sum of terms of various polynomials multi-
plying an exponential with possibly sine or cosine factors. That is, is a sum of terms
of the following forms:

For instance, and represent functions in this category.
(Essentially these are functions solving homogeneous linear differential equations with
constant coefficients, but the equations may be of order higher than two.) We now present
several examples illustrating the method.

EXAMPLE 1 Solve the nonhomogeneous equation 

Solution The auxiliary equation for the complementary equation is

It has the roots and giving the complementary solution

.

Now is a polynomial of degree 2. It would be reasonable to assume that a
particular solution to the given nonhomogeneous equation is also a polynomial of degree 2
because if y is a polynomial of degree 2, then is also a polynomial of de-
gree 2. So we seek a particular solution of the form

We need to determine the unknown coefficients A, B, and C. When we substitute the poly-
nomial and its derivatives into the given nonhomogeneous equation, we obtain

or, collecting terms with like powers of x,

This last equation holds for all values of x if its two sides are identical polynomials of
degree 2. Thus, we equate corresponding powers of x to get

and

These equations imply in turn that A � , B � , and C � Substituting these
values into the quadratic expression for our particular solution gives

By Theorem 7, the general solution to the nonhomogeneous equation is

1
3

 x2
-

4
9

 x +

5
27

.+c1e
- x

+ c2e
3xy = yc + yp =

yp =
1
3

 x2
-

4
9

 x +

5
27

.

5>27.-4>91>3
2A - 2B - 3C = 1.-4A - 3B = 0,-3A = -1,

-3Ax2
+ (-4A - 3B)x + (2A - 2B - 3C) = 1 - x2.

2A - 2(2Ax + B) - 3(Ax2
+ Bx + C) = 1 - x2

yp

yp = Ax2
+ Bx + C.

y– - 2y¿ - 3y

G(x) = 1 - x2

yc = c1e
- x

+ c2e
3x

r = 3r = -1

r2
- 2r - 3 = (r + 1)(r - 3) = 0.

y– - 2y¿ - 3y = 0

y– - 2y¿ - 3y = 1 - x2.

5ex
- sin 2x1 - x, e2x, xex, cos x,

p3(x)eax sin bx.p2(x)eax cos bx,p1(x)erx,

G(x)
p(x)G(x)

yp

17.2 Nonhomogeneous Linear Equations 17-9
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EXAMPLE 2 Find a particular solution of 

Solution If we try to find a particular solution of the form

and substitute the derivatives of in the given equation, we find that A must satisfy the
equation

for all values of x. Since this requires A to equal both 2 and 0 at the same time, we con-
clude that the nonhomogeneous differential equation has no solution of the form .

It turns out that the required form is the sum

.

The result of substituting the derivatives of this new trial solution into the differential
equation is

or

.

This last equation must be an identity. Equating the coefficients for like terms on each side
then gives

and .

Simultaneous solution of these two equations gives and . Our particular
solution is

.

EXAMPLE 3 Find a particular solution of .

Solution If we substitute

and its derivatives in the differential equation, we find that

or

.

However, the exponential function is never zero. The trouble can be traced to the fact that
is already a solution of the related homogeneous equation

.

The auxiliary equation is

which has as a root. So we would expect to become zero when substituted into
the left-hand side of the differential equation.

The appropriate way to modify the trial solution in this case is to multiply by x.
Thus, our new trial solution is

.yp = Axex

Aex

Aexr = 1

r2
- 3r + 2 = (r - 1)(r - 2) = 0,

y– - 3y¿ + 2y = 0

y = ex

0 = 5ex

Aex
- 3Aex

+ 2Aex
= 5ex

yp = Aex

y– - 3y¿ + 2y = 5ex

yp = cos x - sin x

B = 1A = -1

A + B = 0B - A = 2

(B - A) sin x - (A + B) cos x = 2 sin x

-A sin x - B cos x - (A cos x - B sin x) = 2 sin x

yp = A sin x + B cos x

A sin x
-

-A sin x + A cos x = 2 sin x

yp

yp = A sin x

y– - y¿ = 2 sin x.
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The result of substituting the derivatives of this new candidate into the differential equation is

or

.

Thus, gives our sought-after particular solution

.

EXAMPLE 4 Find a particular solution of .

Solution The auxiliary equation for the complementary equation

has as a repeated root. The appropriate choice for in this case is neither nor
because the complementary solution contains both of those terms already. Thus, we

choose a term containing the next higher power of x as a factor. When we substitute

and its derivatives in the given differential equation, we get

or

.

Thus, , and the particular solution is

.

When we wish to find a particular solution of Equation (1) and the function is the
sum of two or more terms, we choose a trial function for each term in and add them.

EXAMPLE 5 Find the general solution to .

Solution We first check the auxiliary equation

.

Its roots are and . Therefore, the complementary solution to the associated ho-
mogeneous equation is

.

We now seek a particular solution . That is, we seek a function that will produce
when substituted into the left-hand side of the given differential equation.

One part of is to produce , the other .
Since any function of the form is a solution of the associated homogeneous equa-

tion, we choose our trial solution to be the sum

,

including where we might otherwise have included only . When the derivatives of 
are substituted into the differential equation, the resulting equation is

- (Axex
+ Aex

- 2B sin 2x + 2C cos 2x) = 5ex
- sin 2x

(Axex
+ 2Aex

- 4B cos 2x - 4C sin 2x)

ypexxex

yp = Axex
+ B cos 2x + C sin 2x

yp

c1e
x

-sin 2x5exyp

5ex
- sin 2x

yp

yc = c1e
x

+ c2

r = 0r = 1

r2
- r = 0

y– - y¿ = 5ex
- sin 2x

G(x)
G(x)

yp =
1
2

 x2e3x

A = 1>2
2Ae3x

= e3x

(9Ax2e3x
+ 12Axe3x

+ 2Ae3x) - 6(3Ax2e3x
+ 2Axe3x) + 9Ax2e3x

= e3x

yp = Ax2e3x

Axe3x
Ae3xypr = 3

r2
- 6r + 9 = (r - 3)2

= 0

y– - 6y¿ + 9y = e3x

yp = -5xex

A = -5

-Aex
= 5ex

(Axex
+ 2Aex) - 3(Axex

+ Aex) + 2Axex
= 5ex
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or

.

This equation will hold if

or and Our particular solution is

.

The general solution to the differential equation is

.

You may find the following table helpful in solving the problems at the end of this
section.

+ 5xex
-

1
10

 cos 2x +
1
5 sin 2xc1e

x
+ c2y = yc + yp =

yp = 5xex
-

1
10

 cos 2x +
1
5 sin 2x

C = 1>5.B = -1>10,A = 5,

2B - 4C = -1,4B + 2C = 0,A = 5,

Aex
- (4B + 2C ) cos 2x + (2B - 4C ) sin 2x = 5ex

- sin 2x
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TABLE 17.1 The method of undetermined coefficients for selected equations
of the form

.

If has a term Then include this
that is a constant expression in the
multiple of . . . And if trial function for 

r is not a root of
the auxiliary equation

r is a single root of the
auxiliary equation

r is a double root of the
auxiliary equation

sin kx, cos kx ki is not a root of
the auxiliary equation

0 is not a root of the
auxiliary equation

0 is a single root of the
auxiliary equation

0 is a double root of the
auxiliary equation

Dx4
+ Ex3

+ Fx2

Dx3
+ Ex2

+ Fx

Dx2
+ Ex + Fpx2

+ qx + m

B cos kx + C sin kx

Ax2erx

Axerx

Aerxerx

yp.

G(x)

ay– + by¿ + cy = G(x)

The Method of Variation of Parameters

This is a general method for finding a particular solution of the nonhomogeneous equation
(1) once the general solution of the associated homogeneous equation is known. The
method consists of replacing the constants and in the complementary solution by
functions and and requiring (in a way to be explained) that they2 = y2(x)y1 = y1(x)

c2c1
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resulting expression satisfy the nonhomogeneous equation (1). There are two functions to
be determined, and requiring that Equation (1) be satisfied is only one condition. As a sec-
ond condition, we also require that

. (4)

Then we have

If we substitute these expressions into the left-hand side of Equation (1), we obtain

The first two parenthetical terms are zero since and are solutions of the associated
homogeneous equation (2). So the nonhomogeneous equation (1) is satisfied if, in addition
to Equation (4), we require that

. (5)

Equations (4) and (5) can be solved together as a pair

for the unknown functions and . The usual procedure for solving this simple system
is to use the method of determinants (also known as Cramer’s Rule), which will be demon-
strated in the examples to follow. Once the derivative functions and are known, the
two functions and can be found by integration. Here is a summary
of the method.

y2 = y2(x)y1 = y1(x)
y2¿y1¿

y2¿y1¿

y1¿y1¿ + y2¿y2¿ =

G(x)
a

 y1¿y1 + y2¿y2 = 0,

a(y1¿y1¿ + y2¿y2¿) = G(x)

y2y1

+ a(y1¿y1¿ + y2¿y2¿) = G(x).y1(ay1– + by1¿ + cy1) + y2(ay2– + by2¿ + cy2)

y– = y1y1– + y2y2– + y1¿y1¿ + y2¿y2¿.

 y¿ = y1y1¿ + y2y2¿,

 y = y1y1 + y2y2,

y1¿y1 + y2¿y2 = 0

17.2 Nonhomogeneous Linear Equations 17-13

Variation of Parameters Procedure

To use the method of variation of parameters to find a particular solution to the
nonhomogeneous equation

,

we can work directly with Equations (4) and (5). It is not necessary to rederive
them. The steps are as follows.

1. Solve the associated homogeneous equation

to find the functions and .
2. Solve the equations

simultaneously for the derivative functions and .
3. Integrate and to find the functions and .
4. Write down the particular solution to nonhomogeneous equation (1) as

.yp = y1y1 + y2y2

y2 = y2(x)y1 = y1(x)y2¿y1¿

y2¿y1¿

y1¿y1¿ + y2¿y2¿ =

G(x)
a

 y1¿y1 + y2¿y2 = 0,

y2y1

ay– + by¿ + cy = 0

ay– + by¿ + cy = G(x)
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EXAMPLE 6 Find the general solution to the equation

Solution The solution of the homogeneous equation

is given by

.

Since and , the conditions to be satisfied in Equations (4) and
(5) are

Solution of this system gives

Likewise,

After integrating and we have

,

and

.

Note that we have omitted the constants of integration in determining and . They
would merely be absorbed into the arbitrary constants in the complementary solution.

Substituting and into the expression for in Step 4 gives

The general solution is

.y = c1 cos x + c2 sin x - (cos x) ln ƒ sec x + tan x ƒ

 = (-cos x) ln ƒ sec x + tan x ƒ.

yp = [- ln ƒ sec x + tan x ƒ + sin x] cos x + (-cos x) sin x

ypy2y1

y2y1

y2(x) = Lsin x dx = -cos x

 = - ln ƒ sec x + tan x ƒ + sin x

 = -L (sec x - cos x) dx

y1(x) = L
-sin2 x
 cos x  dx

y2¿,y1¿

y2¿ =

`  cos x 0

-sin x tan x
`

`  cos x  sin x

-sin x  cos x
`

= sin x.

y1¿ =

` 0  sin x

tan x  cos x
`

`   cos x  sin x

-sin x  cos x
`

=

- tan x sin x
cos2 x + sin2 x

=

-sin2 x
 cos x .

a = 1-y1¿ sin x + y2¿ cos x = tan x.

 y1¿ cos x + y2¿ sin x = 0,

y2(x) = sin xy1(x) = cos x

yc = c1 cos x + c2 sin x

y– + y = 0

y– + y = tan x.
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EXAMPLE 7 Solve the nonhomogeneous equation

.

Solution The auxiliary equation is

giving the complementary solution

The conditions to be satisfied in Equations (4) and (5) are

Solving the above system for and gives

Likewise,

Integrating to obtain the parameter functions, we have

and

Therefore,

The general solution to the differential equation is

where the term in has been absorbed into the term in the complementary
solution.

c2e
xyp(1>27)ex

y = c1e
-2x

+ c2e
x

-
1
9

 xex
+

1
6

 x2ex,

 =
1
27

 ex
-

1
9

 xex
+

1
6

 x2ex.

yp = c(1 - 3x)e3x

27
de-2x

+ ax2

6
bex

y2(x) = L
x
3

 dx =

x2

6
.

 =
1
27

(1 - 3x)e3x,

 = -
1
3
axe3x

3
- L

e3x

3
 dxb

y1(x) = L -  
1
3

 xe3x dx

y2¿ =

` e - 2x 0

-2e - 2x xex `
3e-x =

xe-x

3e-x =

x
3

.

y1¿ =

` 0 ex

xex ex `
` e - 2x ex

-2e - 2x ex `
=

-xe2x

3e - x = -  
1
3

 xe3x.

y2¿y1¿

a = 1-2y1¿e - 2x
+ y2¿ex

= xex.

 y1¿e - 2x
+ y2¿ex

= 0,

yc = c1e
- 2x

+ c2e
x.

r2
+ r - 2 = (r + 2)(r - 1) = 0

y– + y¿ - 2y = xex
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EXERCISES 17.2

Solve the equations in Exercises 1–16 by the method of undetermined
coefficients.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11.

12.

13. 14.

15. 16.

Solve the equations in Exercises 17–28 by variation of parameters.

17.

18.

19. 20.

21. 22.

23. 24.

25. 26.

27.

28.

In each of Exercises 29–32, the given differential equation has a par-
ticular solution of the form given. Determine the coefficients in 
Then solve the differential equation.

29.

30.

31.

32.

In Exercises 33–36, solve the given differential equations (a) by
variation of parameters and (b) by the method of undetermined
coefficients.

33. 34.

35. 36.
d2y

dx2 - 9
dy

dx
= 9e9x

d2y

dx2 - 4
dy

dx
- 5y = ex

+ 4

d2y

dx2 - 4
dy

dx
+ 4y = 2e2x

d2y

dx2 -

dy

dx
= ex

+ e-x

y– + y¿ - 2y = xex, yp = Ax2ex
+ Bxex

y– + y = 2 cos x + sin x, yp = Ax cos x + Bx sin x

y– - y¿ = cos x + sin x, yp = A cos x + B sin x

y– - 5y¿ = xe5x, yp = Ax2e5x
+ Bxe5x

yp.yp

d2y

dx2 -

dy

dx
= ex cos x, x 7 0

d2y

dx2 + y = sec x,  -

p

2
6 x 6

p

2

y– - y¿ = 2xy– + 4y¿ + 5y = 10

y– - y = sin xy– - y = ex

y– - y = xy– + 2y¿ + y = e-x

y– + 2y¿ + y = exy– + y = sin x

y– + y = tan x,  -

p

2
6 x 6

p

2

y– + y¿ = x

d2y

dx2 + 7
dy

dx
= 42x2

+ 5x + 1
d2y

dx2 - 3
dy

dx
= e3x

- 12x

d2y

dx2 -

dy

dx
= -8x + 3

d2y

dx2 + 5
dy

dx
= 15x2

y– + 3y¿ + 2y = e-x
+ e-2x

- x

y– - y¿ - 6y = e-x
- 7 cos x

y– + 2y¿ + y = 6 sin 2xy– - y = ex
+ x2

y– + y = 2x + 3exy– - y¿ - 2y = 20 cos x

y– + y = e2xy– + y = cos 3x

y– + 2y¿ + y = x2y– - y¿ = sin x

y– - 3y¿ - 10y = 2x - 3y– - 3y¿ - 10y = -3

Solve the differential equations in Exercises 37–46. Some of the equa-
tions can be solved by the method of undetermined coefficients, but
others cannot.

37.

38.

39. 40.

41. 42.

43. 44.

45.

46.

The method of undetermined coefficients can sometimes be used to
solve first-order ordinary differential equations. Use the method to
solve the equations in Exercises 47–50.

47. 48.

49. 50.

Solve the differential equations in Exercises 51 and 52 subject to the
given initial conditions.

51.

52.

In Exercises 53–58, verify that the given function is a particular solu-
tion to the specified nonhomogeneous equation. Find the general solu-
tion and evaluate its arbitrary constants to find the unique solution sat-
isfying the equation and the given initial conditions.

53.

54.

55.

56.

57.

58.

In Exercises 59 and 60, two linearly independent solutions and 
are given to the associated homogeneous equation of the variable-
coefficient nonhomogeneous equation. Use the method of variation of
parameters to find a particular solution to the nonhomogeneous equa-
tion. Assume in each exercise.

59.

60. x2y– + xy¿ - y = x, y1 = x - 1, y2 = x

x2y– + 2xy¿ - 2y = x2, y1 = x - 2, y2 = x

x 7 0

y2y1

yp = xex ln x,  y(1) = e, y¿(1) = 0

y– - 2y¿ + y = x-1ex, x 7 0,

y– - 2y¿ + y = 2ex,  yp = x2ex,  y(0) = 1, y¿(0) = 0

y– - y¿ - 2y = 1 - 2x,  yp = x - 1,  y(0) = 0, y¿(0) = 1

yp = 2ex cos x,  y(0) = 0, y¿(0) = 1

1
2

y– + y¿ + y = 4ex(cos x - sin x),

y– + y = x, yp = 2 sin x + x,  y(0) = 0, y¿(0) = 0

y– + y¿ = x, yp =

x2

2
- x,  y(0) = 0, y¿(0) = 0

d2y

dx2 + y = e2x; y(0) = 0, y¿(0) =

2
5

d2y

dx2 + y = sec2 x, -

p

2
6 x 6

p

2
; y (0) = y¿(0) = 1

y¿ + y = sin xy¿ - 3y = 5e3x

y¿ + 4y = xy¿ - 3y = ex

y– - 3y¿ + 2y = ex
- e2x

y– + y = sec x tan x, -

p

2
6 x 6

p

2

y– + 9y = 9x - cos xy– + 2y¿ = x2
- ex

y– + 4y¿ + 5y = x + 2y– - y¿ = x3

y– + 4y = sin xy– - 8y¿ = e8x

y– + y = csc x, 0 6 x 6 p

y– + y = cot x, 0 6 x 6 p
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Applications

In this section we apply second-order differential equations to the study of vibrating
springs and electric circuits.

Vibrations

A spring has its upper end fastened to a rigid support, as shown in Figure 17.2. An object
of mass m is suspended from the spring and stretches it a length s when the spring comes
to rest in an equilibrium position. According to Hooke’s Law (Section 6.5), the tension
force in the spring is , where k is the spring constant. The force due to gravity pulling
down on the spring is , and equilibrium requires that

(1)

Suppose that the object is pulled down an additional amount beyond the equilibrium po-
sition and then released. We want to study the object’s motion, that is, the vertical position
of its center of mass at any future time.

Let y, with positive direction downward, denote the displacement position of the ob-
ject away from the equilibrium position at any time t after the motion has started.
Then the forces acting on the object are (see Figure 17.3)

the propulsion force due to gravity,

the restoring force of the spring’s tension,

a frictional force assumed proportional to velocity.

The frictional force tends to retard the motion of the object. The resultant of these forces is
, and by Newton’s second law , we must then have

.

By Equation (1), , so this last equation becomes

(2)

subject to the initial conditions and . (Here we use the prime notation
to denote differentiation with respect to time t.)

You might expect that the motion predicted by Equation (2) will be oscillatory about
the equilibrium position and eventually damp to zero because of the retarding fric-
tional force. This is indeed the case, and we will show how the constants m, , and k deter-
mine the nature of the damping. You will also see that if there is no friction (so ),
then the object will simply oscillate indefinitely.

Simple Harmonic Motion

Suppose first that there is no retarding frictional force. Then and there is no damp-
ing. If we substitute to simplify our calculations, then the second-order equa-
tion (2) becomes

with and .y¿(0) = 0y(0) = y0y– + v2y = 0,

v = 2k>m d = 0

d = 0
d

y = 0

y¿(0) = 0y(0) = y0

m
d2y

dt2 + d
dy
dt

+ ky = 0,

mg - ks = 0

m
d2y

dt2 = mg - ks - ky - d
dy
dt

F = maF = Fp - Fs - Fr

Fr = d
dy
dt

,

Fs = k(s + y),

Fp = mg,

y = 0

y0

ks = mg.

mg
ks

17.3

y

y � 0

s

mass m
at equilibrium

FIGURE 17.2 Mass m
stretches a spring by
length s to the equilibrium
position at y = 0.

y

y � 0

y

y0

s

Fs Fr

Fp

a position
after release

start
position

FIGURE 17.3 The propulsion
force (weight) pulls the mass
downward, but the spring
restoring force and frictional
force pull the mass upward.
The motion starts at with
the mass vibrating up and down.

y = y0

Fr

Fs

Fp

 Copyright © 2010 Pearson Education, Inc.  All rights reserved 



The auxiliary equation is

having the imaginary roots . The general solution to the differential equation in
(2) is

(3)

To fit the initial conditions, we compute

and then substitute the conditions. This yields and . The particular solution

(4)

describes the motion of the object. Equation (4) represents simple harmonic motion of
amplitude and period .

The general solution given by Equation (3) can be combined into a single term by
using the trigonometric identity

.

To apply the identity, we take (see Figure 17.4)

and ,

where

and

Then the general solution in Equation (3) can be written in the alternative form

(5)

Here C and may be taken as two new arbitrary constants, replacing the two constants 
and . Equation (5) represents simple harmonic motion of amplitude C and period

. The angle is called the phase angle, and may be interpreted as its
initial value. A graph of the simple harmonic motion represented by Equation (5) is given
in Figure 17.5.

fvt + fT = 2p>vc2

c1f

y = C sin (vt + f).

f = tan-1 
c1
c2

.C = 2c1 2 + c2 2

c2 = C cos fc1 = C sin f

 sin (vt + f) = cos vt sin f + sin vt cos f

T = 2p>vy0

y = y0 cos vt

c2 = 0c1 = y0

y¿ = -c1v sin vt + c2v cos vt

y = c1 cos vt + c2 sin vt.

r = ;vi

r2
+ v2

= 0,
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�

c2

c1

C = �c1
2 + c2

2

FIGURE 17.4 and
.c2 = C cos f

c1 = C sin f

y

t

–C

C

0

C sin �

y = C sin(�t + �)

T = 2�
�

Period

FIGURE 17.5 Simple harmonic motion of amplitude C
and period T with initial phase angle (Equation 5).f
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Damped Motion

Assume now that there is friction in the spring system, so . If we substitute
and , then the differential equation (2) is

(6)

The auxiliary equation is

with roots . Three cases now present themselves, depending upon
the relative sizes of b and .

Case 1: . The double root of the auxiliary equation is real and equals . The
general solution to Equation (6) is

.

This situation of motion is called critical damping and is not oscillatory. Figure 17.6a
shows an example of this kind of damped motion.

Case 2: . The roots of the auxiliary equation are real and unequal, given by

and . The general solution to Equation (6)
is given by

.

Here again the motion is not oscillatory and both and are negative. Thus y approaches
zero as time goes on. This motion is referred to as overdamping (see Figure 17.6b).

Case 3: . The roots to the auxiliary equation are complex and given by
. The general solution to Equation (6) is given by

This situation, called underdamping, represents damped oscillatory motion. It is analo-
gous to simple harmonic motion of period except that the amplitude
is not constant but damped by the factor . Therefore, the motion tends to zero as t
increases, so the vibrations tend to die out as time goes on. Notice that the period

is larger than the period in the friction-free system.
Moreover, the larger the value of in the exponential damping factor, the more
quickly the vibrations tend to become unnoticeable. A curve illustrating underdamped mo-
tion is shown in Figure 17.6c.

b = d>2m
T0 = 2p>vT = 2p>2v2

- b2

e - bt
T = 2p>2v2

- b2

y = e - bt Ac1 cos2v2
- b2 t + c2 sin2v2

- b2 t B .
r = -b ; i2v2

- b2
b<V

r2r1

y = c1e A- b +2b2
-v2Bt

+ c2e A- b -2b2
-v2Bt

r2 = -b - 2b2
- v2r1 = -b + 2b2

- v2

b>V

y = (c1 + c2t)e
-vt

r = vb � V

v

r = -b ; 2b2
- v2

r2
+ 2br + v2

= 0,

y– + 2by¿ + v2y = 0.

2b = d>mv = 2k>m d Z 0
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y

t

y

t

y

t

(a) Critical damping (b) Overdamping (c) Underdamping

y = (1 + t)e–t y = 2e–2t – e–t y = e–t sin (5t + �/4)
0 0 0

FIGURE 17.6 Three examples of damped vibratory motion for a spring system with
friction, so d Z 0.
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An external force can also be added to the spring system modeled by Equation
(2). The forcing function may represent an external disturbance on the system. For in-
stance, if the equation models an automobile suspension system, the forcing function
might represent periodic bumps or potholes in the road affecting the performance of the
suspension system; or it might represent the effects of winds when modeling the vertical
motion of a suspension bridge. Inclusion of a forcing function results in the second-order
nonhomogeneous equation

(7)

We leave the study of such spring systems to a more advanced course.

Electric Circuits

The basic quantity in electricity is the charge q (analogous to the idea of mass). In an elec-
tric field we use the flow of charge, or current , as we might use velocity in a
gravitational field. There are many similarities between motion in a gravitational field and
the flow of electrons (the carriers of charge) in an electric field.

Consider the electric circuit shown in Figure 17.7. It consists of four components:
voltage source, resistor, inductor, and capacitor. Think of electrical flow as being like a
fluid flow, where the voltage source is the pump and the resistor, inductor, and capacitor
tend to block the flow. A battery or generator is an example of a source, producing a volt-
age that causes the current to flow through the circuit when the switch is closed. An elec-
tric light bulb or appliance would provide resistance. The inductance is due to a magnetic
field that opposes any change in the current as it flows through a coil. The capacitance is
normally created by two metal plates that alternate charges and thus reverse the current
flow. The following symbols specify the quantities relevant to the circuit:

q: charge at a cross section of a conductor measured in coulombs (abbreviated c);

I: current or rate of change of charge dq/dt (flow of electrons) at a cross section of a
conductor measured in amperes (abbreviated A);

E: electric (potential) source measured in volts (abbreviated V);

V: difference in potential between two points along the conductor measured in volts (V).

I = dq>dt

m
d2y

dt2 + d
dy
dt

+ ky = F(t).

F(t)

17-20 Chapter 17: Second-Order Differential Equations

R, Resistor

C, Capacitor

L, InductorE
Voltage

source

FIGURE 17.7 An electric circuit.

Ohm observed that the current I flowing through a resistor, caused by a potential dif-
ference across it, is (approximately) proportional to the potential difference (voltage drop).
He named his constant of proportionality and called R the resistance. So Ohm’s law is

I =
1
R

 V.

1>R
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Linear Second-Order Constant-Coefficient Models

Mechanical System Electrical System

y: displacement q: charge
: velocity : current
: acceleration : change in current

m: mass L: inductance
: damping constant R: resistance

k: spring constant 1 C: where C is the capacitance
F(t): forcing function E(t): voltage source

>d

q–y–

q¿y¿

Lq– + Rq¿ +
1
C

 q = E(t)my– + dy¿ + ky = F(t)

EXERCISES 17.3

1. A 16-lb weight is attached to the lower end of a coil spring sus-
pended from the ceiling and having a spring constant of 1 lb ft.
The resistance in the spring–mass system is numerically equal to
the instantaneous velocity. At the weight is set in motion
from a position 2 ft below its equilibrium position by giving it a
downward velocity of 2 ft sec. Write an initial value problem that
models the given situation.

>
t = 0

>
2. An 8-lb weight stretches a spring 4 ft. The spring–mass system re-

sides in a medium offering a resistance to the motion that is nu-
merically equal to 1.5 times the instantaneous velocity. If the
weight is released at a position 2 ft above its equilibrium position
with a downward velocity of 3 ft sec, write an initial value prob-
lem modeling the given situation.

>

Similarly, it is known from physics that the voltage drops across an inductor and a ca-
pacitor are

and

where L is the inductance and C is the capacitance (with q the charge on the capacitor).
The German physicist Gustav R. Kirchhoff (1824–1887) formulated the law that the

sum of the voltage drops in a closed circuit is equal to the supplied voltage . Symboli-
cally, this says that

Since , Kirchhoff’s law becomes

(8)

The second-order differential equation (8), which models an electric circuit, has exactly
the same form as Equation (7) modeling vibratory motion. Both models can be solved
using the methods developed in Section 17.2.

Summary

The following chart summarizes our analogies for the physics of motion of an object in a
spring system versus the flow of charged particles in an electrical circuit.

L 
d2q

dt2 + R 
dq
dt

+
1
C

 q = E(t).

I = dq>dt

RI + L 
dI
dt

+

q
C

= E(t).

E(t)

q
C

,L 
dI
dt

 Copyright © 2010 Pearson Education, Inc.  All rights reserved 



3. A 20-lb weight is hung on an 18-in. spring and stretches it 6 in.
The weight is pulled down 5 in. and 5 lb are added to the weight. If
the weight is now released with a downward velocity of in. sec,
write an initial value problem modeling the vertical displacement.

4. A 10-lb weight is suspended by a spring that is stretched 2 in. by
the weight. Assume a resistance whose magnitude is lb
times the instantaneous velocity y in feet per second. If the weight
is pulled down 3 in. below its equilibrium position and released,
formulate an initial value problem modeling the behavior of the
spring–mass system.

5. An (open) electrical circuit consists of an inductor, a resistor, and
a capacitor. There is an initial charge of 2 coulombs on the capac-
itor. At the instant the circuit is closed, a current of 3 amperes is
present and a voltage of cos t is applied. In this circuit
the voltage drop across the resistor is 4 times the instantaneous
change in the charge, the voltage drop across the capacitor is 
10 times the charge, and the voltage drop across the inductor is
2 times the instantaneous change in the current. Write an initial
value problem to model the circuit.

6. An inductor of 2 henrys is connected in series with a resistor
of 12 ohms, a capacitor of 1 16 farad, and a 300 volt battery.
Initially, the charge on the capacitor is zero and the current is
zero. Formulate an initial value problem modeling this electrical
circuit.

Mechanical units in the British and metric systems may be helpful
in doing the following problems.

Unit British System MKS System

Distance Feet (ft) Meters (m)
Mass Slugs Kilograms (kg)
Time Seconds (sec) Seconds (sec)
Force Pounds (lb) Newtons (N)
g(earth) 32 ft sec2 9.81 m sec2

7. A 16-lb weight is attached to the lower end of a coil spring sus-
pended from the ceiling and having a spring constant of 1 lb ft.
The resistance in the spring–mass system is numerically equal to
the instantaneous velocity. At the weight is set in motion
from a position 2 ft below its equilibrium position by giving it a
downward velocity of 2 ft sec. At the end of sec, determine
whether the mass is above or below the equilibrium position and
by what distance.

8. An 8-lb weight stretches a spring 4 ft. The spring–mass system
resides in a medium offering a resistance to the motion equal to
1.5 times the instantaneous velocity. If the weight is released at a
position 2 ft above its equilibrium position with a downward
velocity of 3 ft sec, find its position relative to the equilibrium
position 2 sec later.

9. A 20-lb weight is hung on an 18-in. spring stretching it 6 in. The
weight is pulled down 5 in. and 5 lb are added to the weight. If the
weight is now released with a downward velocity of in. sec,
find the position of mass relative to the equilibrium in terms of 
and valid for any time .t Ú 0

y0

>y0

>

p>
t = 0

>

>>

>

Estd = 20

20>1g

>y0

10. A mass of 1 slug is attached to a spring whose constant is 25 4
lb ft. Initially the mass is released 1 ft above the equilibrium posi-
tion with a downward velocity of 3 ft sec, and the subsequent
motion takes place in a medium that offers a damping force nu-
merically equal to 3 times the instantaneous velocity. An external
force ƒ(t) is driving the system, but assume that initially .
Formulate and solve an initial value problem that models the
given system. Interpret your results.

11. A 10-lb weight is suspended by a spring that is stretched 2 in. by
the weight. Assume a resistance whose magnitude is lb
times the instantaneous velocity in feet per second. If the weight
is pulled down 3 in. below its equilibrium position and released,
find the time required to reach the equilibrium position for the
first time.

12. A weight stretches a spring 6 in. It is set in motion at a point 2 in. be-
low its equilibrium position with a downward velocity of 2 in. sec.

a. When does the weight return to its starting position?

b. When does it reach its highest point?

c. Show that the maximum velocity is in. sec.

13. A weight of 10 lb stretches a spring 10 in. The weight is drawn
down 2 in. below its equilibrium position and given an initial ve-
locity of 4 in. sec. An identical spring has a different weight at-
tached to it. This second weight is drawn down from its equilib-
rium position a distance equal to the amplitude of the first motion
and then given an initial velocity of 2 ft sec. If the amplitude of
the second motion is twice that of the first, what weight is at-
tached to the second spring?

14. A weight stretches one spring 3 in. and a second weight stretches
another spring 9 in. If both weights are simultaneously pulled
down 1 in. below their respective equilibrium positions and then
released, find the first time after when their velocities are
equal.

15. A weight of 16 lb stretches a spring 4 ft. The weight is pulled
down 5 ft below the equilibrium position and then released. What
initial velocity given to the weight would have the effect of
doubling the amplitude of the vibration?

16. A mass weighing 8 lb stretches a spring 3 in. The spring–mass sys-
tem resides in a medium with a damping constant of 2 lb-sec ft. If
the mass is released from its equilibrium position with a velocity
of 4 in. sec in the downward direction, find the time required for
the mass to return to its equilibrium position for the first time.

17. A weight suspended from a spring executes damped vibrations with
a period of 2 sec. If the damping factor decreases by 90% in 10 sec,
find the acceleration of the weight when it is 3 in. below its equilib-
rium position and is moving upward with a speed of 2 ft sec.

18. A 10-lb weight stretches a spring 2 ft. If the weight is pulled down
6 in. below its equilibrium position and released, find the highest
point reached by the weight. Assume the spring–mass system re-
sides in a medium offering a resistance of lb times the in-
stantaneous velocity in feet per second.

10>1g

>

>
>

y0

t = 0

>

>

>212g + 1

>

40>1g

ƒ(t) K 0

>
>

>
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17.4 Euler Equations 17-23

19. An LRC circuit is set up with an inductance of 1 5 henry, a resist-
ance of 1 ohm, and a capacitance of 5 6 farad. Assuming the initial
charge is 2 coulombs and the initial current is 4 amperes, find the
solution function describing the charge on the capacitor at any time.
What is the charge on the capacitor after a long period of time?

20. An (open) electrical circuit consists of an inductor, a resistor, and
a capacitor. There is an initial charge of 2 coulombs on the capac-
itor. At the instant the circuit is closed, a current of 3 amperes is
present but no external voltage is being applied. In this circuit the
voltage drops at three points are numerically related as follows:
across the capacitor, 10 times the charge; across the resistor, 4
times the instantaneous change in the charge; and across the in-
ductor, 2 times the instantaneous change in the current. Find the
charge on the capacitor as a function of time.

21. A 16-lb weight stretches a spring 4 ft. This spring–mass system is
in a medium with a damping constant of 4.5 lb-sec ft, and an ex-
ternal force given by (in pounds) is being ap-
plied. What is the solution function describing the position of the
mass at any time if the mass is released from 2 ft below the equi-
librium position with an initial velocity of 4 ft sec downward?

22. A 10-kg mass is attached to a spring having a spring constant of
140 N m. The mass is started in motion from the equilibrium po-
sition with an initial velocity of 1 m sec in the upward direction
and with an applied external force given by sin t (in new-
tons). The mass is in a viscous medium with a coefficient of re-
sistance equal to 90 N-sec m. Formulate an initial value problem
that models the given system; solve the model and interpret the
results.

23. A 2-kg mass is attached to the lower end of a coil spring sus-
pended from the ceiling. The mass comes to rest in its equilibrium

>
ƒ(t) = 5

>
>

>

ƒ(t) = 4 + e - 2t
>

>
> position thereby stretching the spring 1.96 m. The mass is in a

viscous medium that offers a resistance in newtons numerically
equal to 4 times the instantaneous velocity measured in meters
per second. The mass is then pulled down 2 m below its equilib-
rium position and released with a downward velocity of 3 m sec.
At this same instant an external force given by cos t (in
newtons) is applied to the system. At the end of sec determine
if the mass is above or below its equilibrium position and by how
much.

24. An 8-lb weight stretches a spring 4 ft. The spring–mass system re-
sides in a medium offering a resistance to the motion equal to 1.5
times the instantaneous velocity, and an external force given by

(in pounds) is being applied. If the weight is re-
leased at a position 2 ft above its equilibrium position with down-
ward velocity of 3 ft sec, find its position relative to the equilib-
rium after 2 sec have elapsed.

25. Suppose henrys, ohms, farads,
volts, coulombs, and . For-

mulate and solve an initial value problem that models the given
LRC circuit. Interpret your results.

26. A series circuit consisting of an inductor, a resistor, and a capaci-
tor is open. There is an initial charge of 2 coulombs on the capac-
itor, and 3 amperes of current is present in the circuit at the instant
the circuit is closed. A voltage given by is ap-
plied. In this circuit the voltage drops are numerically equal to the
following: across the resistor to 4 times the instantaneous change
in the charge, across the capacitor to 10 times the charge, and
across the inductor to 2 times the instantaneous change in the cur-
rent. Find the charge on the capacitor as a function of time. Deter-
mine the charge on the capacitor and the current at time .t = 10

E(t) = 20 cos t

q¿(0) = i(0) = 0q(0) = 10E = 100
C = 1>500R = 10L = 10

>
ƒ(t) = 6 + e - t

p

ƒ(t) = 20
>

Euler Equations

In Section 17.1 we introduced the second-order linear homogeneous differential equation

and showed how to solve this equation when the coefficients P, Q, and R are constants. If
the coefficients are not constant, we cannot generally solve this differential equation in
terms of elementary functions we have studied in calculus. In this section you will learn
how to solve the equation when the coefficients have the special forms

and ,

where a, b, and c are constants. These special types of equations are called Euler equa-
tions, in honor of Leonhard Euler who studied them and showed how to solve them. Such
equations arise in the study of mechanical vibrations.

The General Solution of Euler Equations

Consider the Euler equation

, (1)x 7 0.ax2y– + bxy¿ + cy = 0

R(x) = cQ(x) = bx,P(x) = ax2,

P(x)y–(x) + Q(x)y¿(x) + R(x)y(x) = 0

17.4
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To solve Equation (1), we first make the change of variables

and .

We next use the chain rule to find the derivatives and :

and

Substituting these two derivatives into the left-hand side of Equation (1), we find

Therefore, the substitutions give us the second-order linear differential equation with con-
stant coefficients

(2)

We can solve Equation (2) using the method of Section 17.1. That is, we find the roots to
the associated auxiliary equation

(3)

to find the general solution for After finding we can determine from the
substitution 

EXAMPLE 1 Find the general solution of the equation .

Solution This is an Euler equation with , , and . The auxiliary equa-
tion (3) for is

,

with roots and . The solution for is given by

.

Substituting gives the general solution for :

.

EXAMPLE 2 Solve the Euler equation .

Solution Since , , and , the auxiliary equation (3) for is

.

The auxiliary equation has the double root giving

.

Substituting into this expression gives the general solution

.y(x) = c1e
3 ln x

+ c2 ln x e3 ln x
= c1 x3

+ c2 x3 ln x

z = ln x

Y(z) = c1e
3z

+ c2 ze3z

r = 3

r2
+ (-5 - 1)r + 9 = (r - 3)2

= 0

Y(z)c = 9b = -5a = 1

x2y– - 5xy¿ + 9y = 0

y(x) = c1e
-2 ln x

+ c2e
ln x

= c1 x-2
+ c2 x

y(x)z = ln x

Y(z) = c1e
- 2z

+ c2e
z

Y(z)r = 1r = -2

r2
+ (2 - 1)r - 2 = (r - 1)(r + 2) = 0

Y(z)
c = -2b = 2a = 1

x2y– + 2xy¿ - 2y = 0

z = ln x.
y(x)Y(z),Y(z).

ar2
+ (b - a)r + c = 0

aY –(z) + (b - a)Y ¿(z) + cY(z) = 0.

 = aY –(z) + (b - a)Y ¿(z) + cY(z).

ax2y– + bxy¿ + cy = ax2 a-
1
x2 Y ¿(z) +

1
x2 Y –(z)b + bx a1x Y ¿(z)b + cY(z)

y–(x) =

d
dx

y¿(x) =

d
dx

Y ¿(z)
1
x = -

1
x2 Y ¿(z) +

1
x Y –(z)

dz
dx

= -
1
x2 Y ¿(z) +

1
x2 Y –(z).

y¿(x) =

d
dx

Y(z) =

d
dz

Y(z)
dz
dx

= Y ¿(z)
1
x

y–(x)y¿(x)

y(x) = Y(z)z = ln x
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EXAMPLE 3 Find the particular solution to that satisfies the
initial conditions and .

Solution Here , , and substituted into the auxiliary equation (3)
gives

.

The roots are and giving the solution

.

Substituting into this expression gives

.

From the initial condition , we see that and

.

To fit the second initial condition, we need the derivative

.

Since , we immediately obtain . Therefore, the particular solution satis-
fying both initial conditions is

.

Since , the solution satisfies

.

A graph of the solution is shown in Figure 17.8.

-

x2

8
… y(x) …

x2

8

-1 … sin (8 ln x) … 1

y(x) =
1
8

 x2 sin (8 ln x)

c2 = 1>8y¿(1) = 1

y¿(x) = c2 A8x cos (8 ln x) + 2x sin (8 ln x) B

y(x) = c2 x
2 sin (8 ln x)

c1 = 0y(1) = 0

y(x) = e2 ln x Ac1 cos (8 ln x) + c2 sin (8 ln x) B
z = ln x

Y(z) = e2z(c1 cos 8z + c2 sin 8z)

r = 2 - 8ir = 2 + 8i

r2
- 4r + 68 = 0

c = 68b = -3a = 1

y¿(1) = 1y(1) = 0
x2y– - 3xy¿ + 68y = 0

17.4 Euler Equations 17-25

20 4 6 8 10

–5

–10

5

10

y

x

y =  sin (8 lnx)x2

8

FIGURE 17.8 Graph of the solution to
Example 3.

EXERCISES 17.4

In Exercises 1–24, find the general solution to the given Euler
equation. Assume throughout.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. 4x2y– + y = 0x2y– + xy¿ = 0

x2y– - 3xy¿ + 9y = 0x2y– + 3xy¿ + y = 0

4x2y– - 4xy¿ + 5y = 04x2y– + 8xy¿ + 5y = 0

x2y– - 5xy¿ + 10y = 0x2y– + 3xy¿ + 10y = 0

x2y– + 7xy¿ + 13y = 0x2y– - xy¿ + 5y = 0

x2y– - xy¿ + 2y = 0x2y– - xy¿ + y = 0

x2y– + 6xy¿ + 4y = 03x2y– + 4xy¿ = 0

2x2y– + 7xy¿ + 2y = 0x2y– - 5xy¿ + 8y = 0

x2y– + xy¿ - y = 0x2y– - 6y = 0

x2y– + xy¿ - 4y = 0x2y– + 2xy¿ - 2y = 0

x 7 0
21.

22.

23.

24.

In Exercises 25–30, solve the given initial value problem.

25.

26.

27.

28.

29.

30. x2y– + 3xy¿ + 5y = 0,  y(1) = 1, y¿(1) = 0

x2y– - xy¿ + 2y = 0,  y(1) = -1, y¿(1) = 1

x2y– + 7xy¿ + 9y = 0,  y(1) = 1, y¿(1) = 0

x2y– - xy¿ + y = 0,  y(1) = 1, y¿(1) = 1

6x2y– + 7xy¿ - 2y = 0,  y(1) = 0, y¿(1) = 1

x2y– + 3xy¿ - 3y = 0,  y(1) = 1, y¿(1) = -1

4x2y– - 16xy¿ + 25y = 0

16x2y– + 56xy¿ + 25y = 0

16x2y– - 8xy¿ + 9y = 0

9x2y– + 15xy¿ + y = 0
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Power-Series Solutions

In this section we extend our study of second-order linear homogeneous equations with
variable coefficients. With the Euler equations in Section 17.4, the power of the variable x
in the nonconstant coefficient had to match the order of the derivative with which it was
paired: with , with , and with . Here we drop that requirement so we
can solve more general equations.

Method of Solution

The power-series method for solving a second-order homogeneous differential equation
consists of finding the coefficients of a power series

(1)

which solves the equation. To apply the method we substitute the series and its derivatives
into the differential equation to determine the coefficients The technique for
finding the coefficients is similar to that used in the method of undetermined coefficients
presented in Section 17.2.

In our first example we demonstrate the method in the setting of a simple equation
whose general solution we already know. This is to help you become more comfortable
with solutions expressed in series form.

EXAMPLE 1 Solve the equation by the power-series method.

Solution We assume the series solution takes the form of

and calculate the derivatives

and

Substitution of these forms into the second-order equation gives us

Next, we equate the coefficients of each power of x to zero as summarized in the following
table.

Power of x Coefficient Equation

or

or

or

or

or

or cn = -
1

n(n - 1)
 cn - 2= 0n(n - 1)cn + cn - 2xn - 2

ooo

c6 = -
1

6 # 5
 c4= 06(5)c6 + c4x4

c5 = -
1

5 # 4
 c3= 05(4)c5 + c3x3

c4 = -
1

4 # 3
 c2= 04(3)c4 + c2x2

c3 = -
1

3 # 2
 c1= 03(2)c3 + c1x1

c2 = -
1
2

 c0= 02(1)c2 + c0x0

a
q

n = 2
 n(n - 1)cn xn - 2

+ a
q

n = 0
 cn xn

= 0.

y– = a
q

n = 2
 n(n - 1)cnxn - 2.y¿ = a

q

n = 1
 ncn xn - 1

y = a
q

n = 0
 cnxn

y– + y = 0

c0, c1, c2, Á .

y(x) = a
q

n = 0
 cn xn

= c0 + c1x + c2x2
+

Á

yx0 (=1)y¿x1y–x2

17.5

 Copyright © 2010 Pearson Education, Inc.  All rights reserved 



From the table we notice that the coefficients with even indices ( )
are related to each other and the coefficients with odd indices ( ) are also inter-
related. We treat each group in turn.

Even indices: Here , so the power is . From the last line of the table, we have

or

From this recursive relation we find

Odd indices: Here , so the power is . Substituting this into the last
line of the table yields

or

Thus,

Writing the power series by grouping its even and odd powers together and substitut-
ing for the coefficients yields

.

From Table 9.1 in Section 9.10, we see that the first series on the right-hand side of the last
equation represents the cosine function and the second series represents the sine. Thus, the
general solution to is

.y = c0 cos x + c1 sin x

y– + y = 0

 = c0a
q

k = 0
 
(-1)k

(2k)!
x2k

+ c1a
q

k = 0
 

(-1)k

(2k + 1)!
x2k + 1

 = a
q

k = 0
 c2kx2k

+ a
q

k = 0
 c2k + 1x2k + 1

y = a
q

n = 0
 cnxn

 =

(-1)k

(2k + 1)!
 c1.

c2k + 1 = c- 1
(2k + 1)(2k)

d c- 1
(2k - 1)(2k - 2)

d Á c- 1
5(4)
d c- 1

3(2)
dc1

c2k + 1 = -
1

(2k + 1)(2k)
 c2k - 1.

(2k + 1)(2k)c2k + 1 + c2k - 1 = 0

x2k - 1n = 2k + 1

 =

(-1)k

(2k)!
 c0.

c2k = c- 1
2k(2k - 1)

d c- 1
(2k - 2)(2k - 3)

d Á c- 1
4(3)
d c- 1

2
dc0

c2k = -
1

2k(2k - 1)
 c2k - 2.

2k(2k - 1)c2k + c2k - 2 = 0

x2k - 2n = 2k

n = 2k + 1
n = 2k, k = 1, 2, 3, Á
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EXAMPLE 2 Find the general solution to .

Solution We assume the series solution form

and calculate the derivatives

and .

Substitution of these forms into the second-order equation yields

.

We equate the coefficients of each power of x to zero as summarized in the following table.

Power of x Coefficient Equation

or

or

or

or

or

or

From the table notice that the coefficients with even indices are interrelated and the coeffi-
cients with odd indices are also interrelated.

Even indices: Here so the power is From the last line in the table,
we have

From this recurrence relation we obtain

Odd indices: Here so the power is From the last line in the table,
we have

From this recurrence relation we obtain

 =

(-1)k

(3)(5) Á (2k + 1)
 c1.

 c2k + 1 = a-
1

2k + 1
b a-

1
2k - 1

b Á a-
1
5
b a-

1
3
bc1

c2k + 1 = -
1

2k + 1
 c2k - 1.

x2k - 1.n = 2k - 1,

 =

(-1)k

(2)(4)(6) Á (2k)
 c0.

 c2k = a-
1
2k
b a-

1
2k - 2

b Á a-
1
6
b a-

1
4
b a-

1
2
bc0

c2k = -
1
2k

 c2k - 2.

x2k - 2.n = 2k - 2,

cn + 2 = -
1

n + 2
 cn(n + 2)(n + 1)cn + 2 + (n + 1)cn = 0xn

ooo

c6 = -
1
6 c46(5)c6 + 4c4 + c4 = 0x4

c5 = -
1
5 c35(4)c5 + 3c3 + c3 = 0x3

c4 = -
1
4 c24(3)c4 + 2c2 + c2 = 0x2

c3 = -
1
3 c13(2)c3 + c1 + c1 = 0x1

c2 = -
1
2 c02(1)c2 + c0 = 0x0

a
q

n = 2
 n(n - 1)cn xn - 2

+ a
q

n = 1
 ncn xn

+ a
q

n = 0
 cnxn

= 0

y– = a
q

 n = 2
n(n - 1)cnxn - 2y¿ = a

q

n = 1
 ncn xn - 1

y = a
q

n = 0
 cn xn

y– + xy¿ + y = 0
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Writing the power series by grouping its even and odd powers and substituting for the
coefficients yields

EXAMPLE 3 Find the general solution to

Solution Notice that the leading coefficient is zero when Thus, we assume the
solution interval Substitution of the series form

and its derivatives gives us

Next, we equate the coefficients of each power of x to zero as summarized in the following
table.

Power of x Coefficient Equation

or

or

or

or

or

Again we notice that the coefficients with even indices are interrelated and those with odd
indices are interrelated.

Even indices: Here so the power is From the right-hand column and
last line of the table, we get

 = (k + 1)c0.

 = a2k + 2
2k

b a 2k
2k - 2

b a2k - 2
2k - 4

b Á
6
4
a4

2
bc0

 c2k =

2k + 2
2k

c2k - 2

x2k.n = 2k - 2,

cn + 2 =

n + 4
n + 2

cn(n + 2)(n + 1)cn + 2 - (n + 4)(n + 1)cn = 0

(n + 2)(n + 1)cn + 2 - [n(n - 1) + 6n + 4]cn = 0xn

ooo

c5 =
7
5 c35(4)c5 - 3(2)c3 - 6(3)c3 - 4c3 = 0x3

c4 =
6
4 c24(3)c4 - 2(1)c2 - 6(2)c2 - 4c2 = 0x2

c3 =
5
3 c13(2)c3 - 6(1)c1 - 4c1 = 0x1

c2 =
4
2 c02(1)c2 - 4c0 = 0x0

a
q

n = 2
 n(n - 1)cn xn - 2

- a
q

n = 2
 n(n - 1)cn xn

- 6a
q

n = 1
 ncn xn

- 4a
q

n = 0
 cn xn

= 0.

(1 - x2)a
q

n = 2
 n(n - 1)cn xn - 2

- 6a
q

n = 1
 ncn xn

- 4a
q

n = 0
 cn xn

= 0,

y = a
q

n = 0
 cn xn

I: -1 6 x 6 1.
x = ;1.

|x| 6 1.(1 - x2)y– - 6xy¿ - 4y = 0,

 = c0a
q

k = 0
  

(-1)k

(2)(4) Á (2k)
x2k

+ c1a
q

k = 0
  

(-1)k

(3)(5) Á (2k + 1)
x2k + 1.

 y = a
q

k = 0
 c2k x2k

+ a
q

k = 0
 c2k + 1x2k + 1
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Odd indices: Here so the power is The right-hand column and last
line of the table gives us

The general solution is

EXAMPLE 4 Find the general solution to 

Solution Assuming that

substitution into the differential equation gives us

We next determine the coefficients, listing them in the following table.

Power of x Coefficient Equation

or

or

or

or

or

or cn + 2 =

2n - 1
(n + 2)(n + 1)

 cn(n + 2)(n + 1)cn + 2 - (2n - 1)cn = 0xn

ooo

c6 =

7
6 # 5

 c46(5)c6 - 8c4 + c4 = 0x4

c5 =

5
5 # 4

 c35(4)c5 - 6c3 + c3 = 0x3

c4 =

3
4 # 3

 c24(3)c4 - 4c2 + c2 = 0x2

c3 =
1

3 # 2
 c13(2)c3 - 2c1 + c1 = 0x1

c2 = -
1
2

 c02(1)c2 + c0 = 0x0

a
q

n = 2
 n(n - 1)cn xn - 2

- 2a
q

n = 1
 ncn xn

+ a
q

n = 0
 cn xn

= 0.

y = a
q

n = 0
 cn xn,

y– - 2xy¿ + y = 0.

 = c0a
q

k = 0
 (k + 1)x2k

+ c1a
q

k = 0
 
2k + 3

3
x2k + 1.

 = a
q

k = 0
 c2k x2k

+ a
q

k = 0
 c2k + 1x2k + 1

 y = a
q

n = 0
 cn xn

 =

2k + 3
3

 c1.

 = a2k + 3
2k + 1

b a2k + 1
2k - 1

b a2k - 1
2k - 3

b Á
7
5 a53 bc1

c2k + 1 =

2k + 3
2k + 1

c2k - 1

x2k + 1.n = 2k - 1,
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From the recursive relation

we write out the first few terms of each series for the general solution:

 + c1 ax +
1
3!

 x3
+

5
5!

 x5
+

45
7!

 x7
+

Á b .

 y = c0 a1 -
1
2

x2
-

3
4!

x4
-

21
6!

x6
-

Á b

cn + 2 =

2n - 1
(n + 2)(n + 1)

 cn,
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EXERCISES 17.5

In Exercises 1–18, use power series to find the general solution of the
differential equation.

1.

2.

3.

4.

5.

6.

7.

8. (1 - x2)y– - 4xy¿ + 6y = 0

(1 + x)y– - y = 0

y– - xy¿ + y = 0

x2y– - 2xy¿ + 2y = 0

y– - 3y¿ + 2y = 0

y– + 4y = 0

y– + 2y¿ + y = 0

y– + 2y¿ = 0

9.

10.

11.

12.

13.

14.

15.

16.

17.

18. x2y– - 4xy¿ + 6y = 0

y– - xy¿ + 3y = 0

(1 - x2)y– - xy¿ + 4y = 0

y– - 2xy¿ + 3y = 0

y– - 2xy¿ + 4y = 0

(x2
- 1)y– + 4xy¿ + 2y = 0

xy– - (x + 2)y¿ + 2y = 0

(x2
- 1)y– - 6y = 0

y– + y¿ - x2y = 0

(x2
- 1)y– + 2xy¿ - 2y = 0
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