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OVERVIEW In this chapter we extend our study of differential equations to those of second
order. Second-order differential equations arise in many applications in the sciences and
engineering. For instance, they can be applied to the study of vibrating springs and electric
circuits. You will learn how to solve such differential equations by several methods in this
chapter.

17-1

SECOND-ORDER

DIFFERENTIAL EQUATIONS

C h a p t e r

17

Second-Order Linear Equations

An equation of the form

(1)

which is linear in y and its derivatives, is called a second-order linear differential equa-
tion. We assume that the functions , and are continuous throughout some open
interval I. If is identically zero on I, the equation is said to be homogeneous; other-
wise it is called nonhomogeneous. Therefore, the form of a second-order linear homoge-
neous differential equation is

(2)

We also assume that is never zero for any .
Two fundamental results are important to solving Equation (2). The first of these says

that if we know two solutions and of the linear homogeneous equation, then any
linear combination is also a solution for any constants and .c2c1y = c1y1 + c2y2

y2y1

x H IP(x)

P(x)y– + Q(x)y¿ + R(x)y = 0.

G(x)
GP, Q, R

P(x)y–(x) + Q(x)y¿(x) + R(x)y(x) = G(x),

17.1

THEOREM 1—The Superposition Principle If and are two solutions
to the linear homogeneous equation (2), then for any constants and , the
function

is also a solution to Equation (2).

y(x) = c1y1(x) + c2y2(x)

c2c1

y2(x)y1(x)
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Proof Substituting y into Equation (2), we have

144442444443 144442444443
is a solution � 0, is a solution

Therefore, is a solution of Equation (2).

Theorem 1 immediately establishes the following facts concerning solutions to the
linear homogeneous equation.

1. A sum of two solutions to Equation (2) is also a solution. (Choose 
.)

2. A constant multiple of any solution to Equation (2) is also a solution. (Choose
and .)

3. The trivial solution is always a solution to the linear homogeneous equa-
tion. (Choose .)

The second fundamental result about solutions to the linear homogeneous equation
concerns its general solution or solution containing all solutions. This result says that
there are two solutions and such that any solution is some linear combination of them
for suitable values of the constants and . However, not just any pair of solutions will
do. The solutions must be linearly independent, which means that neither nor is a
constant multiple of the other. For example, the functions and are
linearly independent, whereas and are not (so they are linearly de-
pendent). These results on linear independence and the following theorem are proved in
more advanced courses.

g(x) = 7x2ƒ(x) = x2
g(x) = xexƒ(x) = ex

y2y1

c2c1

y2y1

c1 = c2 = 0
y(x) K 0

c2 = 0c1 = k
y1ky1

c2 = 1
c1 =y1 + y2

y = c1y1 + c2y2

= c1(0) + c2(0) = 0.

y2= 0,  y1

(P(x)y2– + Q(x)y2¿ + R(x)y2)c2(P(x)y1– + Q(x)y1¿ + R(x)y1) += c1

= P(x)(c1y1– + c2 y2–) + Q(x)(c1y1¿ + c2 y2¿) + R(x)(c1y1 + c2 y2)

= P(x)(c1y1 + c2 y2)– + Q(x)(c1y1 + c2 y2)¿ + R(x)(c1y1 + c2 y2)

P(x)y– + Q(x)y¿ + R(x)y

17-2 Chapter 17: Second-Order Differential Equations

THEOREM 2 If and are continuous over the open interval I and is
never zero on I, then the linear homogeneous equation (2) has two linearly
independent solutions and on I. Moreover, if and are any two linearly
independent solutions of Equation (2), then the general solution is given by

where and are arbitrary constants.c2c1

y(x) = c1y1(x) + c2 y2(x),

y2y1y2y1

P(x)RP, Q,

We now turn our attention to finding two linearly independent solutions to the special
case of Equation (2), where and are constant functions.

Constant-Coefficient Homogeneous Equations

Suppose we wish to solve the second-order homogeneous differential equation

(3)ay– + by¿ + cy = 0,

RP, Q,
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where a, b, and c are constants. To solve Equation (3), we seek a function which when
multiplied by a constant and added to a constant times its first derivative plus a constant
times its second derivative sums identically to zero. One function that behaves this way is
the exponential function , when r is a constant. Two differentiations of this expo-
nential function give and , which are just constant multiples of the
original exponential. If we substitute into Equation (3), we obtain

Since the exponential function is never zero, we can divide this last equation through by
. Thus, is a solution to Equation (3) if and only if r is a solution to the algebraic

equation
y = erxerx

ar2erx
+ brerx

+ cerx
= 0.

y = erx
y– = r2erxy¿ = rerx

y = erx

17.1 Second-Order Linear Equations 17-3

(4)ar2
+ br + c = 0.

Equation (4) is called the auxiliary equation (or characteristic equation) of the differen-
tial equation . The auxiliary equation is a quadratic equation with
roots

and

There are three cases to consider which depend on the value of the discriminant 

Case 1: In this case the auxiliary equation has two real and unequal roots
and . Then and are two linearly independent solutions to Equation

(3) because is not a constant multiple of (see Exercise 61). From Theorem 2 we
conclude the following result.

er1 xer2 x
y2 = er2 xy1 = er1 xr2r1

b2 � 4ac>0.

b2
- 4ac.

r2 =

-b - 2b2
- 4ac

2a
.r1 =

-b + 2b2
- 4ac

2a

ay– + by¿ + cy = 0

THEOREM 3 If and are two real and unequal roots to the auxiliary
equation , then

is the general solution to .ay– + by¿ + cy = 0

y = c1e
r1 x

+ c2e
r2 x

ar2
+ br + c = 0

r2r1

EXAMPLE 1 Find the general solution of the differential equation

Solution Substitution of into the differential equation yields the auxiliary
equation

which factors as

The roots are and Thus, the general solution is

y = c1e
3x

+ c2e
-2x.

r2 = -2.r1 = 3

(r - 3)(r + 2) = 0.

r2
- r - 6 = 0,

y = erx

y– - y¿ - 6y = 0.
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Case 2: In this case To simplify the notation, let
. Then we have one solution with . Since multiplication

of by a constant fails to produce a second linearly independent solution, suppose we try
multiplying by a function instead. The simplest such function would be , so let’s
see if is also a solution. Substituting into the differential equation gives

The first term is zero because ; the second term is zero because solves the
auxiliary equation. The functions and are linearly independent (see
Exercise 62). From Theorem 2 we conclude the following result.

y2 = xerxy1 = erx
rr = -b>2a

 = 0(erx) + (0)xerx
= 0.

 = (2ar + b)erx
+ (ar2

+ br + c)xerx

ay2– + by2¿ + cy2 = a(2rerx
+ r2xerx) + b(erx

+ rxerx) + cxerx

y2y2 = xerx
u(x) = x

erx
2ar + b = 0y1 = erxr = -b>2a

r1 = r2 = -b>2a.b2 � 4ac � 0.

17-4 Chapter 17: Second-Order Differential Equations

THEOREM 4 If r is the only (repeated) real root to the auxiliary equation
, then

is the general solution to .ay– + by¿ + cy = 0

y = c1e
rx

+ c2 xerx

ar2
+ br + c = 0

EXAMPLE 2 Find the general solution to

Solution The auxiliary equation is

which factors into

Thus, is a double root. Therefore, the general solution is

Case 3: In this case the auxiliary equation has two complex roots
and , where and are real numbers and . (These real

numbers are and .) These two complex roots then give
rise to two linearly independent solutions

and

(The expressions involving the sine and cosine terms follow from Euler’s identity in Sec-
tion 9.9.) However, the solutions and are complex valued rather than real valued.
Nevertheless, because of the superposition principle (Theorem 1), we can obtain from
them the two real-valued solutions

and

The functions and are linearly independent (see Exercise 63). From Theorem 2 we
conclude the following result.

y4y3

y4 =
1
2i

 y1 -
1
2i

 y2 = eax sin bx.y3 =
1
2

 y1 +
1
2

 y2 = eaxcos bx

y2y1

y2 = e (a- ib)x
= eax(cos bx - i sin bx).y1 = e (a+ ib)x

= eax(cos bx + i sin bx)

b = 24ac - b2>2aa = -b>2a

i2
= -1bar2 = a - ibr1 = a + ib

b2�4ac<0.

y = c1e
-2x

+ c2 xe-2x.

r = -2

(r + 2)2
= 0.

r2
+ 4r + 4 = 0,

y– + 4y¿ + 4y = 0.
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EXAMPLE 3 Find the general solution to the differential equation

Solution The auxiliary equation is

The roots are the complex pair or and 
Thus, and give the general solution

Initial Value and Boundary Value Problems

To determine a unique solution to a first-order linear differential equation, it was sufficient
to specify the value of the solution at a single point. Since the general solution to a second-
order equation contains two arbitrary constants, it is necessary to specify two conditions.
One way of doing this is to specify the value of the solution function and the value of its
derivative at a single point: and . These conditions are called initial
conditions. The following result is proved in more advanced texts and guarantees the exis-
tence of a unique solution for both homogeneous and nonhomogeneous second-order
linear initial value problems.

y¿(x0) = y1y(x0) = y0

y = e2x(c1 cos x + c2 sin x).

b = 1a = 2
r2 = 2 - i.r1 = 2 + ir = (4 ; 216 - 20)>2

r2
- 4r + 5 = 0.

y– - 4y¿ + 5y = 0.

17.1 Second-Order Linear Equations 17-5

THEOREM 5 If and are two complex roots to the
auxiliary equation , then

is the general solution to ay– + by¿ + cy = 0.

y = eax(c1 cos bx + c2 sin bx)

ar2
+ br + c = 0

r2 = a - ibr1 = a + ib

THEOREM 6 If and are continuous throughout an open interval I,
then there exists one and only one function satisfying both the differential
equation

on the interval I, and the initial conditions

and

at the specified point .x0 H I

y¿(x0) = y1y(x0) = y0

P(x)y–(x) + Q(x)y¿(x) + R(x)y(x) = G(x)

y(x)
GP, Q, R,

It is important to realize that any real values can be assigned to and and Theorem 6
applies. Here is an example of an initial value problem for a homogeneous equation.

y1y0
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EXAMPLE 4 Find the particular solution to the initial value problem

Solution The auxiliary equation is

.

The repeated real root is giving the general solution

Then,

From the initial conditions we have

Thus, and The unique solution satisfying the initial conditions is

The solution curve is shown in Figure 17.1.

Another approach to determine the values of the two arbitrary constants in the general
solution to a second-order differential equation is to specify the values of the solution
function at two different points in the interval I. That is, we solve the differential equation
subject to the boundary values

and ,

where and both belong to I. Here again the values for and can be any real
numbers. The differential equation together with specified boundary values is called a
boundary value problem. Unlike the result stated in Theorem 6, boundary value prob-
lems do not always possess a solution or more than one solution may exist (see Exercise
65). These problems are studied in more advanced texts, but here is an example for which
there is a unique solution.

EXAMPLE 5 Solve the boundary value problem

.

Solution The auxiliary equation is , which has the complex roots .
The general solution to the differential equation is

.

The boundary conditions are satisfied if

.

It follows that and . The solution to the boundary value problem is

.y = 2 sin 2x

c2 = 2c1 = 0

y ap
12
b = c1 cos ap

6
b + c2 sin ap

6
b = 1

 y(0) = c1
#  1 + c2

#  0 = 0

y = c1 cos 2x + c2 sin 2x

r = ;2ir2
+ 4 = 0

y– + 4y = 0,    y(0) = 0,  y ap
12
b = 1

y2y1x2x1

y(x2) = y2y(x1) = y1

y = ex
- 2xex.

c2 = -2.c1 = 1

1 = c1 + c2
# 0  and  -1 = c1 + c2

# 1.

y¿ = c1e
x

+ c2(x + 1)ex.

y = c1e
x

+ c2 xex.

r = 1,

r2
- 2r + 1 = (r - 1)2

= 0

y– - 2y¿ + y = 0,  y(0) = 1, y¿(0) = -1.

17-6 Chapter 17: Second-Order Differential Equations

–4 –3 –2 –1 0 1

–6

–8

–4

–2

y

x

y = ex – 2xex

FIGURE 17.1 Particular solution curve
for Example 4.
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17.1 Second-Order Linear Equations 17-7

EXERCISES 17.1

In Exercises 1–30, find the general solution of the given equation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

In Exercises 31–40, find the unique solution of the second-order
initial value problem.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40. 9
d2y

dx2 - 12
dy

dx
+ 4y = 0, y(0) = -1, 

dy

dx
(0) = 1

4
d2y

dx2 + 12
dy

dx
+ 9y = 0, y(0) = 2, 

dy

dx
(0) = 1

4y– - 4y¿ + y = 0, y(0) = 4, y¿(0) = 4

y– - 4y¿ + 4y = 0, y(0) = 1, y¿(0) = 0

y– + 4y¿ + 4y = 0, y(0) = 0, y¿(0) = 1

y– + 8y = 0, y(0) = -1, y¿(0) = 2

12y– + 5y¿ - 2y = 0, y(0) = 1, y¿(0) = -1

y– + 12y = 0, y(0) = 0, y¿(0) = 1

y– + 16y = 0, y(0) = 2, y¿(0) = -2

y– + 6y¿ + 5y = 0, y(0) = 0, y¿(0) = 3

9
d2y

dx2 - 12
dy

dx
+ 4y = 09

d2y

dx2 + 6
dy

dx
+ y = 0

4
d2y

dx2 - 4
dy

dx
+ y = 04

d2y

dx2 + 4
dy

dx
+ y = 0

4
d2y

dx2 - 12
dy

dx
+ 9y = 0

d2y

dx2 + 6
dy

dx
+ 9y = 0

d2y

dx2 - 6
dy

dx
+ 9y = 0

d2y

dx2 + 4
dy

dx
+ 4y = 0

y– + 8y¿ + 16y = 0y– = 0

4y– - 4y¿ + 13y = 0y– + 4y¿ + 9y = 0

y– - 2y¿ + 3y = 0y– + 2y¿ + 4y = 0

y– + 16y = 0y– - 2y¿ + 5y = 0

y– + y = 0y– + 25y = 0

y– + 4y¿ + 5y = 0y– + 9y = 0

3y– - 20y¿ + 12y = 08y– - 10y¿ - 3y = 0

9y– - y = 02y– - y¿ - 3y = 0

y– - 64y = 0y– - 4y = 0

y– - 9y = 0y– + 3y¿ - 4y = 0

3y– - y¿ = 0y– - y¿ - 12y = 0

In Exercises 41–55, find the general solution.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55.

In Exercises 56–60, solve the initial value problem.

56.

57.

58.

59.

60.

61. Prove that the two solution functions in Theorem 3 are linearly in-
dependent.

62. Prove that the two solution functions in Theorem 4 are linearly in-
dependent.

63. Prove that the two solution functions in Theorem 5 are linearly in-
dependent.

64. Prove that if and are linearly independent solutions to the
homogeneous equation (2), then the functions and

are also linearly independent solutions.

65. a. Show that there is no solution to the boundary value problem

b. Show that there are infinitely many solutions to the boundary
value problem

66. Show that if a, b, and c are positive constants, then all solutions of
the homogeneous differential equation

approach zero as x : q .

ay– + by¿ + cy = 0

y– + 4y = 0, y(0) = 0, y(p) = 0.

y– + 4y = 0, y(0) = 0, y(p) = 1.

y4 = y1 - y2

y3 = y1 + y2

y2y1

4y– + 4y¿ + 5y = 0, y(p) = 1, y¿(p) = 0

3y– + y¿ - 14y = 0, y(0) = 2, y¿(0) = -1

4y– - 4y¿ + y = 0, y(0) = -1, y¿(0) = 2

y– + 2y¿ + y = 0, y(0) = 1, y¿(0) = 1

y– - 2y¿ + 2y = 0, y(0) = 0, y¿(0) = 2

6y– - 5y¿ - 4y = 0

4y– + 16y¿ + 52y = 09y– + 24y¿ + 16y = 0

6y– - 5y¿ - 6y = 016y– - 24y¿ + 9y = 0

y– + 4y¿ + 6y = 04y– + 4y¿ + 5y = 0

6y– + 13y¿ - 5y = 025y– + 10y¿ + y = 0

y– + 2y¿ + 2y = 04y– + 20y = 0

9y– + 12y¿ + 4y = 04y– + 4y¿ + y = 0

6y– - y¿ - y = 0y– - 2y¿ - 3y = 0
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17-8 Chapter 17: Second-Order Differential Equations

Nonhomogeneous Linear Equations

In this section we study two methods for solving second-order linear nonhomogeneous
differential equations with constant coefficients. These are the methods of undetermined
coefficients and variation of parameters. We begin by considering the form of the general
solution.

Form of the General Solution

Suppose we wish to solve the nonhomogeneous equation

(1)

where a, b, and c are constants and G is continuous over some open interval I. Let
be the general solution to the associated complementary equation

(2)

(We learned how to find in Section 17.1.) Now suppose we could somehow come up
with a particular function that solves the nonhomogeneous equation (1). Then the sum

(3)

also solves the nonhomogeneous equation (1) because

Moreover, if is the general solution to the nonhomogeneous equation (1), it must
have the form of Equation (3). The reason for this last statement follows from the observa-
tion that for any function satisfying Equation (1), we have

Thus, is the general solution to the homogeneous equation (2). We have
established the following result.

yc = y - yp

 = G(x) - G(x) = 0.

 = (ay– + by¿ + cy) - (ayp– + byp¿ + cyp)

a(y - yp)– + b(y - yp)¿ + c(y - yp)

yp

y = y(x)

 = G(x).

 = 0 + G(x)

 = (ayc– + byc¿ + cyc) + (ayp– + byp¿ + cyp)

a(yc + yp)– + b(yc + yp)¿ + c(yc + yp)

y = yc + yp

yp

yc

ay– + by¿ + cy = 0.

yc = c1y1 + c2y2

ay– + by¿ + cy = G(x),

17.2

solves Eq. (2) and solves Eq. (1)ypyc

THEOREM 7 The general solution to the nonhomogeneous differen-
tial equation (1) has the form

,

where the complementary solution is the general solution to the associated
homogeneous equation (2) and is any particular solution to the nonhomoge-
neous equation (1).

yp

yc

y = yc + yp

y = y(x)
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The Method of Undetermined Coefficients

This method for finding a particular solution to the nonhomogeneous equation (1) ap-
plies to special cases for which is a sum of terms of various polynomials multi-
plying an exponential with possibly sine or cosine factors. That is, is a sum of terms
of the following forms:

For instance, and represent functions in this category.
(Essentially these are functions solving homogeneous linear differential equations with
constant coefficients, but the equations may be of order higher than two.) We now present
several examples illustrating the method.

EXAMPLE 1 Solve the nonhomogeneous equation 

Solution The auxiliary equation for the complementary equation is

It has the roots and giving the complementary solution

.

Now is a polynomial of degree 2. It would be reasonable to assume that a
particular solution to the given nonhomogeneous equation is also a polynomial of degree 2
because if y is a polynomial of degree 2, then is also a polynomial of de-
gree 2. So we seek a particular solution of the form

We need to determine the unknown coefficients A, B, and C. When we substitute the poly-
nomial and its derivatives into the given nonhomogeneous equation, we obtain

or, collecting terms with like powers of x,

This last equation holds for all values of x if its two sides are identical polynomials of
degree 2. Thus, we equate corresponding powers of x to get

and

These equations imply in turn that A � , B � , and C � Substituting these
values into the quadratic expression for our particular solution gives

By Theorem 7, the general solution to the nonhomogeneous equation is

1
3

 x2
-

4
9

 x +

5
27

.+c1e
- x

+ c2e
3xy = yc + yp =

yp =
1
3

 x2
-

4
9

 x +

5
27

.

5>27.-4>91>3
2A - 2B - 3C = 1.-4A - 3B = 0,-3A = -1,

-3Ax2
+ (-4A - 3B)x + (2A - 2B - 3C) = 1 - x2.

2A - 2(2Ax + B) - 3(Ax2
+ Bx + C) = 1 - x2

yp

yp = Ax2
+ Bx + C.

y– - 2y¿ - 3y

G(x) = 1 - x2

yc = c1e
- x

+ c2e
3x

r = 3r = -1

r2
- 2r - 3 = (r + 1)(r - 3) = 0.

y– - 2y¿ - 3y = 0

y– - 2y¿ - 3y = 1 - x2.

5ex
- sin 2x1 - x, e2x, xex, cos x,

p3(x)eax sin bx.p2(x)eax cos bx,p1(x)erx,

G(x)
p(x)G(x)

yp

17.2 Nonhomogeneous Linear Equations 17-9
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EXAMPLE 2 Find a particular solution of 

Solution If we try to find a particular solution of the form

and substitute the derivatives of in the given equation, we find that A must satisfy the
equation

for all values of x. Since this requires A to equal both 2 and 0 at the same time, we con-
clude that the nonhomogeneous differential equation has no solution of the form .

It turns out that the required form is the sum

.

The result of substituting the derivatives of this new trial solution into the differential
equation is

or

.

This last equation must be an identity. Equating the coefficients for like terms on each side
then gives

and .

Simultaneous solution of these two equations gives and . Our particular
solution is

.

EXAMPLE 3 Find a particular solution of .

Solution If we substitute

and its derivatives in the differential equation, we find that

or

.

However, the exponential function is never zero. The trouble can be traced to the fact that
is already a solution of the related homogeneous equation

.

The auxiliary equation is

which has as a root. So we would expect to become zero when substituted into
the left-hand side of the differential equation.

The appropriate way to modify the trial solution in this case is to multiply by x.
Thus, our new trial solution is

.yp = Axex

Aex

Aexr = 1

r2
- 3r + 2 = (r - 1)(r - 2) = 0,

y– - 3y¿ + 2y = 0

y = ex

0 = 5ex

Aex
- 3Aex

+ 2Aex
= 5ex

yp = Aex

y– - 3y¿ + 2y = 5ex

yp = cos x - sin x

B = 1A = -1

A + B = 0B - A = 2

(B - A) sin x - (A + B) cos x = 2 sin x

-A sin x - B cos x - (A cos x - B sin x) = 2 sin x

yp = A sin x + B cos x

A sin x
-

-A sin x + A cos x = 2 sin x

yp

yp = A sin x

y– - y¿ = 2 sin x.
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The result of substituting the derivatives of this new candidate into the differential equation is

or

.

Thus, gives our sought-after particular solution

.

EXAMPLE 4 Find a particular solution of .

Solution The auxiliary equation for the complementary equation

has as a repeated root. The appropriate choice for in this case is neither nor
because the complementary solution contains both of those terms already. Thus, we

choose a term containing the next higher power of x as a factor. When we substitute

and its derivatives in the given differential equation, we get

or

.

Thus, , and the particular solution is

.

When we wish to find a particular solution of Equation (1) and the function is the
sum of two or more terms, we choose a trial function for each term in and add them.

EXAMPLE 5 Find the general solution to .

Solution We first check the auxiliary equation

.

Its roots are and . Therefore, the complementary solution to the associated ho-
mogeneous equation is

.

We now seek a particular solution . That is, we seek a function that will produce
when substituted into the left-hand side of the given differential equation.

One part of is to produce , the other .
Since any function of the form is a solution of the associated homogeneous equa-

tion, we choose our trial solution to be the sum

,

including where we might otherwise have included only . When the derivatives of 
are substituted into the differential equation, the resulting equation is

- (Axex
+ Aex

- 2B sin 2x + 2C cos 2x) = 5ex
- sin 2x

(Axex
+ 2Aex

- 4B cos 2x - 4C sin 2x)

ypexxex

yp = Axex
+ B cos 2x + C sin 2x

yp

c1e
x

-sin 2x5exyp

5ex
- sin 2x

yp

yc = c1e
x

+ c2

r = 0r = 1

r2
- r = 0

y– - y¿ = 5ex
- sin 2x

G(x)
G(x)

yp =
1
2

 x2e3x

A = 1>2
2Ae3x

= e3x

(9Ax2e3x
+ 12Axe3x

+ 2Ae3x) - 6(3Ax2e3x
+ 2Axe3x) + 9Ax2e3x

= e3x

yp = Ax2e3x

Axe3x
Ae3xypr = 3

r2
- 6r + 9 = (r - 3)2

= 0

y– - 6y¿ + 9y = e3x

yp = -5xex

A = -5

-Aex
= 5ex

(Axex
+ 2Aex) - 3(Axex

+ Aex) + 2Axex
= 5ex
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or

.

This equation will hold if

or and Our particular solution is

.

The general solution to the differential equation is

.

You may find the following table helpful in solving the problems at the end of this
section.

+ 5xex
-

1
10

 cos 2x +
1
5 sin 2xc1e

x
+ c2y = yc + yp =

yp = 5xex
-

1
10

 cos 2x +
1
5 sin 2x

C = 1>5.B = -1>10,A = 5,

2B - 4C = -1,4B + 2C = 0,A = 5,

Aex
- (4B + 2C ) cos 2x + (2B - 4C ) sin 2x = 5ex

- sin 2x
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TABLE 17.1 The method of undetermined coefficients for selected equations
of the form

.

If has a term Then include this
that is a constant expression in the
multiple of . . . And if trial function for 

r is not a root of
the auxiliary equation

r is a single root of the
auxiliary equation

r is a double root of the
auxiliary equation

sin kx, cos kx ki is not a root of
the auxiliary equation

0 is not a root of the
auxiliary equation

0 is a single root of the
auxiliary equation

0 is a double root of the
auxiliary equation

Dx4
+ Ex3

+ Fx2

Dx3
+ Ex2

+ Fx

Dx2
+ Ex + Fpx2

+ qx + m

B cos kx + C sin kx

Ax2erx

Axerx

Aerxerx

yp.

G(x)

ay– + by¿ + cy = G(x)

The Method of Variation of Parameters

This is a general method for finding a particular solution of the nonhomogeneous equation
(1) once the general solution of the associated homogeneous equation is known. The
method consists of replacing the constants and in the complementary solution by
functions and and requiring (in a way to be explained) that they2 = y2(x)y1 = y1(x)

c2c1
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resulting expression satisfy the nonhomogeneous equation (1). There are two functions to
be determined, and requiring that Equation (1) be satisfied is only one condition. As a sec-
ond condition, we also require that

. (4)

Then we have

If we substitute these expressions into the left-hand side of Equation (1), we obtain

The first two parenthetical terms are zero since and are solutions of the associated
homogeneous equation (2). So the nonhomogeneous equation (1) is satisfied if, in addition
to Equation (4), we require that

. (5)

Equations (4) and (5) can be solved together as a pair

for the unknown functions and . The usual procedure for solving this simple system
is to use the method of determinants (also known as Cramer’s Rule), which will be demon-
strated in the examples to follow. Once the derivative functions and are known, the
two functions and can be found by integration. Here is a summary
of the method.

y2 = y2(x)y1 = y1(x)
y2¿y1¿

y2¿y1¿

y1¿y1¿ + y2¿y2¿ =

G(x)
a

 y1¿y1 + y2¿y2 = 0,

a(y1¿y1¿ + y2¿y2¿) = G(x)

y2y1

+ a(y1¿y1¿ + y2¿y2¿) = G(x).y1(ay1– + by1¿ + cy1) + y2(ay2– + by2¿ + cy2)

y– = y1y1– + y2y2– + y1¿y1¿ + y2¿y2¿.

 y¿ = y1y1¿ + y2y2¿,

 y = y1y1 + y2y2,

y1¿y1 + y2¿y2 = 0

17.2 Nonhomogeneous Linear Equations 17-13

Variation of Parameters Procedure

To use the method of variation of parameters to find a particular solution to the
nonhomogeneous equation

,

we can work directly with Equations (4) and (5). It is not necessary to rederive
them. The steps are as follows.

1. Solve the associated homogeneous equation

to find the functions and .
2. Solve the equations

simultaneously for the derivative functions and .
3. Integrate and to find the functions and .
4. Write down the particular solution to nonhomogeneous equation (1) as

.yp = y1y1 + y2y2

y2 = y2(x)y1 = y1(x)y2¿y1¿

y2¿y1¿

y1¿y1¿ + y2¿y2¿ =

G(x)
a

 y1¿y1 + y2¿y2 = 0,

y2y1

ay– + by¿ + cy = 0

ay– + by¿ + cy = G(x)
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EXAMPLE 6 Find the general solution to the equation

Solution The solution of the homogeneous equation

is given by

.

Since and , the conditions to be satisfied in Equations (4) and
(5) are

Solution of this system gives

Likewise,

After integrating and we have

,

and

.

Note that we have omitted the constants of integration in determining and . They
would merely be absorbed into the arbitrary constants in the complementary solution.

Substituting and into the expression for in Step 4 gives

The general solution is

.y = c1 cos x + c2 sin x - (cos x) ln ƒ sec x + tan x ƒ

 = (-cos x) ln ƒ sec x + tan x ƒ.

yp = [- ln ƒ sec x + tan x ƒ + sin x] cos x + (-cos x) sin x

ypy2y1

y2y1

y2(x) = Lsin x dx = -cos x

 = - ln ƒ sec x + tan x ƒ + sin x

 = -L (sec x - cos x) dx

y1(x) = L
-sin2 x
 cos x  dx

y2¿,y1¿

y2¿ =

`  cos x 0

-sin x tan x
`

`  cos x  sin x

-sin x  cos x
`

= sin x.

y1¿ =

` 0  sin x

tan x  cos x
`

`   cos x  sin x

-sin x  cos x
`

=

- tan x sin x
cos2 x + sin2 x

=

-sin2 x
 cos x .

a = 1-y1¿ sin x + y2¿ cos x = tan x.

 y1¿ cos x + y2¿ sin x = 0,

y2(x) = sin xy1(x) = cos x

yc = c1 cos x + c2 sin x

y– + y = 0

y– + y = tan x.

17-14 Chapter 17: Second-Order Differential Equations
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EXAMPLE 7 Solve the nonhomogeneous equation

.

Solution The auxiliary equation is

giving the complementary solution

The conditions to be satisfied in Equations (4) and (5) are

Solving the above system for and gives

Likewise,

Integrating to obtain the parameter functions, we have

and

Therefore,

The general solution to the differential equation is

where the term in has been absorbed into the term in the complementary
solution.

c2e
xyp(1>27)ex

y = c1e
-2x

+ c2e
x

-
1
9

 xex
+

1
6

 x2ex,

 =
1
27

 ex
-

1
9

 xex
+

1
6

 x2ex.

yp = c(1 - 3x)e3x

27
de-2x

+ ax2

6
bex

y2(x) = L
x
3

 dx =

x2

6
.

 =
1
27

(1 - 3x)e3x,

 = -
1
3
axe3x

3
- L

e3x

3
 dxb

y1(x) = L -  
1
3

 xe3x dx

y2¿ =

` e - 2x 0

-2e - 2x xex `
3e-x =

xe-x

3e-x =

x
3

.

y1¿ =

` 0 ex

xex ex `
` e - 2x ex

-2e - 2x ex `
=

-xe2x

3e - x = -  
1
3

 xe3x.

y2¿y1¿

a = 1-2y1¿e - 2x
+ y2¿ex

= xex.

 y1¿e - 2x
+ y2¿ex

= 0,

yc = c1e
- 2x

+ c2e
x.

r2
+ r - 2 = (r + 2)(r - 1) = 0

y– + y¿ - 2y = xex

17.2 Nonhomogeneous Linear Equations 17-15
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EXERCISES 17.2

Solve the equations in Exercises 1–16 by the method of undetermined
coefficients.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11.

12.

13. 14.

15. 16.

Solve the equations in Exercises 17–28 by variation of parameters.

17.

18.

19. 20.

21. 22.

23. 24.

25. 26.

27.

28.

In each of Exercises 29–32, the given differential equation has a par-
ticular solution of the form given. Determine the coefficients in 
Then solve the differential equation.

29.

30.

31.

32.

In Exercises 33–36, solve the given differential equations (a) by
variation of parameters and (b) by the method of undetermined
coefficients.

33. 34.

35. 36.
d2y

dx2 - 9
dy

dx
= 9e9x

d2y

dx2 - 4
dy

dx
- 5y = ex

+ 4

d2y

dx2 - 4
dy

dx
+ 4y = 2e2x

d2y

dx2 -

dy

dx
= ex

+ e-x

y– + y¿ - 2y = xex, yp = Ax2ex
+ Bxex

y– + y = 2 cos x + sin x, yp = Ax cos x + Bx sin x

y– - y¿ = cos x + sin x, yp = A cos x + B sin x

y– - 5y¿ = xe5x, yp = Ax2e5x
+ Bxe5x

yp.yp

d2y

dx2 -

dy

dx
= ex cos x, x 7 0

d2y

dx2 + y = sec x,  -

p

2
6 x 6

p

2

y– - y¿ = 2xy– + 4y¿ + 5y = 10

y– - y = sin xy– - y = ex

y– - y = xy– + 2y¿ + y = e-x

y– + 2y¿ + y = exy– + y = sin x

y– + y = tan x,  -

p

2
6 x 6

p

2

y– + y¿ = x

d2y

dx2 + 7
dy

dx
= 42x2

+ 5x + 1
d2y

dx2 - 3
dy

dx
= e3x

- 12x

d2y

dx2 -

dy

dx
= -8x + 3

d2y

dx2 + 5
dy

dx
= 15x2

y– + 3y¿ + 2y = e-x
+ e-2x

- x

y– - y¿ - 6y = e-x
- 7 cos x

y– + 2y¿ + y = 6 sin 2xy– - y = ex
+ x2

y– + y = 2x + 3exy– - y¿ - 2y = 20 cos x

y– + y = e2xy– + y = cos 3x

y– + 2y¿ + y = x2y– - y¿ = sin x

y– - 3y¿ - 10y = 2x - 3y– - 3y¿ - 10y = -3

Solve the differential equations in Exercises 37–46. Some of the equa-
tions can be solved by the method of undetermined coefficients, but
others cannot.

37.

38.

39. 40.

41. 42.

43. 44.

45.

46.

The method of undetermined coefficients can sometimes be used to
solve first-order ordinary differential equations. Use the method to
solve the equations in Exercises 47–50.

47. 48.

49. 50.

Solve the differential equations in Exercises 51 and 52 subject to the
given initial conditions.

51.

52.

In Exercises 53–58, verify that the given function is a particular solu-
tion to the specified nonhomogeneous equation. Find the general solu-
tion and evaluate its arbitrary constants to find the unique solution sat-
isfying the equation and the given initial conditions.

53.

54.

55.

56.

57.

58.

In Exercises 59 and 60, two linearly independent solutions and 
are given to the associated homogeneous equation of the variable-
coefficient nonhomogeneous equation. Use the method of variation of
parameters to find a particular solution to the nonhomogeneous equa-
tion. Assume in each exercise.

59.

60. x2y– + xy¿ - y = x, y1 = x - 1, y2 = x

x2y– + 2xy¿ - 2y = x2, y1 = x - 2, y2 = x

x 7 0

y2y1

yp = xex ln x,  y(1) = e, y¿(1) = 0

y– - 2y¿ + y = x-1ex, x 7 0,

y– - 2y¿ + y = 2ex,  yp = x2ex,  y(0) = 1, y¿(0) = 0

y– - y¿ - 2y = 1 - 2x,  yp = x - 1,  y(0) = 0, y¿(0) = 1

yp = 2ex cos x,  y(0) = 0, y¿(0) = 1

1
2

y– + y¿ + y = 4ex(cos x - sin x),

y– + y = x, yp = 2 sin x + x,  y(0) = 0, y¿(0) = 0

y– + y¿ = x, yp =

x2

2
- x,  y(0) = 0, y¿(0) = 0

d2y

dx2 + y = e2x; y(0) = 0, y¿(0) =

2
5

d2y

dx2 + y = sec2 x, -

p

2
6 x 6

p

2
; y (0) = y¿(0) = 1

y¿ + y = sin xy¿ - 3y = 5e3x

y¿ + 4y = xy¿ - 3y = ex

y– - 3y¿ + 2y = ex
- e2x

y– + y = sec x tan x, -

p

2
6 x 6

p

2

y– + 9y = 9x - cos xy– + 2y¿ = x2
- ex

y– + 4y¿ + 5y = x + 2y– - y¿ = x3

y– + 4y = sin xy– - 8y¿ = e8x

y– + y = csc x, 0 6 x 6 p

y– + y = cot x, 0 6 x 6 p
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Applications

In this section we apply second-order differential equations to the study of vibrating
springs and electric circuits.

Vibrations

A spring has its upper end fastened to a rigid support, as shown in Figure 17.2. An object
of mass m is suspended from the spring and stretches it a length s when the spring comes
to rest in an equilibrium position. According to Hooke’s Law (Section 6.5), the tension
force in the spring is , where k is the spring constant. The force due to gravity pulling
down on the spring is , and equilibrium requires that

(1)

Suppose that the object is pulled down an additional amount beyond the equilibrium po-
sition and then released. We want to study the object’s motion, that is, the vertical position
of its center of mass at any future time.

Let y, with positive direction downward, denote the displacement position of the ob-
ject away from the equilibrium position at any time t after the motion has started.
Then the forces acting on the object are (see Figure 17.3)

the propulsion force due to gravity,

the restoring force of the spring’s tension,

a frictional force assumed proportional to velocity.

The frictional force tends to retard the motion of the object. The resultant of these forces is
, and by Newton’s second law , we must then have

.

By Equation (1), , so this last equation becomes

(2)

subject to the initial conditions and . (Here we use the prime notation
to denote differentiation with respect to time t.)

You might expect that the motion predicted by Equation (2) will be oscillatory about
the equilibrium position and eventually damp to zero because of the retarding fric-
tional force. This is indeed the case, and we will show how the constants m, , and k deter-
mine the nature of the damping. You will also see that if there is no friction (so ),
then the object will simply oscillate indefinitely.

Simple Harmonic Motion

Suppose first that there is no retarding frictional force. Then and there is no damp-
ing. If we substitute to simplify our calculations, then the second-order equa-
tion (2) becomes

with and .y¿(0) = 0y(0) = y0y– + v2y = 0,

v = 2k>m d = 0

d = 0
d

y = 0

y¿(0) = 0y(0) = y0

m
d2y

dt2 + d
dy
dt

+ ky = 0,

mg - ks = 0

m
d2y

dt2 = mg - ks - ky - d
dy
dt

F = maF = Fp - Fs - Fr

Fr = d
dy
dt

,

Fs = k(s + y),

Fp = mg,

y = 0

y0

ks = mg.

mg
ks

17.3

y

y � 0

s

mass m
at equilibrium

FIGURE 17.2 Mass m
stretches a spring by
length s to the equilibrium
position at y = 0.

y

y � 0

y

y0

s

Fs Fr

Fp

a position
after release

start
position

FIGURE 17.3 The propulsion
force (weight) pulls the mass
downward, but the spring
restoring force and frictional
force pull the mass upward.
The motion starts at with
the mass vibrating up and down.

y = y0

Fr

Fs

Fp
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The auxiliary equation is

having the imaginary roots . The general solution to the differential equation in
(2) is

(3)

To fit the initial conditions, we compute

and then substitute the conditions. This yields and . The particular solution

(4)

describes the motion of the object. Equation (4) represents simple harmonic motion of
amplitude and period .

The general solution given by Equation (3) can be combined into a single term by
using the trigonometric identity

.

To apply the identity, we take (see Figure 17.4)

and ,

where

and

Then the general solution in Equation (3) can be written in the alternative form

(5)

Here C and may be taken as two new arbitrary constants, replacing the two constants 
and . Equation (5) represents simple harmonic motion of amplitude C and period

. The angle is called the phase angle, and may be interpreted as its
initial value. A graph of the simple harmonic motion represented by Equation (5) is given
in Figure 17.5.

fvt + fT = 2p>vc2

c1f

y = C sin (vt + f).

f = tan-1 
c1
c2

.C = 2c1 2 + c2 2

c2 = C cos fc1 = C sin f

 sin (vt + f) = cos vt sin f + sin vt cos f

T = 2p>vy0

y = y0 cos vt

c2 = 0c1 = y0

y¿ = -c1v sin vt + c2v cos vt

y = c1 cos vt + c2 sin vt.

r = ;vi

r2
+ v2

= 0,

17-18 Chapter 17: Second-Order Differential Equations

�

c2

c1

C = �c1
2 + c2

2

FIGURE 17.4 and
.c2 = C cos f

c1 = C sin f

y

t

–C

C

0

C sin �

y = C sin(�t + �)

T = 2�
�

Period

FIGURE 17.5 Simple harmonic motion of amplitude C
and period T with initial phase angle (Equation 5).f
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Damped Motion

Assume now that there is friction in the spring system, so . If we substitute
and , then the differential equation (2) is

(6)

The auxiliary equation is

with roots . Three cases now present themselves, depending upon
the relative sizes of b and .

Case 1: . The double root of the auxiliary equation is real and equals . The
general solution to Equation (6) is

.

This situation of motion is called critical damping and is not oscillatory. Figure 17.6a
shows an example of this kind of damped motion.

Case 2: . The roots of the auxiliary equation are real and unequal, given by

and . The general solution to Equation (6)
is given by

.

Here again the motion is not oscillatory and both and are negative. Thus y approaches
zero as time goes on. This motion is referred to as overdamping (see Figure 17.6b).

Case 3: . The roots to the auxiliary equation are complex and given by
. The general solution to Equation (6) is given by

This situation, called underdamping, represents damped oscillatory motion. It is analo-
gous to simple harmonic motion of period except that the amplitude
is not constant but damped by the factor . Therefore, the motion tends to zero as t
increases, so the vibrations tend to die out as time goes on. Notice that the period

is larger than the period in the friction-free system.
Moreover, the larger the value of in the exponential damping factor, the more
quickly the vibrations tend to become unnoticeable. A curve illustrating underdamped mo-
tion is shown in Figure 17.6c.

b = d>2m
T0 = 2p>vT = 2p>2v2

- b2

e - bt
T = 2p>2v2

- b2

y = e - bt Ac1 cos2v2
- b2 t + c2 sin2v2

- b2 t B .
r = -b ; i2v2

- b2
b<V

r2r1

y = c1e A- b +2b2
-v2Bt

+ c2e A- b -2b2
-v2Bt

r2 = -b - 2b2
- v2r1 = -b + 2b2

- v2

b>V

y = (c1 + c2t)e
-vt

r = vb � V

v

r = -b ; 2b2
- v2

r2
+ 2br + v2

= 0,

y– + 2by¿ + v2y = 0.

2b = d>mv = 2k>m d Z 0

17.3 Applications 17-19

y

t

y

t

y

t

(a) Critical damping (b) Overdamping (c) Underdamping

y = (1 + t)e–t y = 2e–2t – e–t y = e–t sin (5t + �/4)
0 0 0

FIGURE 17.6 Three examples of damped vibratory motion for a spring system with
friction, so d Z 0.
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An external force can also be added to the spring system modeled by Equation
(2). The forcing function may represent an external disturbance on the system. For in-
stance, if the equation models an automobile suspension system, the forcing function
might represent periodic bumps or potholes in the road affecting the performance of the
suspension system; or it might represent the effects of winds when modeling the vertical
motion of a suspension bridge. Inclusion of a forcing function results in the second-order
nonhomogeneous equation

(7)

We leave the study of such spring systems to a more advanced course.

Electric Circuits

The basic quantity in electricity is the charge q (analogous to the idea of mass). In an elec-
tric field we use the flow of charge, or current , as we might use velocity in a
gravitational field. There are many similarities between motion in a gravitational field and
the flow of electrons (the carriers of charge) in an electric field.

Consider the electric circuit shown in Figure 17.7. It consists of four components:
voltage source, resistor, inductor, and capacitor. Think of electrical flow as being like a
fluid flow, where the voltage source is the pump and the resistor, inductor, and capacitor
tend to block the flow. A battery or generator is an example of a source, producing a volt-
age that causes the current to flow through the circuit when the switch is closed. An elec-
tric light bulb or appliance would provide resistance. The inductance is due to a magnetic
field that opposes any change in the current as it flows through a coil. The capacitance is
normally created by two metal plates that alternate charges and thus reverse the current
flow. The following symbols specify the quantities relevant to the circuit:

q: charge at a cross section of a conductor measured in coulombs (abbreviated c);

I: current or rate of change of charge dq/dt (flow of electrons) at a cross section of a
conductor measured in amperes (abbreviated A);

E: electric (potential) source measured in volts (abbreviated V);

V: difference in potential between two points along the conductor measured in volts (V).

I = dq>dt

m
d2y

dt2 + d
dy
dt

+ ky = F(t).

F(t)
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R, Resistor

C, Capacitor

L, InductorE
Voltage

source

FIGURE 17.7 An electric circuit.

Ohm observed that the current I flowing through a resistor, caused by a potential dif-
ference across it, is (approximately) proportional to the potential difference (voltage drop).
He named his constant of proportionality and called R the resistance. So Ohm’s law is

I =
1
R

 V.

1>R
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17.3 Applications 17-21

Linear Second-Order Constant-Coefficient Models

Mechanical System Electrical System

y: displacement q: charge
: velocity : current
: acceleration : change in current

m: mass L: inductance
: damping constant R: resistance

k: spring constant 1 C: where C is the capacitance
F(t): forcing function E(t): voltage source

>d

q–y–

q¿y¿

Lq– + Rq¿ +
1
C

 q = E(t)my– + dy¿ + ky = F(t)

EXERCISES 17.3

1. A 16-lb weight is attached to the lower end of a coil spring sus-
pended from the ceiling and having a spring constant of 1 lb ft.
The resistance in the spring–mass system is numerically equal to
the instantaneous velocity. At the weight is set in motion
from a position 2 ft below its equilibrium position by giving it a
downward velocity of 2 ft sec. Write an initial value problem that
models the given situation.

>
t = 0

>
2. An 8-lb weight stretches a spring 4 ft. The spring–mass system re-

sides in a medium offering a resistance to the motion that is nu-
merically equal to 1.5 times the instantaneous velocity. If the
weight is released at a position 2 ft above its equilibrium position
with a downward velocity of 3 ft sec, write an initial value prob-
lem modeling the given situation.

>

Similarly, it is known from physics that the voltage drops across an inductor and a ca-
pacitor are

and

where L is the inductance and C is the capacitance (with q the charge on the capacitor).
The German physicist Gustav R. Kirchhoff (1824–1887) formulated the law that the

sum of the voltage drops in a closed circuit is equal to the supplied voltage . Symboli-
cally, this says that

Since , Kirchhoff’s law becomes

(8)

The second-order differential equation (8), which models an electric circuit, has exactly
the same form as Equation (7) modeling vibratory motion. Both models can be solved
using the methods developed in Section 17.2.

Summary

The following chart summarizes our analogies for the physics of motion of an object in a
spring system versus the flow of charged particles in an electrical circuit.

L 
d2q

dt2 + R 
dq
dt

+
1
C

 q = E(t).

I = dq>dt

RI + L 
dI
dt

+

q
C

= E(t).

E(t)

q
C

,L 
dI
dt
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3. A 20-lb weight is hung on an 18-in. spring and stretches it 6 in.
The weight is pulled down 5 in. and 5 lb are added to the weight. If
the weight is now released with a downward velocity of in. sec,
write an initial value problem modeling the vertical displacement.

4. A 10-lb weight is suspended by a spring that is stretched 2 in. by
the weight. Assume a resistance whose magnitude is lb
times the instantaneous velocity y in feet per second. If the weight
is pulled down 3 in. below its equilibrium position and released,
formulate an initial value problem modeling the behavior of the
spring–mass system.

5. An (open) electrical circuit consists of an inductor, a resistor, and
a capacitor. There is an initial charge of 2 coulombs on the capac-
itor. At the instant the circuit is closed, a current of 3 amperes is
present and a voltage of cos t is applied. In this circuit
the voltage drop across the resistor is 4 times the instantaneous
change in the charge, the voltage drop across the capacitor is 
10 times the charge, and the voltage drop across the inductor is
2 times the instantaneous change in the current. Write an initial
value problem to model the circuit.

6. An inductor of 2 henrys is connected in series with a resistor
of 12 ohms, a capacitor of 1 16 farad, and a 300 volt battery.
Initially, the charge on the capacitor is zero and the current is
zero. Formulate an initial value problem modeling this electrical
circuit.

Mechanical units in the British and metric systems may be helpful
in doing the following problems.

Unit British System MKS System

Distance Feet (ft) Meters (m)
Mass Slugs Kilograms (kg)
Time Seconds (sec) Seconds (sec)
Force Pounds (lb) Newtons (N)
g(earth) 32 ft sec2 9.81 m sec2

7. A 16-lb weight is attached to the lower end of a coil spring sus-
pended from the ceiling and having a spring constant of 1 lb ft.
The resistance in the spring–mass system is numerically equal to
the instantaneous velocity. At the weight is set in motion
from a position 2 ft below its equilibrium position by giving it a
downward velocity of 2 ft sec. At the end of sec, determine
whether the mass is above or below the equilibrium position and
by what distance.

8. An 8-lb weight stretches a spring 4 ft. The spring–mass system
resides in a medium offering a resistance to the motion equal to
1.5 times the instantaneous velocity. If the weight is released at a
position 2 ft above its equilibrium position with a downward
velocity of 3 ft sec, find its position relative to the equilibrium
position 2 sec later.

9. A 20-lb weight is hung on an 18-in. spring stretching it 6 in. The
weight is pulled down 5 in. and 5 lb are added to the weight. If the
weight is now released with a downward velocity of in. sec,
find the position of mass relative to the equilibrium in terms of 
and valid for any time .t Ú 0

y0

>y0

>

p>
t = 0

>

>>

>

Estd = 20

20>1g

>y0

10. A mass of 1 slug is attached to a spring whose constant is 25 4
lb ft. Initially the mass is released 1 ft above the equilibrium posi-
tion with a downward velocity of 3 ft sec, and the subsequent
motion takes place in a medium that offers a damping force nu-
merically equal to 3 times the instantaneous velocity. An external
force ƒ(t) is driving the system, but assume that initially .
Formulate and solve an initial value problem that models the
given system. Interpret your results.

11. A 10-lb weight is suspended by a spring that is stretched 2 in. by
the weight. Assume a resistance whose magnitude is lb
times the instantaneous velocity in feet per second. If the weight
is pulled down 3 in. below its equilibrium position and released,
find the time required to reach the equilibrium position for the
first time.

12. A weight stretches a spring 6 in. It is set in motion at a point 2 in. be-
low its equilibrium position with a downward velocity of 2 in. sec.

a. When does the weight return to its starting position?

b. When does it reach its highest point?

c. Show that the maximum velocity is in. sec.

13. A weight of 10 lb stretches a spring 10 in. The weight is drawn
down 2 in. below its equilibrium position and given an initial ve-
locity of 4 in. sec. An identical spring has a different weight at-
tached to it. This second weight is drawn down from its equilib-
rium position a distance equal to the amplitude of the first motion
and then given an initial velocity of 2 ft sec. If the amplitude of
the second motion is twice that of the first, what weight is at-
tached to the second spring?

14. A weight stretches one spring 3 in. and a second weight stretches
another spring 9 in. If both weights are simultaneously pulled
down 1 in. below their respective equilibrium positions and then
released, find the first time after when their velocities are
equal.

15. A weight of 16 lb stretches a spring 4 ft. The weight is pulled
down 5 ft below the equilibrium position and then released. What
initial velocity given to the weight would have the effect of
doubling the amplitude of the vibration?

16. A mass weighing 8 lb stretches a spring 3 in. The spring–mass sys-
tem resides in a medium with a damping constant of 2 lb-sec ft. If
the mass is released from its equilibrium position with a velocity
of 4 in. sec in the downward direction, find the time required for
the mass to return to its equilibrium position for the first time.

17. A weight suspended from a spring executes damped vibrations with
a period of 2 sec. If the damping factor decreases by 90% in 10 sec,
find the acceleration of the weight when it is 3 in. below its equilib-
rium position and is moving upward with a speed of 2 ft sec.

18. A 10-lb weight stretches a spring 2 ft. If the weight is pulled down
6 in. below its equilibrium position and released, find the highest
point reached by the weight. Assume the spring–mass system re-
sides in a medium offering a resistance of lb times the in-
stantaneous velocity in feet per second.

10>1g

>

>
>

y0

t = 0

>

>

>212g + 1

>

40>1g

ƒ(t) K 0

>
>

>
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17.4 Euler Equations 17-23

19. An LRC circuit is set up with an inductance of 1 5 henry, a resist-
ance of 1 ohm, and a capacitance of 5 6 farad. Assuming the initial
charge is 2 coulombs and the initial current is 4 amperes, find the
solution function describing the charge on the capacitor at any time.
What is the charge on the capacitor after a long period of time?

20. An (open) electrical circuit consists of an inductor, a resistor, and
a capacitor. There is an initial charge of 2 coulombs on the capac-
itor. At the instant the circuit is closed, a current of 3 amperes is
present but no external voltage is being applied. In this circuit the
voltage drops at three points are numerically related as follows:
across the capacitor, 10 times the charge; across the resistor, 4
times the instantaneous change in the charge; and across the in-
ductor, 2 times the instantaneous change in the current. Find the
charge on the capacitor as a function of time.

21. A 16-lb weight stretches a spring 4 ft. This spring–mass system is
in a medium with a damping constant of 4.5 lb-sec ft, and an ex-
ternal force given by (in pounds) is being ap-
plied. What is the solution function describing the position of the
mass at any time if the mass is released from 2 ft below the equi-
librium position with an initial velocity of 4 ft sec downward?

22. A 10-kg mass is attached to a spring having a spring constant of
140 N m. The mass is started in motion from the equilibrium po-
sition with an initial velocity of 1 m sec in the upward direction
and with an applied external force given by sin t (in new-
tons). The mass is in a viscous medium with a coefficient of re-
sistance equal to 90 N-sec m. Formulate an initial value problem
that models the given system; solve the model and interpret the
results.

23. A 2-kg mass is attached to the lower end of a coil spring sus-
pended from the ceiling. The mass comes to rest in its equilibrium

>
ƒ(t) = 5

>
>

>

ƒ(t) = 4 + e - 2t
>

>
> position thereby stretching the spring 1.96 m. The mass is in a

viscous medium that offers a resistance in newtons numerically
equal to 4 times the instantaneous velocity measured in meters
per second. The mass is then pulled down 2 m below its equilib-
rium position and released with a downward velocity of 3 m sec.
At this same instant an external force given by cos t (in
newtons) is applied to the system. At the end of sec determine
if the mass is above or below its equilibrium position and by how
much.

24. An 8-lb weight stretches a spring 4 ft. The spring–mass system re-
sides in a medium offering a resistance to the motion equal to 1.5
times the instantaneous velocity, and an external force given by

(in pounds) is being applied. If the weight is re-
leased at a position 2 ft above its equilibrium position with down-
ward velocity of 3 ft sec, find its position relative to the equilib-
rium after 2 sec have elapsed.

25. Suppose henrys, ohms, farads,
volts, coulombs, and . For-

mulate and solve an initial value problem that models the given
LRC circuit. Interpret your results.

26. A series circuit consisting of an inductor, a resistor, and a capaci-
tor is open. There is an initial charge of 2 coulombs on the capac-
itor, and 3 amperes of current is present in the circuit at the instant
the circuit is closed. A voltage given by is ap-
plied. In this circuit the voltage drops are numerically equal to the
following: across the resistor to 4 times the instantaneous change
in the charge, across the capacitor to 10 times the charge, and
across the inductor to 2 times the instantaneous change in the cur-
rent. Find the charge on the capacitor as a function of time. Deter-
mine the charge on the capacitor and the current at time .t = 10

E(t) = 20 cos t

q¿(0) = i(0) = 0q(0) = 10E = 100
C = 1>500R = 10L = 10

>
ƒ(t) = 6 + e - t

p

ƒ(t) = 20
>

Euler Equations

In Section 17.1 we introduced the second-order linear homogeneous differential equation

and showed how to solve this equation when the coefficients P, Q, and R are constants. If
the coefficients are not constant, we cannot generally solve this differential equation in
terms of elementary functions we have studied in calculus. In this section you will learn
how to solve the equation when the coefficients have the special forms

and ,

where a, b, and c are constants. These special types of equations are called Euler equa-
tions, in honor of Leonhard Euler who studied them and showed how to solve them. Such
equations arise in the study of mechanical vibrations.

The General Solution of Euler Equations

Consider the Euler equation

, (1)x 7 0.ax2y– + bxy¿ + cy = 0

R(x) = cQ(x) = bx,P(x) = ax2,

P(x)y–(x) + Q(x)y¿(x) + R(x)y(x) = 0

17.4
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To solve Equation (1), we first make the change of variables

and .

We next use the chain rule to find the derivatives and :

and

Substituting these two derivatives into the left-hand side of Equation (1), we find

Therefore, the substitutions give us the second-order linear differential equation with con-
stant coefficients

(2)

We can solve Equation (2) using the method of Section 17.1. That is, we find the roots to
the associated auxiliary equation

(3)

to find the general solution for After finding we can determine from the
substitution 

EXAMPLE 1 Find the general solution of the equation .

Solution This is an Euler equation with , , and . The auxiliary equa-
tion (3) for is

,

with roots and . The solution for is given by

.

Substituting gives the general solution for :

.

EXAMPLE 2 Solve the Euler equation .

Solution Since , , and , the auxiliary equation (3) for is

.

The auxiliary equation has the double root giving

.

Substituting into this expression gives the general solution

.y(x) = c1e
3 ln x

+ c2 ln x e3 ln x
= c1 x3

+ c2 x3 ln x

z = ln x

Y(z) = c1e
3z

+ c2 ze3z

r = 3

r2
+ (-5 - 1)r + 9 = (r - 3)2

= 0

Y(z)c = 9b = -5a = 1

x2y– - 5xy¿ + 9y = 0

y(x) = c1e
-2 ln x

+ c2e
ln x

= c1 x-2
+ c2 x

y(x)z = ln x

Y(z) = c1e
- 2z

+ c2e
z

Y(z)r = 1r = -2

r2
+ (2 - 1)r - 2 = (r - 1)(r + 2) = 0

Y(z)
c = -2b = 2a = 1

x2y– + 2xy¿ - 2y = 0

z = ln x.
y(x)Y(z),Y(z).

ar2
+ (b - a)r + c = 0

aY –(z) + (b - a)Y ¿(z) + cY(z) = 0.

 = aY –(z) + (b - a)Y ¿(z) + cY(z).

ax2y– + bxy¿ + cy = ax2 a-
1
x2 Y ¿(z) +

1
x2 Y –(z)b + bx a1x Y ¿(z)b + cY(z)

y–(x) =

d
dx

y¿(x) =

d
dx

Y ¿(z)
1
x = -

1
x2 Y ¿(z) +

1
x Y –(z)

dz
dx

= -
1
x2 Y ¿(z) +

1
x2 Y –(z).

y¿(x) =

d
dx

Y(z) =

d
dz

Y(z)
dz
dx

= Y ¿(z)
1
x

y–(x)y¿(x)

y(x) = Y(z)z = ln x
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EXAMPLE 3 Find the particular solution to that satisfies the
initial conditions and .

Solution Here , , and substituted into the auxiliary equation (3)
gives

.

The roots are and giving the solution

.

Substituting into this expression gives

.

From the initial condition , we see that and

.

To fit the second initial condition, we need the derivative

.

Since , we immediately obtain . Therefore, the particular solution satis-
fying both initial conditions is

.

Since , the solution satisfies

.

A graph of the solution is shown in Figure 17.8.

-

x2

8
… y(x) …

x2

8

-1 … sin (8 ln x) … 1

y(x) =
1
8

 x2 sin (8 ln x)

c2 = 1>8y¿(1) = 1

y¿(x) = c2 A8x cos (8 ln x) + 2x sin (8 ln x) B

y(x) = c2 x
2 sin (8 ln x)

c1 = 0y(1) = 0

y(x) = e2 ln x Ac1 cos (8 ln x) + c2 sin (8 ln x) B
z = ln x

Y(z) = e2z(c1 cos 8z + c2 sin 8z)

r = 2 - 8ir = 2 + 8i

r2
- 4r + 68 = 0

c = 68b = -3a = 1

y¿(1) = 1y(1) = 0
x2y– - 3xy¿ + 68y = 0

17.4 Euler Equations 17-25

20 4 6 8 10

–5

–10

5

10

y

x

y =  sin (8 lnx)x2

8

FIGURE 17.8 Graph of the solution to
Example 3.

EXERCISES 17.4

In Exercises 1–24, find the general solution to the given Euler
equation. Assume throughout.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. 4x2y– + y = 0x2y– + xy¿ = 0

x2y– - 3xy¿ + 9y = 0x2y– + 3xy¿ + y = 0

4x2y– - 4xy¿ + 5y = 04x2y– + 8xy¿ + 5y = 0

x2y– - 5xy¿ + 10y = 0x2y– + 3xy¿ + 10y = 0

x2y– + 7xy¿ + 13y = 0x2y– - xy¿ + 5y = 0

x2y– - xy¿ + 2y = 0x2y– - xy¿ + y = 0

x2y– + 6xy¿ + 4y = 03x2y– + 4xy¿ = 0

2x2y– + 7xy¿ + 2y = 0x2y– - 5xy¿ + 8y = 0

x2y– + xy¿ - y = 0x2y– - 6y = 0

x2y– + xy¿ - 4y = 0x2y– + 2xy¿ - 2y = 0

x 7 0
21.

22.

23.

24.

In Exercises 25–30, solve the given initial value problem.

25.

26.

27.

28.

29.

30. x2y– + 3xy¿ + 5y = 0,  y(1) = 1, y¿(1) = 0

x2y– - xy¿ + 2y = 0,  y(1) = -1, y¿(1) = 1

x2y– + 7xy¿ + 9y = 0,  y(1) = 1, y¿(1) = 0

x2y– - xy¿ + y = 0,  y(1) = 1, y¿(1) = 1

6x2y– + 7xy¿ - 2y = 0,  y(1) = 0, y¿(1) = 1

x2y– + 3xy¿ - 3y = 0,  y(1) = 1, y¿(1) = -1

4x2y– - 16xy¿ + 25y = 0

16x2y– + 56xy¿ + 25y = 0

16x2y– - 8xy¿ + 9y = 0

9x2y– + 15xy¿ + y = 0
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Power-Series Solutions

In this section we extend our study of second-order linear homogeneous equations with
variable coefficients. With the Euler equations in Section 17.4, the power of the variable x
in the nonconstant coefficient had to match the order of the derivative with which it was
paired: with , with , and with . Here we drop that requirement so we
can solve more general equations.

Method of Solution

The power-series method for solving a second-order homogeneous differential equation
consists of finding the coefficients of a power series

(1)

which solves the equation. To apply the method we substitute the series and its derivatives
into the differential equation to determine the coefficients The technique for
finding the coefficients is similar to that used in the method of undetermined coefficients
presented in Section 17.2.

In our first example we demonstrate the method in the setting of a simple equation
whose general solution we already know. This is to help you become more comfortable
with solutions expressed in series form.

EXAMPLE 1 Solve the equation by the power-series method.

Solution We assume the series solution takes the form of

and calculate the derivatives

and

Substitution of these forms into the second-order equation gives us

Next, we equate the coefficients of each power of x to zero as summarized in the following
table.

Power of x Coefficient Equation

or

or

or

or

or

or cn = -
1

n(n - 1)
 cn - 2= 0n(n - 1)cn + cn - 2xn - 2

ooo

c6 = -
1

6 # 5
 c4= 06(5)c6 + c4x4

c5 = -
1

5 # 4
 c3= 05(4)c5 + c3x3

c4 = -
1

4 # 3
 c2= 04(3)c4 + c2x2

c3 = -
1

3 # 2
 c1= 03(2)c3 + c1x1

c2 = -
1
2

 c0= 02(1)c2 + c0x0

a
q

n = 2
 n(n - 1)cn xn - 2

+ a
q

n = 0
 cn xn

= 0.

y– = a
q

n = 2
 n(n - 1)cnxn - 2.y¿ = a

q

n = 1
 ncn xn - 1

y = a
q

n = 0
 cnxn

y– + y = 0

c0, c1, c2, Á .

y(x) = a
q

n = 0
 cn xn

= c0 + c1x + c2x2
+

Á

yx0 (=1)y¿x1y–x2

17.5
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From the table we notice that the coefficients with even indices ( )
are related to each other and the coefficients with odd indices ( ) are also inter-
related. We treat each group in turn.

Even indices: Here , so the power is . From the last line of the table, we have

or

From this recursive relation we find

Odd indices: Here , so the power is . Substituting this into the last
line of the table yields

or

Thus,

Writing the power series by grouping its even and odd powers together and substitut-
ing for the coefficients yields

.

From Table 9.1 in Section 9.10, we see that the first series on the right-hand side of the last
equation represents the cosine function and the second series represents the sine. Thus, the
general solution to is

.y = c0 cos x + c1 sin x

y– + y = 0

 = c0a
q

k = 0
 
(-1)k

(2k)!
x2k

+ c1a
q

k = 0
 

(-1)k

(2k + 1)!
x2k + 1

 = a
q

k = 0
 c2kx2k

+ a
q

k = 0
 c2k + 1x2k + 1

y = a
q

n = 0
 cnxn

 =

(-1)k

(2k + 1)!
 c1.

c2k + 1 = c- 1
(2k + 1)(2k)

d c- 1
(2k - 1)(2k - 2)

d Á c- 1
5(4)
d c- 1

3(2)
dc1

c2k + 1 = -
1

(2k + 1)(2k)
 c2k - 1.

(2k + 1)(2k)c2k + 1 + c2k - 1 = 0

x2k - 1n = 2k + 1

 =

(-1)k

(2k)!
 c0.

c2k = c- 1
2k(2k - 1)

d c- 1
(2k - 2)(2k - 3)

d Á c- 1
4(3)
d c- 1

2
dc0

c2k = -
1

2k(2k - 1)
 c2k - 2.

2k(2k - 1)c2k + c2k - 2 = 0

x2k - 2n = 2k

n = 2k + 1
n = 2k, k = 1, 2, 3, Á
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EXAMPLE 2 Find the general solution to .

Solution We assume the series solution form

and calculate the derivatives

and .

Substitution of these forms into the second-order equation yields

.

We equate the coefficients of each power of x to zero as summarized in the following table.

Power of x Coefficient Equation

or

or

or

or

or

or

From the table notice that the coefficients with even indices are interrelated and the coeffi-
cients with odd indices are also interrelated.

Even indices: Here so the power is From the last line in the table,
we have

From this recurrence relation we obtain

Odd indices: Here so the power is From the last line in the table,
we have

From this recurrence relation we obtain

 =

(-1)k

(3)(5) Á (2k + 1)
 c1.

 c2k + 1 = a-
1

2k + 1
b a-

1
2k - 1

b Á a-
1
5
b a-

1
3
bc1

c2k + 1 = -
1

2k + 1
 c2k - 1.

x2k - 1.n = 2k - 1,

 =

(-1)k

(2)(4)(6) Á (2k)
 c0.

 c2k = a-
1
2k
b a-

1
2k - 2

b Á a-
1
6
b a-

1
4
b a-

1
2
bc0

c2k = -
1
2k

 c2k - 2.

x2k - 2.n = 2k - 2,

cn + 2 = -
1

n + 2
 cn(n + 2)(n + 1)cn + 2 + (n + 1)cn = 0xn

ooo

c6 = -
1
6 c46(5)c6 + 4c4 + c4 = 0x4

c5 = -
1
5 c35(4)c5 + 3c3 + c3 = 0x3

c4 = -
1
4 c24(3)c4 + 2c2 + c2 = 0x2

c3 = -
1
3 c13(2)c3 + c1 + c1 = 0x1

c2 = -
1
2 c02(1)c2 + c0 = 0x0

a
q

n = 2
 n(n - 1)cn xn - 2

+ a
q

n = 1
 ncn xn

+ a
q

n = 0
 cnxn

= 0

y– = a
q

 n = 2
n(n - 1)cnxn - 2y¿ = a

q

n = 1
 ncn xn - 1

y = a
q

n = 0
 cn xn

y– + xy¿ + y = 0
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Writing the power series by grouping its even and odd powers and substituting for the
coefficients yields

EXAMPLE 3 Find the general solution to

Solution Notice that the leading coefficient is zero when Thus, we assume the
solution interval Substitution of the series form

and its derivatives gives us

Next, we equate the coefficients of each power of x to zero as summarized in the following
table.

Power of x Coefficient Equation

or

or

or

or

or

Again we notice that the coefficients with even indices are interrelated and those with odd
indices are interrelated.

Even indices: Here so the power is From the right-hand column and
last line of the table, we get

 = (k + 1)c0.

 = a2k + 2
2k

b a 2k
2k - 2

b a2k - 2
2k - 4

b Á
6
4
a4

2
bc0

 c2k =

2k + 2
2k

c2k - 2

x2k.n = 2k - 2,

cn + 2 =

n + 4
n + 2

cn(n + 2)(n + 1)cn + 2 - (n + 4)(n + 1)cn = 0

(n + 2)(n + 1)cn + 2 - [n(n - 1) + 6n + 4]cn = 0xn

ooo

c5 =
7
5 c35(4)c5 - 3(2)c3 - 6(3)c3 - 4c3 = 0x3

c4 =
6
4 c24(3)c4 - 2(1)c2 - 6(2)c2 - 4c2 = 0x2

c3 =
5
3 c13(2)c3 - 6(1)c1 - 4c1 = 0x1

c2 =
4
2 c02(1)c2 - 4c0 = 0x0

a
q

n = 2
 n(n - 1)cn xn - 2

- a
q

n = 2
 n(n - 1)cn xn

- 6a
q

n = 1
 ncn xn

- 4a
q

n = 0
 cn xn

= 0.

(1 - x2)a
q

n = 2
 n(n - 1)cn xn - 2

- 6a
q

n = 1
 ncn xn

- 4a
q

n = 0
 cn xn

= 0,

y = a
q

n = 0
 cn xn

I: -1 6 x 6 1.
x = ;1.

|x| 6 1.(1 - x2)y– - 6xy¿ - 4y = 0,

 = c0a
q

k = 0
  

(-1)k

(2)(4) Á (2k)
x2k

+ c1a
q

k = 0
  

(-1)k

(3)(5) Á (2k + 1)
x2k + 1.

 y = a
q

k = 0
 c2k x2k

+ a
q

k = 0
 c2k + 1x2k + 1
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Odd indices: Here so the power is The right-hand column and last
line of the table gives us

The general solution is

EXAMPLE 4 Find the general solution to 

Solution Assuming that

substitution into the differential equation gives us

We next determine the coefficients, listing them in the following table.

Power of x Coefficient Equation

or

or

or

or

or

or cn + 2 =

2n - 1
(n + 2)(n + 1)

 cn(n + 2)(n + 1)cn + 2 - (2n - 1)cn = 0xn

ooo

c6 =

7
6 # 5

 c46(5)c6 - 8c4 + c4 = 0x4

c5 =

5
5 # 4

 c35(4)c5 - 6c3 + c3 = 0x3

c4 =

3
4 # 3

 c24(3)c4 - 4c2 + c2 = 0x2

c3 =
1

3 # 2
 c13(2)c3 - 2c1 + c1 = 0x1

c2 = -
1
2

 c02(1)c2 + c0 = 0x0

a
q

n = 2
 n(n - 1)cn xn - 2

- 2a
q

n = 1
 ncn xn

+ a
q

n = 0
 cn xn

= 0.

y = a
q

n = 0
 cn xn,

y– - 2xy¿ + y = 0.

 = c0a
q

k = 0
 (k + 1)x2k

+ c1a
q

k = 0
 
2k + 3

3
x2k + 1.

 = a
q

k = 0
 c2k x2k

+ a
q

k = 0
 c2k + 1x2k + 1

 y = a
q

n = 0
 cn xn

 =

2k + 3
3

 c1.

 = a2k + 3
2k + 1

b a2k + 1
2k - 1

b a2k - 1
2k - 3

b Á
7
5 a53 bc1

c2k + 1 =

2k + 3
2k + 1

c2k - 1

x2k + 1.n = 2k - 1,
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From the recursive relation

we write out the first few terms of each series for the general solution:

 + c1 ax +
1
3!

 x3
+

5
5!

 x5
+

45
7!

 x7
+

Á b .

 y = c0 a1 -
1
2

x2
-

3
4!

x4
-

21
6!

x6
-

Á b

cn + 2 =

2n - 1
(n + 2)(n + 1)

 cn,

17.5 Power-Series Solutions 17-31

EXERCISES 17.5

In Exercises 1–18, use power series to find the general solution of the
differential equation.

1.

2.

3.

4.

5.

6.

7.

8. (1 - x2)y– - 4xy¿ + 6y = 0

(1 + x)y– - y = 0

y– - xy¿ + y = 0

x2y– - 2xy¿ + 2y = 0

y– - 3y¿ + 2y = 0

y– + 4y = 0

y– + 2y¿ + y = 0

y– + 2y¿ = 0

9.

10.

11.

12.

13.

14.

15.

16.

17.

18. x2y– - 4xy¿ + 6y = 0

y– - xy¿ + 3y = 0

(1 - x2)y– - xy¿ + 4y = 0

y– - 2xy¿ + 3y = 0

y– - 2xy¿ + 4y = 0

(x2
- 1)y– + 4xy¿ + 2y = 0

xy– - (x + 2)y¿ + 2y = 0

(x2
- 1)y– - 6y = 0

y– + y¿ - x2y = 0

(x2
- 1)y– + 2xy¿ - 2y = 0
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C H A P T E R

THE FOURIER SERIES

1 6

Do not worry about your difficulties in mathematics, I assure you that
mine are greater.

—Albert Einstein

Historical Profiles
Jean Baptiste Joseph Fourier (1768–1830), a French mathematician, first presented
the series and transform that bear his name. Fourier’s results were not enthusiastically
received by the scientific world. He could not even get his work published as a paper.

Born in Auxerre, France, Fourier was orphaned at age 8. He attended a local
military college run by Benedictine monks, where he demonstrated great proficiency in
mathematics. Like most of his contemporaries, Fourier was swept into the politics of
the French Revolution. He played an important role in Napoleon’s expeditions to Egypt
in the later 1790s. Due to his political involvement, he narrowly escaped death twice.

Alexander Graham Bell (1847–1922) inventor of the telephone, was a Scottish-
American scientist.

Bell was born in Edinburgh, Scotland, a son of Alexander Melville Bell, a
well-known speech teacher. Alexander the younger also became a speech teacher
after graduating from the University of Edinburgh and the University of London. In
1866 he became interested in transmitting speech electrically. After his older brother
died of tuberculosis, his father decided to move to Canada. Alexander was asked to
come to Boston to work at the School for the Deaf. There he met Thomas A. Watson,
who became his assistant in his electromagnetic transmitter experiment. On March
10, 1876, Alexander sent the famous first telephone message: “Watson, come here I
want you.” The bel, the logarithmic unit introduced in Chapter 14, is named in his honor.
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16.1 INTRODUCTION
We have spent a considerable amount of time on the analysis of circuits
with sinusoidal sources. This chapter is concerned with a means of an-
alyzing circuits with periodic, nonsinusoidal excitations. The notion of
periodic functions was introduced in Chapter 9; it was mentioned there
that the sinusoid is the most simple and useful periodic function. This
chapter introduces the Fourier series, a technique for expressing a peri-
odic function in terms of sinusoids. Once the source function is expressed
in terms of sinusoids, we can apply the phasor method to analyze circuits.

The Fourier series is named after Jean Baptiste Joseph Fourier
(1768–1830). In 1822, Fourier’s genius came up with the insight that
any practical periodic function can be represented as a sum of sinusoids.
Such a representation, along with the superposition theorem, allows us
to find the response of circuits to arbitrary periodic inputs using phasor
techniques.

We begin with the trigonometric Fourier series. Later we consider
the exponential Fourier series. We then apply Fourier series in circuit
analysis. Finally, practical applications of Fourier series in spectrum
analyzers and filters are demonstrated.

16.2 TRIGONOMETRIC FOURIER SERIES
While studying heat flow, Fourier discovered that a nonsinusoidal periodic
function can be expressed as an infinite sum of sinusoidal functions.
Recall that a periodic function is one that repeats everyT seconds. In
other words, a periodic functionf (t) satisfies

f (t) = f (t + nT ) (16.1)

wheren is an integer andT is the period of the function.

The harmonic frequencyωn is an integral multiple
of the fundamental frequency ω0, i.e., ωn = nω0.

According to theFourier theorem, any practical periodic function
of frequencyω0 can be expressed as an infinite sum of sine or cosine
functions that are integral multiples ofω0. Thus,f (t) can be expressed
as

f (t) = a0 + a1 cosω0t + b1 sinω0t + a2 cos 2ω0t

+ b2 sin 2ω0t + a3 cos 3ω0t + b3 sin 3ω0t + · · · (16.2)

or

f (t) = a0︸︷︷︸
dc

+
∞∑
n=1

(an cosnω0t + bn sinnω0t)︸ ︷︷ ︸
ac

(16.3)

whereω0 = 2π/T is called thefundamental frequency in radians per
second. The sinusoid sinnω0t or cosnω0t is called thenth harmonic
of f (t); it is an odd harmonic ifn is odd and an even harmonic ifn is
even. Equation 16.3 is called thetrigonometric Fourier series of f (t).
The constantsan andbn are theFourier coefficients. The coefficienta0

is the dc component or the average value off (t). (Recall that sinusoids
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have zero average values.) The coefficientsan andbn (for n �= 0) are the
amplitudes of the sinusoids in the ac component. Thus,

The Fourier series of a periodic function f (t) is a representation that resolves
f (t) into a dc component and an ac component comprising an

infinite series of harmonic sinusoids.

A function that can be represented by a Fourier series as in Eq. (16.3)
must meet certain requirements, because the infinite series in Eq. (16.3)
may or may not converge. These conditions onf (t) to yield a convergent
Fourier series are as follows:

1. f (t) is single-valued everywhere.

2. f (t) has a finite number of finite discontinuities in any one
period.

3. f (t) has a finite number of maxima and minima in any one
period.

4. The integral
∫ t0+T

t0

|f (t)| dt < ∞ for anyt0.

These conditions are calledDirichlet conditions. Although they are not
necessary conditions, they are sufficient conditions for a Fourier series to
exist.

Historical note: Although Fourier published his
theorem in 1822, it was P. G. L. Dirichlet (1805–
1859) who later supplied an acceptable proof of
the theorem.A major task in Fourier series is the determination of the Fourier

coefficientsa0, an, andbn. The process of determining the coefficients is
calledFourier analysis. The following trigonometric integrals are very
helpful in Fourier analysis. For any integersm andn,

∫ T

0
sinnω0t dt = 0 (16.4a)

∫ T

0
cosnω0t dt = 0 (16.4b)

∫ T

0
sinnω0t cosmω0t dt = 0 (16.4c)

∫ T

0
sinnω0t sinmω0t dt = 0, (m �= n) (16.4d)

∫ T

0
cosnω0t cosmω0t dt = 0, (m �= n) (16.4e)

∫ T

0
sin2 nω0t dt = T

2
(16.4f)

∫ T

0
cos2 nω0t dt = T

2
(16.4g)

Let us use these identities to evaluate the Fourier coefficients.

A software package like Mathcad or Maple can
be used to evaluate the Fourier coefficients.
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We begin by findinga0. We integrate both sides of Eq. (16.3) over
one period and obtain∫ T

0
f (t) dt =

∫ T

0

[
a0 +

∞∑
n=1

(an cosnω0t + bn sinnω0t)

]
dt

=
∫ T

0
a0 dt +

∞∑
n=1

[∫ T

0
an cosnω0t dt

+
∫ T

0
bn sinnω0t dt

]
dt

(16.5)

Invoking the identities of Eqs. (16.4a) and (16.4b), the two integrals in-
volving the ac terms vanish. Hence,∫ T

0
f (t) dt =

∫ T

0
a0 dt = a0T

or

a0 = 1

T

∫ T

0
f (t) dt (16.6)

showing thata0 is the average value off (t).
To evaluatean, we multiply both sides of Eq. (16.3) by cosmω0t

and integrate over one period:∫ T

0
f (t) cosmω0t dt

=
∫ T

0

[
a0 +

∞∑
n=1

(an cosnω0t + bn sinnω0t)

]
cosmω0t dt

=
∫ T

0
a0 cosmω0t dt +

∞∑
n=1

[∫ T

0
an cosnω0t cosmω0t dt

+
∫ T

0
bn sinnω0t cosmω0t dt

]
dt (16.7)

The integral containinga0 is zero in view of Eq. (16.4b), while the
integral containingbn vanishes according to Eq. (16.4c). The integral
containingan will be zero except whenm = n, in which case it isT/2,
according to Eqs. (16.4e) and (16.4g). Thus,∫ T

0
f (t) cosmω0t dt = an

T

2
, for m = n

or

an = 2

T

∫ T

0
f (t) cosnω0t dt (16.8)

In a similar vein, we obtainbn by multiplying both sides of Eq.
(16.3) by sinmω0t and integrating over the period. The result is

bn = 2

T

∫ T

0
f (t) sinnω0t dt (16.9)
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Be aware that sincef (t) is periodic, it may be more convenient to carry
the integrations above from−T/2 toT/2 or generally fromt0 to t0 + T

instead of 0 toT . The result will be the same.
An alternative form of Eq. (16.3) is theamplitude-phase form

f (t) = a0 +
∞∑
n=1

An cos(nω0t + φn) (16.10)

We can use Eqs. (9.11) and (9.12) to relate Eq. (16.3) to Eq. (16.10), or
we can apply the trigonometric identity

cos(α + β) = cosα cosβ − sinα sinβ (16.11)

to the ac terms in Eq. (16.10) so that

a0 +
∞∑
n=1

An cos(nω0t + φn) = a0 +
∞∑
n=1

(An cosφn) cosnω0t

− (An sinφn) sinnω0t

(16.12)

Equating the coefficients of the series expansions in Eqs. (16.3) and
(16.12) shows that

an = An cosφn, bn = −An sinφn (16.13a)

or

An =
√
a2
n + b2

n, φn = − tan−1 bn

an

(16.13b)

To avoid any confusion in determiningφn, it may be better to relate the
terms in complex form as

An φn = an − jbn (16.14)

The convenience of this relationship will become evident in Section 16.6.
The plot of the amplitudeAn of the harmonics versusnω0 is called the
amplitude spectrum of f (t); the plot of the phaseφn versusnω0 is the
phase spectrum of f (t). Both the amplitude and phase spectra form
thefrequency spectrum of f (t). The frequency spectrum is also known as the

line spectrum in view of the discrete frequency
components.

The frequency spectrum of a signal consists of the plots of the amplitudes
and phases of the harmonics versus frequency.

Thus, the Fourier analysis is also a mathematical tool for finding the
spectrum of a periodic signal. Section 16.6 will elaborate more on the
spectrum of a signal.

To evaluate the Fourier coefficientsa0, an, andbn, we often need
to apply the following integrals:∫

cosat dt = 1

a
sinat (16.15a)∫

sinat dt = −1

a
cosat (16.15b)
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∫
t cosat dt = 1

a2
cosat + 1

a
t sinat (16.15c)∫

t sinat dt = 1

a2
sinat − 1

a
t cosat (16.15d)

It is also useful to know the values of the cosine, sine, and exponential
functions for integral multiples ofπ . These are given in Table 16.1, where
n is an integer.

TABLE 16.1 Values of cosine, sine, and
exponential functions for integral
multiples ofπ .

Function Value

cos 2nπ 1
sin 2nπ 0
cosnπ (−1)n

sinnπ 0

cos
nπ

2

{
(−1)n/2, n = even

0, n = odd

sin
nπ

2

{
(−1)(n−1)/2, n = odd

0, n = even

ej2nπ 1

ejnπ (−1)n

ejnπ/2

{
(−1)n/2, n = even

j (−1)(n−1)/2, n = odd

E X A M P L E 1 6 . 1

Determine the Fourier series of the waveform shown in Fig. 16.1. Obtain
the amplitude and phase spectra.

–2 –1 0 1 2 3 t

1

f (t)

Figure 16.1 For Example 16.1; a square wave.

Solution:

The Fourier series is given by Eq. (16.3), namely,

f (t) = a0 +
∞∑
n=1

(an cos nω0t + bn sin nω0t) (16.1.1)

Our goal is to obtain the Fourier coefficients a0, an, and bn using Eqs.
(16.6), (16.8), and (16.9). First, we describe the waveform as

f (t) =
{

1, 0 < t < 1

0, 1 < t < 2
(16.1.2)

and f (t) = f (t + T ). Since T = 2, ω0 = 2π/T = π . Thus,

a0 = 1

T

∫ T

0
f (t) dt = 1

2

[∫ 1

0
1 dt +

∫ 2

1
0 dt

]
= 1

2
t

∣∣∣∣
1

0

= 1

2
(16.1.3)
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Using Eq. (16.8) along with Eq. (16.15a),

an = 2

T

∫ T

0
f (t) cos nω0t dt

= 2

2

[∫ 1

0
1 cos nπt dt +

∫ 2

1
0 cos nπt dt

]

= 1

nπ
sin nπt

∣∣∣∣1

0

= 1

nπ
sin nπ = 0

(16.1.4)

From Eq. (16.9) with the aid of Eq. (16.15b),

bn = 2

T

∫ T

0
f (t) sin nω0t dt

= 2

2

[∫ 1

0
1 sin nπt dt +

∫ 2

1
0 sin nπt dt

]

= − 1

nπ
cos nπt

∣∣∣∣1

0

= − 1

nπ
(cos nπ − 1), cos nπ = (−1)n

= 1

nπ
[1 − (−1)n] =




2

nπ
, n = odd

0, n = even

(16.1.5)

Substituting the Fourier coefficients in Eqs. (16.1.3) to (16.1.5) into Eq.
(16.1.1) gives the Fourier series as

f (t) = 1

2
+ 2

π
sinπt + 2

3π
sin 3πt + 2

5π
sin 5πt + · · · (16.1.6)

Since f (t) contains only the dc component and the sine terms with the
fundamental component and odd harmonics, it may be written as

f (t) = 1

2
+ 2

π

∞∑
k=1

1

n
sin nπt, n = 2k − 1 (16.1.7)

By summing the terms one by one as demonstrated in Fig. 16.2,
we notice how superposition of the terms can evolve into the original
square. As more and more Fourier components are added, the sum gets
closer and closer to the square wave. However, it is not possible in
practice to sum the series in Eq. (16.1.6) or (16.1.7) to infinity. Only a
partial sum (n = 1, 2, 3, . . . , N , where N is finite) is possible. If we plot
the partial sum (or truncated series) over one period for a large N as in
Fig. 16.3, we notice that the partial sum oscillates above and below the
actual value of f (t). At the neighborhood of the points of discontinuity
(x = 0, 1, 2, . . .), there is overshoot and damped oscillation. In fact, an
overshoot of about 9 percent of the peak value is always present, regardless
of the number of terms used to approximate f (t). This is called the Gibbs
phenomenon.

Summing the Fourier terms by hand calculation
may be tedious. A computer is helpful to com-
pute the terms and plot the sum like those shown
in Fig. 16.2.

Historical note: Named after the mathematical
physicist Josiah Willard Gibbs, who first ob-
served it in 1899.
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t

f (t)

1

0 1 2

Figure 16.3 Truncating the Fourier series at
N = 11; Gibbs phenomenon.

Sum of first two ac components

t

Sum of first three ac components

t

Sum of first four ac components

t

Sum of first five ac components

(b)

t

Fundamental ac component

t

dc component t

1
2

(a)

Figure 16.2 Evolution of a
square wave from its Fourier
components.

Finally, let us obtain the amplitude and phase spectra for the signal
in Fig. 16.1. Since an = 0,

An =
√
a2
n + b2

n = |bn| =



2

nπ
, n = odd

0, n = even
(16.1.8)

and

φn = − tan−1 bn

an

=
{−90◦, n = odd

0, n = even
(16.1.9)

The plots of An and φn for different values of nω0 = nπ provide the
amplitude and phase spectra in Fig. 16.4. Notice that the amplitudes of
the harmonics decay very fast with frequency.

v

An

0.5

0 p 2p 3p

(a)

4p 5p 6p

v

f

0°

–90°

p 2p 3p 4p 5p 6p

(b)

2
p

2
3p

2
5p

Figure 16.4 For Example 16.1: (a) ampli-
tude and (b) phase spectrum of the function
shown in Fig. 16.1.
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P R A C T I C E P R O B L E M 1 6 . 1

Find the Fourier series of the square wave in Fig. 16.5. Plot the amplitude
and phase spectra.

v

f (t)

2 3–2 –1 0

1

1

–1

Figure 16.5 For Practice Prob. 16.1.

Answer: f (t) = 4

π

∞∑
k=1

1

n
sin nπt, n = 2k − 1. See Fig. 16.6 for the

spectra.

v

An

0 p 2p 3p

(a)

4p 5p 6p

v

f

0°

–90°

p 2p 3p 4p 5p 6p

(b)

4
p

4
3p

4
5p

Figure 16.6 For Practice Prob. 16.1: amplitude and phase spectra for the function shown
in Fig. 16.5.

E X A M P L E 1 6 . 2

Obtain the Fourier series for the periodic function in Fig. 16.7 and plot
the amplitude and phase spectra.

t

f (t)

2 3–2 –1 0

1

1

Figure 16.7 For Example 16.2.

Solution:

The function is described as

f (t) =
{
t, 0 < t < 1

0, 1 < t < 2

Since T = 2, ω0 = 2π/T = π . Then

a0 = 1

T

∫ T

0
f (t) dt = 1

2

[∫ 1

0
t dt +

∫ 2

1
0 dt

]
= 1

2

t2

2

∣∣∣∣
1

0

= 1

4
(16.2.1)

To evaluate an and bn, we need the integrals in Eq. (16.15):

an = 2

T

∫ T

0
f (t) cos nω0t dt

= 2

2

[∫ 1

0
t cos nπt dt +

∫ 2

1
0 cos nπt dt

]

=
[

1

n2π2
cos nπt + t

nπ
sin nπt

]∣∣∣∣1

0

= 1

n2π2
(cos nπ − 1) + 0 = (−1)n − 1

n2π2

(16.2.2)
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since cos nπ = (−1)n; and

bn = 2

T

∫ T

0
f (t) sin nω0t dt

= 2

2

[∫ 1

0
t sin nπt dt +

∫ 2

1
0 sin nπt dt

]

=
[

1

n2π2
sin nπt − t

nπ
cos nπt

]∣∣∣∣1

0

= 0 − cos nπ

nπ
= (−1)n+1

nπ

(16.2.3)

Substituting the Fourier coefficients just found into Eq. (16.3) yields

f (t) = 1

4
+

∞∑
n=1

[
[(−1)n − 1]

(nπ)2
cos nπt + (−1)n+1

nπ
sin nπt

]

To obtain the amplitude and phase spectra, we notice that, for even
harmonics, an = 0, bn = −1/nπ , so that

An φn = an − jbn = 0 + j
1

nπ
(16.2.4)

Hence,

An = |bn| = 1

nπ
, n = 2, 4, . . .

φn = 90◦, n = 2, 4, . . .
(16.2.5)

For odd harmonics, an = −2/(n2π2), bn = 1/(nπ) so that

An φn = an − jbn = − 2

n2π2
− j

1

nπ
(16.2.6)

That is,

An =
√
a2
n + b2

n =
√

4

n4π4
+ 1

n2π2

= 1

n2π2

√
4 + n2π2, n = 1, 3, . . .

(16.2.7)

From Eq. (16.2.6), we observe that φ lies in the third quadrant, so that

φn = 180◦ + tan−1 nπ

2
, n = 1, 3, . . . (16.2.8)

From Eqs. (16.2.5), (16.2.7), and (16.2.8), we plot An and φn for different
values of nω0 = nπ to obtain the amplitude spectrum and phase spectrum
as shown in Fig. 16.8.

v

An

0.25

0 p

0.38

2p

0.16

3p

(a)

0.11

4p 5p

0.06

6p

0.08
0.05

v

f

180°

270°

90°

0 p

237.8°

2p

90°

3p

(b)

258°

4p 5p

262.7°

6p

90° 90°

Figure 16.8 For Example 16.2: (a) ampli-
tude spectrum, (b) phase spectrum.

P R A C T I C E P R O B L E M 1 6 . 2

Determine the Fourier series of the sawtooth waveform in Fig. 16.9.
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t

f (t)

2 3–2 –1 0

1

1

Figure 16.9 For Practice Prob. 16.2.

Answer: f (t) = 1

2
− 1

π

∞∑
n=1

1

n
sin 2πnt .

16.3 SYMMETRY CONSIDERATIONS
We noticed that the Fourier series of Example 16.1 consisted only of the
sine terms. One may wonder if a method exists whereby one can know
in advance that some Fourier coefficients would be zero and avoid the
unnecessary work involved in the tedious process of calculating them.
Such a method does exist; it is based on recognizing the existence of
symmetry. Here we discuss three types of symmetry: (1) even symmetry,
(2) odd symmetry, (3) half-wave symmetry.

t

f (t)

–T T0

(a)

A

–A

t

g(t)

–T T0

A

t

h(t)

–2p 2p–p p0

A

(b)

(c)

T
2

T
2

–

Figure 16.10 Typical examples of even
periodic functions.

16 . 3 . 1 Even Symmet r y
A function f (t) is even if its plot is symmetrical about the vertical axis;
that is,

f (t) = f (−t) (16.16)

Examples of even functions are t2, t4, and cos t . Figure 16.10 shows more
examples of periodic even functions. Note that each of these examples
satisfies Eq. (16.16). A main property of an even function fe(t) is that:∫ T/2

−T/2
fe(t) dt = 2

∫ T/2

0
fe(t) dt (16.17)

because integrating from −T/2 to 0 is the same as integrating from 0 to
T/2. Utilizing this property, the Fourier coefficients for an even function
become

a0 = 2

T

∫ T/2

0
f (t) dt

an = 4

T

∫ T/2

0
f (t) cos nω0t dt

bn = 0

(16.18)

Since bn = 0, Eq. (16.3) becomes a Fourier cosine series. This makes
sense because the cosine function is itself even. It also makes intuitive
sense that an even function contains no sine terms since the sine function
is odd.

To confirm Eq. (16.18) quantitatively, we apply the property of an
even function in Eq. (16.17) in evaluating the Fourier coefficients in Eqs.
(16.6), (16.8), and (16.9). It is convenient in each case to integrate over
the interval −T/2 < t < T/2, which is symmetrical about the origin.
Thus,
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a0 = 1

T

∫ T/2

−T/2
f (t) dt = 1

T

[∫ 0

−T/2
f (t) dt +

∫ T/2

0
f (t) dt

]
(16.19)

We change variables for the integral over the interval −T/2 < t < 0 by
letting t = −x, so that dt = −dx, f (t) = f (−t) = f (x), since f (t) is
an even function, and when t = −T/2, x = T/2. Then,

a0 = 1

T

[∫ 0

T/2
f (x)(−dx) +

∫ T/2

0
f (t) dt

]

= 1

T

[∫ T/2

0
f (x) dx +

∫ T/2

0
f (t) dt

] (16.20)

showing that the two integrals are identical. Hence,

a0 = 2

T

∫ T/2

0
f (t) dt (16.21)

as expected. Similarly, from Eq. (16.8),

an = 2

T

[∫ 0

−T/2
f (t) cos nω0t dt +

∫ T/2

0
f (t) cos nω0t dt

]
(16.22)

We make the same change of variables that led to Eq. (16.20) and note that
both f (t) and cos nω0t are even functions, implying that f (−t) = f (t)

and cos(−nω0t) = cos nω0t . Equation (16.22) becomes

an = 2

T

[∫ 0

T/2
f (−x) cos(−nω0x)(−dx) +

∫ T/2

0
f (t) cos nω0t dt

]

= 2

T

[∫ 0

T/2
f (x) cos(nω0x)(−dx) +

∫ T/2

0
f (t) cos nω0t dt

]

= 2

T

[∫ T/2

0
f (x) cos(nω0x) dx +

∫ T/2

0
f (t) cos nω0t dt

]
(16.23a)

or

an = 4

T

∫ T/2

0
f (t) cos nω0t dt (16.23b)

as expected. For bn, we apply Eq. (16.9),

bn = 2

T

[∫ 0

−T/2
f (t) sin nω0t dt +

∫ T/2

0
f (t) sin nω0t dt

]
(16.24)

We make the same change of variables but keep in mind that f (−t) =
f (t) but sin(−nω0t) = − sin nω0t . Equation (16.24) yields

bn = 2

T

[∫ 0

T/2
f (−x) sin(−nω0x)(−dx) +

∫ T/2

0
f (t) sin nω0t dt

]

= 2

T

[∫ 0

T/2
f (x) sin nω0x dx +

∫ T/2

0
f (t) sin nω0t dt

]

= 2

T

[
−

∫ T/2

0
f (x) sin(nω0x) dx +

∫ T/2

0
f (t) sin nω0t dt

]
= 0 (16.25)

confirming Eq. (16.18).
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16 . 3 . 2 Odd Symmet r y
A function f (t) is said to be odd if its plot is antisymmetrical about the
vertical axis:

f (−t) = −f (t) (16.26)

Examples of odd functions are t, t3, and sin t . Figure 16.11 shows more
examples of periodic odd functions. All these examples satisfy Eq.
(16.26). An odd function fo(t) has this major characteristic:∫ T/2

−T/2
fo(t) dt = 0 (16.27)

because integration from −T/2 to 0 is the negative of that from 0 to T/2.
With this property, the Fourier coefficients for an odd function become

a0 = 0, an = 0

bn = 4

T

∫ T/2

0
f (t) sin nω0t dt

(16.28)

which give us a Fourier sine series. Again, this makes sense because the
sine function is itself an odd function. Also, note that there is no dc term
for the Fourier series expansion of an odd function.

t

f (t)

–T T0

(a)

A

–A

t

g(t)

–T T0

(b)

A

–A

t

h(t)

–T T0

(c)

A

–A

T
2

T
2

–

Figure 16.11 Typical examples of odd
periodic functions.

The quantitative proof of Eq. (16.28) follows the same procedure
taken to prove Eq. (16.18) except that f (t) is now odd, so that f (t) =
−f (t). With this fundamental but simple difference, it is easy to see that
a0 = 0 in Eq. (16.20), an = 0 in Eq. (16.23a), and bn in Eq. (16.24)
becomes

bn = 2

T

[∫ 0

T/2
f (−x) sin(−nω0x)(−dx) +

∫ T/2

0
f (t) sin nω0t dt

]

= 2

T

[
−

∫ 0

T/2
f (x) sin nω0x dx +

∫ T/2

0
f (t) sin nω0t dt

]

= 2

T

[∫ T/2

0
f (x) sin(nω0x) dx +

∫ T/2

0
f (t) sin nω0t dt

]

bn = 4

T

∫ T/2

0
f (t) sin nω0t dt (16.29)

as expected.
It is interesting to note that any periodic function f (t) with neither

even nor odd symmetry may be decomposed into even and odd parts.
Using the properties of even and odd functions from Eqs. (16.16) and
(16.26), we can write

f (t) = 1

2
[f (t) + f (−t)]︸ ︷︷ ︸

even

+ 1

2
[f (t) − f (−t)]︸ ︷︷ ︸

odd

= fe(t) + fo(t) (16.30)

Notice that fe(t) = 1
2 [f (t) + f (−t)] satisfies the property of an even

function in Eq. (16.16), while fo(t) = 1
2 [f (t) − f (−t)] satisfies the

property of an odd function in Eq. (16.26). The fact that fe(t) contains
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only the dc term and the cosine terms, while fo(t) has only the sine terms,
can be exploited in grouping the Fourier series expansion of f (t) as

f (t) = a0 +
∞∑
n=1

an cos nω0t︸ ︷︷ ︸
even

+
∞∑
n=1

bn sin nω0t︸ ︷︷ ︸
odd

= fe(t) + fo(t) (16.31)

It follows readily from Eq. (16.31) that when f (t) is even, bn = 0, and
when f (t) is odd, a0 = 0 = an.

Also, note the following properties of odd and even functions:

1. The product of two even functions is also an even function.

2. The product of two odd functions is an even function.

3. The product of an even function and an odd function is an odd
function.

4. The sum (or difference) of two even functions is also an even
function.

5. The sum (or difference) of two odd functions is an odd
function.

6. The sum (or difference) of an even function and an odd
function is neither even nor odd.

Each of these properties can be proved using Eqs. (16.16) and (16.26).

16 . 3 . 3 Ha l f -Wave Symmet r y
A function is half-wave (odd) symmetric if

f

(
t − T

2

)
= −f (t) (16.32)

which means that each half-cycle is the mirror image of the next half-
cycle. Notice that functions cos nω0t and sin nω0t satisfy Eq. (16.32)
for odd values of n and therefore possess half-wave symmetry when
n is odd. Figure 16.12 shows other examples of half-wave symmetric
functions. The functions in Figs. 16.11(a) and 16.11(b) are also half-wave
symmetric. Notice that for each function, one half-cycle is the inverted

t

T

–T

f (t)

0

(a)

A

t–T

g(t)

0

(b)

A

–A–A

T

Figure 16.12 Typical examples of half-wave odd symmetric functions.
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version of the adjacent half-cycle. The Fourier coefficients become

a0 = 0

an =




4

T

∫ T/2

0
f (t) cos nω0t dt, for n odd

0, for n even

bn =




4

T

∫ T/2

0
f (t) sin nω0t dt, for n odd

0, for n even

(16.33)

showing that the Fourier series of a half-wave symmetric function contains
only odd harmonics.

To derive Eq. (16.33), we apply the property of half-wave symmet-
ric functions in Eq. (16.32) in evaluating the Fourier coefficients in Eqs.
(16.6), (16.8), and (16.9). Thus,

a0 = 1

T

∫ T/2

−T/2
f (t) dt = 1

T

[∫ 0

−T/2
f (t) dt +

∫ T/2

0
f (t) dt

]
(16.34)

We change variables for the integral over the interval −T/2 < t < 0
by letting x = t + T/2, so that dx = dt ; when t = −T/2, x = 0;
and when t = 0, x = T/2. Also, we keep Eq. (16.32) in mind; that is,
f (x − T/2) = −f (x). Then,

a0 = 1

T

[∫ T/2

0
f

(
x − T

2

)
dx +

∫ T/2

0
f (t) dt

]

= 1

T

[
−

∫ T/2

0
f (x) dx +

∫ T/2

0
f (t) dt

]
= 0

(16.35)

confirming the expression for a0 in Eq. (16.33). Similarly,

an = 2

T

[∫ 0

−T/2
f (t) cos nω0t dt +

∫ T/2

0
f (t) cos nω0t dt

]
(16.36)

We make the same change of variables that led to Eq. (16.35) so that Eq.
(16.36) becomes

an = 2

T

[∫ T/2

0
f

(
x − T

2

)
cos nω0

(
x − T

2

)
dx

+
∫ T/2

0
f (t) cos nω0t dt

] (16.37)

Since f (x − T/2) = −f (x) and

cos nω0

(
x − T

2

)
= cos(nω0t − nπ)

= cos nω0t cos nπ + sin nω0t sin nπ

= (−1)n cos nω0t

(16.38)

substituting these in Eq. (16.37) leads to
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an = 2

T
[1 − (−1)n]

∫ T/2

0
f (t) cos nω0t dt

=



4

T

∫ T/2

0
f (t) cos nω0t dt, for n odd

0, for n even

(16.39)

confirming Eq. (16.33). By following a similar procedure, we can derive
bn as in Eq. (16.33).

Table 16.2 summarizes the effects of these symmetries on the
Fourier coefficients. Table 16.3 provides the Fourier series of some com-
mon periodic functions.

TABLE 16.2 Effects of symmetry on Fourier coefficients.

Symmetry a0 an bn Remarks

Even a0 �= 0 an �= 0 bn = 0 Integrate over T/2 and multiply
by 2 to get the coefficients.

Odd a0 = 0 an = 0 bn �= 0 Integrate over T/2 and multiply
by 2 to get the coefficients.

Half-wave a0 = 0 a2n = 0 b2n = 0 Integrate over T/2 and multiply
a2n+1 �= 0 b2n+1 �= 0 by 2 to get the coefficients.

TABLE 16.3 The Fourier series of common functions.

Function Fourier series

1. Square wave

0 T t

A

f (t)

f (t) = 4A

π

∞∑
n=1

1

2n − 1
sin(2n − 1)ω0t

2. Sawtooth wave

0 T t

A

f (t)

f (t) = A

2
− A

π

∞∑
n=1

sin nω0t

n

3. Triangular wave

0 T t

A

f (t)

f (t) = A

2
− 4A

π 2

∞∑
n=1

1

(2n + 1)2
cos(2n − 1)ω0t
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TABLE 16.3 (continued)

Function Fourier series

4. Rectangular pulse train

t

f (t)

0

A

Tt
2

t
2

−

f (t) = Aτ

T
+ 2A

T

∞∑
n=1

1

n
sin

nπτ

T
cos nω0t

5. Half-wave rectified sine

t

f (t)

0

A

T

f (t) = A

π
+ A

2
sinω0t − 2A

π

∞∑
n=1

1

4n2 − 1
cos 2nω0t

6. Full-wave rectified sine

t

f (t)

0

A

T

f (t) = 2A

π
− 4A

π

∞∑
n=1

1

4n2 − 1
cos nω0t

E X A M P L E 1 6 . 3

Find the Fourier series expansion of f (t) given in Fig. 16.13.

t

f (t)

0–2–3 21 5

1

–1

3–1–5 –4 4

Figure 16.13 For Example 16.3.

Solution:

The function f (t) is an odd function. Hence a0 = 0 = an. The period is
T = 4, and ω0 = 2π/T = π/2, so that
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bn = 4

T

∫ T/2

0
f (t) sin nω0t dt

= 4

4

[∫ 1

0
1 sin

nπ

2
t dt +

∫ 2

1
0 sin

nπ

2
t dt

]

= − 2

nπ
cos

nπt

2

∣∣∣∣1

0

= 2

nπ

(
1 − cos

nπ

2

)
Hence,

f (t) = 2

π

∞∑
n=1

1

n

(
1 − cos

nπ

2

)
sin

nπ

2
t

which is a Fourier sine series.

P R A C T I C E P R O B L E M 1 6 . 3

Find the Fourier series of the function f (t) in Fig. 16.14.

t

f (t)

0–2π –π π 2π 3π

1

–1

Figure 16.14 For Practice Prob. 16.3.

Answer: f (t) = − 4

π

∞∑
k=1

1

n
sin nt, n = 2k − 1.

E X A M P L E 1 6 . 4

Determine the Fourier series for the half-wave rectified cosine function
shown in Fig. 16.15.

t

f (t)

0–1 1 3 5

1

–5 –3

Figure 16.15 A half-wave rectified cosine function; for
Example 16.4.

Solution:

This is an even function so that bn = 0. Also, T = 4, ω0 = 2π/T = π/2.
Over a period,
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f (t) =




0, −2 < t < −1

cos
π

2
t, −1 < t < 1

0, 1 < t < 2

a0 = 2

T

∫ T/2

0
f (t) dt = 2

4

[∫ 1

0
cos

π

2
t dt +

∫ 2

1
0 dt

]

= 1

2

2

π
sin

π

2
t

∣∣∣∣1

0

= 1

π

an = 4

T

∫ T/2

0
f (t) cos nω0t dt = 4

4

[∫ 1

0
cos

π

2
t cos

nπt

2
dt + 0

]
But cosA cosB = 1

2 [cos(A + B) + cos(A − B)]. Then

an = 1

2

∫ 1

0

[
cos

π

2
(n + 1)t + cos

π

2
(n − 1)t

]
dt

For n = 1,

a1 = 1

2

∫ 1

0
[cosπt + 1] dt = 1

2

[
sinπt

π
+ t

]∣∣∣∣
1

0

= 1

2

For n > 1,

an = 1

π(n + 1)
sin

π

2
(n + 1) + 1

π(n − 1)
sin

π

2
(n − 1)

For n = odd (n = 1, 3, 5, . . .), (n + 1) and (n − 1) are both even, so

sin
π

2
(n + 1) = 0 = sin

π

2
(n − 1), n = odd

For n = even (n = 2, 4, 6, . . .), (n + 1) and (n − 1) are both odd. Also,

sin
π

2
(n + 1) = − sin

π

2
(n − 1) = cos

nπ

2
= (−1)n/2, n = even

Hence,

an = (−1)n/2

π(n + 1)
+ −(−1)n/2

π(n − 1)
= −2(−1)n/2

π(n2 − 1)
, n = even

Thus,

f (t) = 1

π
+ 1

2
cos

π

2
t − 2

π

∞∑
n=even

(−1)n/2

(n2 − 1)
cos

nπ

2
t

To avoid using n = 2, 4, 6, . . . and also to ease computation, we can
replace n by 2k, where k = 1, 2, 3, . . . and obtain

f (t) = 1

π
+ 1

2
cos

π

2
t − 2

π

∞∑
k=1

(−1)k

(4k2 − 1)
cos kπt

which is a Fourier cosine series.

P R A C T I C E P R O B L E M 1 6 . 4

Find the Fourier series expansion of the function in Fig. 16.16.
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t

f (t)

0–2p 2p 4p

1

Figure 16.16 For Practice Prob. 16.4.

Answer: f (t) = 1

2
− 4

π2

∞∑
k=1

1

n2
cos nt, n = 2k − 1.

E X A M P L E 1 6 . 5

Calculate the Fourier series for the function in Fig. 16.17.

t

f (t)

0–1–2 2 31 4

1

–1

Figure 16.17 For Example 16.5.

Solution:

The function in Fig. 16.17 is half-wave odd symmetric, so that a0 = 0 =
an. It is described over half the period as

f (t) = t, −1 < t < 1

T = 4, ω0 = 2π/T = π/2. Hence,

bn = 4

T

∫ T/2

0
f (t) sin nω0t dt

Instead of integrating f (t) from 0 to 2, it is more convenient to integrate
from −1 to 1. Applying Eq. (16.15d),

bn = 4

4

∫ 1

−1
t sin

nπt

2
dt =

[
sin nπt/2

n2π2/4
− t cos nπt/2

nπ/2

]∣∣∣∣
1

−1

= 4

n2π2

[
sin

nπ

2
− sin

(
−nπ

2

)]
− 2

nπ

[
cos

nπ

2
+ cos

(
−nπ

2

)]

= 8

n2π2
sin

nπ

2
− 4

nπ
cos

nπ

2
since sin(−x) = − sin x as an odd function, while cos(−x) = cos x as
an even function. Using the identities for sin nπ/2 and cos nπ/2 in Table
16.1,

bn =




8

n2π2
(−1)(n−1)/2, n = odd = 1, 3, 5, . . .

4

nπ
(−1)(n+2)/2, n = even = 2, 4, 6, . . .

Thus,

f (t) =
∞∑
n=1

bn sin
nπ

2
t

where bn is given above.

P R A C T I C E P R O B L E M 1 6 . 5

Determine the Fourier series of the function in Fig. 16.12(a). Take A = 1
and T = 2π .

Answer: f (t) = 2

π

∞∑
k=1

( −2

n2π
cos nt + 1

n
sin nt

)
, n = 2k − 1.
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16.4 CIRCUIT APPLICATIONS
We find that in practice, many circuits are driven by nonsinusoidal peri-
odic functions. To find the steady-state response of a circuit to a nonsinu-
soidal periodic excitation requires the application of a Fourier series, ac
phasor analysis, and the superposition principle. The procedure usually
involves three steps.

S t e p s f o r A p p l y i n g F o u r i e r S e r i e s :
1. Express the excitation as a Fourier series.

2. Find the response of each term in the Fourier series.

3. Add the individual responses using the superposition principle.

The first step is to determine the Fourier series expansion of the
excitation. For the periodic voltage source shown in Fig. 16.18(a), for
example, the Fourier series is expressed as

v(t) = V0 +
∞∑
n=1

Vn cos(nω0t + θn) (16.40)

(The same could be done for a periodic current source.) Equation (16.40)
shows that v(t) consists of two parts: the dc component V0 and the ac
component Vn = Vn θn with several harmonics. This Fourier series
representation may be regarded as a set of series-connected sinusoidal
sources, with each source having its own amplitude and frequency, as
shown in Fig. 16.18(b).

(a)

i(t)

+
−

Linear
network

v(t)

(b)

i(t)

+
−

+
−

+
−

+
−

Linear
network

V1 cos(v0t + u1)

V0

V2 cos(2v0t + u2)

Vn cos(nv0t + un)Periodic 
Source

Figure 16.18 (a) Linear network excited by a periodic voltage source, (b) Fourier series
representation (time-domain).

The second step is finding the response to each term in the Fourier
series. The response to the dc component can be determined in the fre-
quency domain by setting n = 0 or ω = 0 as in Fig. 16.19(a), or in
the time domain by replacing all inductors with short circuits and all
capacitors with open circuits. The response to the ac component is ob-
tained by the phasor techniques covered in Chapter 9, as shown in Fig.
16.19(b). The network is represented by its impedance Z(nω0) or admit-
tance Y(nω0). Z(nω0) is the input impedance at the source when ω is
everywhere replaced by nω0, and Y(nω0) is the reciprocal of Z(nω0).

V0

(a)

(b)

+
−

Io

+

+

+

Z(v = 0)

V1     u1

V2     u2

Vn     un

+
−

I1

Z(v0)

+
−

I2

Z(2v0)

+
−

In

Z(nv0)

Figure 16.19 Steady-state responses:
(a) dc component, (b) ac component
(frequency domain).
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Finally, following the principle of superposition, we add all the
individual responses. For the case shown in Fig. 16.19,

i(t) = i0(t) + i1(t) + i2(t) + · · ·

= I0 +
∞∑
n=1

|In| cos(nω0t + ψn)
(16.41)

where each component In with frequency nω0 has been transformed to
the time domain to get in(t), and ψn is the argument of In.

E X A M P L E 1 6 . 6

Let the function f (t) in Example 16.1 be the voltage source vs(t) in the
circuit of Fig. 16.20. Find the response vo(t) of the circuit.

vs(t) vo(t)

5 Ω

2 H+
−

+

−

Figure 16.20 For Example 16.6.

Solution:

From Example 16.1,

vs(t) = 1

2
+ 2

π

∞∑
k=1

1

n
sin nπt, n = 2k − 1

where ωn = nω0 = nπ rad/s. Using phasors, we obtain the response Vo

in the circuit of Fig. 16.20 by voltage division:

Vo = jωnL

R + jωnL
Vs = j2nπ

5 + j2nπ
Vs

For the dc component (ωn = 0 or n = 0)

Vs = 1

2
	⇒ Vo = 0

This is expected, since the inductor is a short circuit to dc. For the nth
harmonic,

Vs = 2

nπ
− 90◦ (16.6.1)

and the corresponding response is

Vo = 2nπ 90◦
√

25 + 4n2π2 tan−1 2nπ/5

2

nπ
− 90◦

= 4 − tan−1 2nπ/5√
25 + 4n2π2

(16.6.2)

In the time domain,

vo(t) =
∞∑
k=1

4√
25 + 4n2π2

cos

(
nπt − tan−1 2nπ

5

)
, n = 2k − 1

The first three terms (k = 1, 2, 3 or n = 1, 3, 5) of the odd harmonics in
the summation give us

vo(t) = 0.4981 cos(πt − 51.49◦) + 0.2051 cos(3πt − 75.14◦)
+ 0.1257 cos(5πt − 80.96◦) + · · · Vv

|Vo |

0 p

0.5

2p 3p

0.2

4p 5p

0.13

6p 7p

0.1

Figure 16.21 For Example 16.6: Amplitude
spectrum of the output voltage.

Figure 16.21 shows the amplitude spectrum for output voltagevo(t),
while that of the input voltage vs(t) is in Fig. 16.4(a). Notice that the
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two spectra are close. Why? We observe that the circuit in Fig. 16.20
is a highpass filter with the corner frequency ωc = R/L = 2.5 rad/s,
which is less than the fundamental frequency ω0 = π rad/s. The dc
component is not passed and the first harmonic is slightly attenuated, but
higher harmonics are passed. In fact, from Eqs. (16.6.1) and (16.6.2), Vo

is identical to Vs for large n, which is characteristic of a highpass filter.

P R A C T I C E P R O B L E M 1 6 . 6

If the sawtooth waveform in Fig. 16.9 (see Practice Prob. 16.2) is the volt-
age source vs(t) in the circuit of Fig. 16.22, find the response vo(t).

vs(t) vo(t)

2 Ω

1 F+
−

+

−

Figure 16.22 For Practice Prob. 16.6.

Answer: vo(t) = 1

2
− 1

π

∞∑
n=1

sin(2πnt − tan−1 4nπ)

n
√

1 + 16n2π2
V.

E X A M P L E 1 6 . 7

Find the response io(t) in the circuit in Fig. 16.23 if the input voltage v(t)

has the Fourier series expansion

v(t) = 1 +
∞∑
n=1

2(−1)n

1 + n2
(cos nt − n sin nt) v(t)

i(t)

io(t)

4 Ω 2 Ω

2 Ω2 H+
−

Figure 16.23 For Example 16.7.

Solution:

Using Eq. (16.13), we can express the input voltage as

v(t) = 1 +
∞∑
n=1

2(−1)n√
1 + n2

cos(nt + tan−1 n)

= 1 − 1.414 cos(t + 45◦) + 0.8944 cos(2t + 63.45◦)
− 0.6345 cos(3t + 71.56◦) − 0.4851 cos(4t + 78.7◦) + · · ·

We notice that ω0 = 1, ωn = n rad/s. The impedance at the source is

Z = 4 + jωn2 ‖ 4 = 4 + jωn8

4 + jωn2
= 8 + jωn8

2 + jωn

The input current is

I = V
Z

= 2 + jωn

8 + jωn8
V

where V is the phasor form of the source voltage v(t). By current division,

Io = 4

4 + jωn2
I = V

4 + jωn4

Since ωn = n, Io can be expressed as

Io = V

4
√

1 + n2 tan−1 n

For the dc component (ωn = 0 or n = 0)

V = 1 	⇒ Io = V
4

= 1

4
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For the nth harmonic,

V = 2(−1)n√
1 + n2

tan−1 n

so that

Io = 1

4
√

1 + n2 tan−1 n

2(−1)n√
1 + n2

tan−1 n = (−1)n

2(1 + n2)

In the time domain,

io(t) = 1

4
+

∞∑
n=1

(−1)n

2(1 + n2)
cos nt A

P R A C T I C E P R O B L E M 1 6 . 7

If the input voltage in the circuit of Fig. 16.24 is

v(t) = 1

3
+ 1

π2

∞∑
n=1

(
1

n2
cos nt − π

n
sin nt

)
V

determine the response io(t).
v(t)

io(t)

2 Ω

1 Ω1 F+
−

Figure 16.24 For Practice Prob. 16.7.
Answer:

1

9
+

∞∑
n=1

√
1 + n2π2

n2π2
√

9 + 4n2
cos

(
nt − tan−1 2n

3
+ tan−1 nπ

)
A.

16.5 AVERAGE POWER AND RMS VALUES

−

+

v(t)

i(t)

Linear
circuit

Figure 16.25 The voltage
polarity reference and current
reference direction.

Recall the concepts of average power and rms value of a periodic signal
that we discussed in Chapter 11. To find the average power absorbed by
a circuit due to a periodic excitation, we write the voltage and current in
amplitude-phase form [see Eq. (16.10)] as

v(t) = Vdc +
∞∑
n=1

Vn cos(nω0t − θn) (16.42)

i(t) = Idc +
∞∑

m=1

Im cos(mω0t − φm) (16.43)

Following the passive sign convention (Fig. 16.25), the average power is

P = 1

T

∫ T

0
vi dt (16.44)

Substituting Eqs. (16.42) and (16.43) into Eq. (16.44) gives

P = 1

T

∫ T

0
VdcIdc dt +

∞∑
m=1

ImVdc

T

∫ T

0
cos(mω0t − φm) dt

+
∞∑
n=1

VnIdc

T

∫ T

0
cos(nω0t − θn) dt

+
∞∑

m=1

∞∑
n=1

VnIm

T

∫ T

0
cos(nω0t − θn) cos(mω0t − φm) dt

(16.45)
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The second and third integrals vanish, since we are integrating the cosine
over its period. According to Eq. (16.4e), all terms in the fourth integral
are zero when m �= n. By evaluating the first integral and applying Eq.
(16.4g) to the fourth integral for the case m = n, we obtain

P = VdcIdc + 1

2

∞∑
n=1

VnIn cos(θn − φn) (16.46)

This shows that in average-power calculation involving periodic voltage
and current, the total average power is the sum of the average powers in
each harmonically related voltage and current.

Given a periodic function f (t), its rms value (or the effective value)
is given by

Frms =
√

1

T

∫ T

0
f 2(t) dt (16.47)

Substituting f (t) in Eq. (16.10) into Eq. (16.47) and noting that
(a + b)2 = a2 + 2ab + b2, we obtain

F 2
rms = 1

T

∫ T

0

[
a2

0 + 2
∞∑
n=1

a0An cos(nω0t + φn)

+
∞∑
n=1

∞∑
m=1

AnAm cos(nω0t + φn) cos(mω0t + φm)

]
dt

= 1

T

∫ T

0
a2

0 dt + 2
∞∑
n=1

a0An

1

T

∫ T

0
cos(nω0t + φn) dt

+
∞∑
n=1

∞∑
m=1

AnAm

1

T

∫ T

0
cos(nω0t + φn) cos(mω0t + φm) dt

(16.48)

Distinct integers n and m have been introduced to handle the product of
the two series summations. Using the same reasoning as above, we get

F 2
rms = a2

0 + 1

2

∞∑
n=1

A2
n

or

Frms =
√√√√a2

0 + 1

2

∞∑
n=1

A2
n (16.49)

In terms of Fourier coefficients an and bn, Eq. (16.49) may be written as

Frms =
√√√√a2

0 + 1

2

∞∑
n=1

(a2
n + b2

n) (16.50)

If f (t) is the current through a resistor R, then the power dissipated in
the resistor is

P = RF 2
rms (16.51)
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Or if f (t) is the voltage across a resistor R, the power dissipated in the
resistor is

P = F 2
rms

R
(16.52)

One can avoid specifying the nature of the signal by choosing a 1-* re-
sistance. The power dissipated by the 1-* resistance is

P1* = F 2
rms = a2

0 + 1

2

∞∑
n=1

(a2
n + b2

n) (16.53)

This result is known as Parseval’s theorem. Notice that a2
0 is the power

in the dc component, while 1/2(a2
n + b2

n) is the ac power in the nth
harmonic. Thus, Parseval’s theorem states that the average power in a
periodic signal is the sum of the average power in its dc component and
the average powers in its harmonics.

Historical note: Named after the French mathe-
matician Marc-Antoine Parseval Deschemes
(1755–1836).

E X A M P L E 1 6 . 8

Determine the average power supplied to the circuit in Fig. 16.26 if
i(t) = 2 + 10 cos(t + 10◦) + 6 cos(3t + 35◦) A.

i(t) v(t) 2 F10 Ω
+

−

Figure 16.26 For Example 16.8.

Solution:

The input impedance of the network is

Z = 10

∥∥∥∥ 1

j2ω
= 10(1/j2ω)

10 + 1/j2ω
= 10

1 + j20ω

Hence,

V = IZ = 10I√
1 + 400ω2 tan−1 20ω

For the dc component, ω = 0,

I = 2 A 	⇒ V = 10(2) = 20 V

This is expected, because the capacitor is an open circuit to dc and the
entire 2-A current flows through the resistor. For ω = 1 rad/s,

I = 10 10◦ 	⇒ V = 10(10 10◦)√
1 + 400 tan−1 20

= 5 − 77.14◦

For ω = 3 rad/s,

I = 6 45◦ 	⇒ V = 10(6 45◦)√
1 + 3600 tan−1 60

= 1 − 44.05◦

Thus, in the time domain,

v(t) = 20 + 5 cos(t − 77.14◦) + 1 cos(3t − 44.05◦) V
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We obtain the average power supplied to the circuit by applying Eq.
(16.46), as

P = VdcIdc + 1

2

∞∑
n=1

VnIn cos(θn − φn)

To get the proper signs of θn and φn, we have to compare v and i in this
example with Eqs. (16.42) and (16.43). Thus,

P = 20(2) + 1

2
(5)(10) cos[77.14◦ − (−10◦)]

+ 1

2
(1)(6) cos[44.05◦ − (−35◦)]

= 40 + 1.247 + 0.05 = 41.5 W

Alternatively, we can find the average power absorbed by the resistor as

P = V 2
dc

R
+ 1

2

∞∑
n=1

|Vn|
R

= 202

10
+ 1

2
· 52

10
+ 1

2
· 12

10

= 40 + 1.25 + 0.05 = 41.5 W

which is the same as the power supplied, since the capacitor absorbs no
average power.

P R A C T I C E P R O B L E M 1 6 . 8

The voltage and current at the terminals of a circuit are

v(t) = 80 + 120 cos 120πt + 60 cos(360πt − 30◦)
i(t) = 5 cos(120πt − 10◦) + 2 cos(360πt − 60◦)

Find the average power absorbed by the circuit.

Answer: 347.4 W.

E X A M P L E 1 6 . 9

Find an estimate for the rms value of the voltage in Example 16.7.

Solution:

From Example 16.7, v(t) is expressed as

v(t) = 1 − 1.414 cos(t + 45◦) + 0.8944 cos(2t + 63.45◦)
− 0.6345 cos(3t + 71.56◦)
− 0.4851 cos(4t + 78.7◦) + · · · V

Using Eq. (16.49),

Vrms =
√
a2

0 + 1

2

∞∑
n=1

A2
n

=
√

12 + 1

2

[
(−1.414)2 + (0.8944)2 + (−0.6345)2 + (−0.4851)2 + · · ·]

=
√

2.7186 = 1.649 V
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This is only an estimate, as we have not taken enough terms of the series.
The actual function represented by the Fourier series is

v(t) = πet

sinhπ
, −π < t < π

with v(t) = v(t + T ). The exact rms value of this is 1.776 V.

P R A C T I C E P R O B L E M 1 6 . 9

Find the rms value of the periodic current

i(t) = 8 + 30 cos 2t − 20 sin 2t + 15 cos 4t − 10 sin 4t A

Answer: 29.61 A.

16.6 EXPONENTIAL FOURIER SERIES
A compact way of expressing the Fourier series in Eq. (16.3) is to put it
in exponential form. This requires that we represent the sine and cosine
functions in the exponential form using Euler’s identity:

cos nω0t = 1

2
[ejnω0t + e−jnω0t ] (16.54a)

sin nω0t = 1

2j
[ejnω0t − e−jnω0t ] (16.54b)

Substituting Eq. (16.54) into Eq. (16.3) and collecting terms, we obtain

f (t) = a0 + 1

2

∞∑
n=1

[(an − jbn)e
jnω0t + (an + jbn)e

−jnω0t ] (16.55)

If we define a new coefficient cn so that

c0 = a0, cn = (an − jbn)

2
, c−n = c∗

n = (an + jbn)

2
(16.56)

then f (t) becomes

f (t) = c0 +
∞∑
n=1

(cne
jnω0t + c−ne

−jnω0t ) (16.57)

or

f (t) =
∞∑

n=−∞
cne

jnω0t (16.58)

This is the complex or exponential Fourier series representation of f (t).
Note that this exponential form is more compact than the sine-cosine
form in Eq. (16.3). Although the exponential Fourier series coefficients
cn can also be obtained from an and bn using Eq. (16.56), they can also
be obtained directly from f (t) as

cn = 1

T

∫ T

0
f (t)e−jnω0t dt (16.59)
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where ω0 = 2π/T , as usual. The plots of the magnitude and phase of
cn versus nω0 are called the complex amplitude spectrum and complex
phase spectrum of f (t), respectively. The two spectra form the complex
frequency spectrum of f (t).

The exponential Fourier series of a periodic function f (t) describes the spectrum
of f (t) in terms of the amplitude and phase angle of ac components at positive

and negative harmonic frequencies.

The coefficients of the three forms of Fourier series (sine-cosine
form, amplitude-phase form, and exponential form) are related by

An φn = an − jbn = 2cn (16.60)

or

cn = |cn| θn =
√
a2
n + b2

n

2
− tan−1 bn/an (16.61)

if only an > 0. Note that the phase θn of cn is equal to φn.
In terms of the Fourier complex coefficients cn, the rms value of a

periodic signal f (t) can be found as

F 2
rms = 1

T

∫ T

0
f 2(t) dt = 1

T

∫ T

0
f (t)

[ ∞∑
n=−∞

cne
jnω0t

]
dt

=
∞∑

n=−∞
cn

[
1

T

∫ T

0
f (t)ejnω0t

]

=
∞∑

n=−∞
cnc

∗
n =

∞∑
n=−∞

|cn|2

(16.62)

or

Frms =
√√√√ ∞∑

n=−∞
|cn|2 (16.63)

Equation (16.62) can be written as

F 2
rms = |c0|2 + 2

∞∑
n=1

|cn|2 (16.64)

Again, the power dissipated by a 1-* resistance is

P1* = F 2
rms =

∞∑
n=−∞

|cn|2 (16.65)

which is a restatement of Parseval’s theorem. The power spectrum of the
signal f (t) is the plot of |cn|2 versus nω0. If f (t) is the voltage across a
resistor R, the average power absorbed by the resistor is F 2

rms/R; if f (t)

is the current through R, the power is F 2
rmsR.
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As an illustration, consider the periodic pulse train of Fig. 16.27.
Our goal is to obtain its amplitude and phase spectra. The period of the
pulse train is T = 10, so that ω0 = 2π/T = π/5. Using Eq. (16.59),

cn = 1

T

∫ T/2

−T/2
f (t)e−jnω0t dt = 1

10

∫ 1

−1
10e−jnω0t dt

= 1

−jnω0
e−jnω0t

∣∣∣∣1

−1

= 1

−jnω0
(e−jnω0 − ejnω0)

= 2

nω0

ejnω0 − e−jnω0

2j
= 2

sin nω0

nω0
, ω0 = π

5

= 2
sin nπ/5

nπ/5

(16.66)

and

f (t) = 2
∞∑

n=−∞

sin nπ/5

nπ/5
ejnπt/5 (16.67)

Notice from Eq. (16.66) that cn is the product of 2 and a function of the
form sin x/x. This function is known as the sinc function; we write it as

sinc(x) = sin x

x
(16.68)

Some properties of the sinc function are important here. For zero argu-
ment, the value of the sinc function is unity,

sinc(0) = 1 (16.69)

This is obtained applying L’Hopital’s rule to Eq. (16.68). For an integral
multiple of π , the value of the sinc function is zero,

sinc(nπ) = 0, n = 1, 2, 3, . . . (16.70)

Also, the sinc function shows even symmetry. With all this in mind, we
can obtain the amplitude and phase spectra of f (t). From Eq. (16.66),
the magnitude is

|cn| = 2

∣∣∣∣ sin nπ/5

nπ/5

∣∣∣∣ (16.71)

while the phase is

θn =




0◦, sin
nπ

5
> 0

180◦, sin
nπ

5
< 0

(16.72)

Figure 16.28 shows the plot of |cn| versus n for n varying from −10 to 10,
where n = ω/ω0 is the normalized frequency. Figure 16.29 shows the
plot of θn versus n. Both the amplitude spectrum and phase spectrum are
called line spectra, because the value of |cn| and θn occur only at discrete
values of frequencies. The spacing between the lines is ω0. The power
spectrum, which is the plot of |cn|2 versusnω0, can also be plotted. Notice
that the sinc function forms the envelope of the amplitude spectrum.

–11 –9 –1 10 9 11 t

10

f (t)

Figure 16.27 The periodic pulse train.

The sinc function is called the sampling function in
communication theory, where it is very useful.

Examining the input and output spectra allows
visualization of the effect of a circuit on a periodic
signal.
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–2–4–6–8–10 0 2 4 6 8 10

0.31

2

1.87

|cn|

1.51

1.0

0.47
0.43

0.38

0.27

Figure 16.28 The amplitude of a periodic
pulse train.

n

un

180°

0 2 4 6 8 10–2–4–6–8–10

Figure 16.29 The phase spectrum of a periodic pulse train.

E X A M P L E 1 6 . 1 0

Find the exponential Fourier series expansion of the periodic function
f (t) = et , 0 < t < 2π with f (t + 2π) = f (t).

Solution:

Since T = 2π , ω0 = 2π/T = 1. Hence,

cn = 1

T

∫ T

0
f (t)e−jnω0t dt = 1

2π

∫ 2π

0
ete−jnt dt

= 1

2π

1

1 − jn
e(1−jn)t

∣∣∣∣2π

0

= 1

2π(1 − jn)
[e2πe−j2πn − 1]

But by Euler’s identity,

e−j2πn = cos 2πn − j sin 2πn = 1 − j0 = 1

Thus,

cn = 1

2π(1 − jn)
[e2π − 1] = 85

1 − jn

The complex Fourier series is

f (t) =
∞∑

n=−∞

85

1 − jn
ejnt
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We may want to plot the complex frequency spectrum of f (t). If we let
cn = |cn| θn, then

|cn| = 85√
1 + n2

, θn = tan−1 n

By inserting in negative and positive values of n, we obtain the amplitude
and the phase plots of cn versus nω0 = n, as in Fig. 16.30.

–1–2–3–4–5 0

(a)

1 2 3 4 5 nv0

85

60.1

38
26.9

20.6
16.7

 |cn |

–1–2–3–4–5

0

(b)

1 2 3 4 5 nv0

un

90°

–90°

Figure 16.30 The complex frequency spectrum of the function in Example 16.10: (a) amplitude spectrum, (b) phase spectrum.

P R A C T I C E P R O B L E M 1 6 . 1 0

Obtain the complex Fourier series of the function in Fig. 16.1.

Answer: f (t) = 1

2
−

∞∑
n = −∞

n �= 0
n = odd

j

nπ
ejnπt .

E X A M P L E 1 6 . 1 1

Find the complex Fourier series of the sawtooth wave in Fig. 16.9. Plot
the amplitude and the phase spectra.

Solution:

From Fig. 16.9, f (t) = t, 0 < t < 1, T = 1 so that ω0 = 2π/T = 2π.
Hence,

cn = 1

T

∫ T

0
f (t)e−jnω0t dt = 1

1

∫ 1

0
te−j2nπt dt (16.11.1)
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But ∫
teat dt = eat

a2
(ax − 1) + C

Applying this to Eq. (16.11.1) gives

cn = e−j2nπt

(−j2nπ)2
(−j2nπt − 1)

∣∣∣∣1

0

= e−j2nπ (−j2nπ − 1) + 1

−4n2π2

(16.11.2)

Again,

e−j2πn = cos 2πn − j sin 2πn = 1 − j0 = 1

so that Eq. (16.11.2) becomes

cn = −j2nπ

−4n2π2
= j

2nπ
(16.11.3)

This does not include the case when n = 0. When n = 0,

c0 = 1

T

∫ T

0
f (t) dt = 1

1

∫ 1

0
t dt = t2

2

∣∣∣∣
0

1

= 0.5 (16.11.4)

Hence,

f (t) = 0.5 +
∞∑

n = −∞
n �= 0

j

2nπ
ej2nπt (16.11.5)

and

|cn| =



1

2|n|π , n �= 0

0.5, n = 0
, θn = 90◦, n �= 0 (16.11.6)

By plotting |cn| and θn for different n, we obtain the amplitude spectrum
and the phase spectrum shown in Fig. 16.31.

v

|cn |

0

(a)

–v0

0.16 0.16

0.08 0.080.05 0.050.04 0.040.03 0.03

–2v0–3v0–4v0–5v0 v0

0.5

2v0 3v0 4v0 5v0 v

un

0

(b)

–v0–2v0–3v0–4v0–5v0 v0

90°

2v0 3v0 4v0 5v0

Figure 16.31 For Example 16.11: (a) amplitude spectrum, (b) phase spectrum.



740 PART 3 Advanced Circuit Analyses

P R A C T I C E P R O B L E M 1 6 . 1 1

Obtain the complex Fourier series expansion of f (t) in Fig. 16.17. Show
the amplitude and phase spectra.

Answer: f (t) = −
∞∑

n = −∞
n �= 0

j (−1)n

nπ
ejnπt . See Fig. 16.32 for the spectra.

n

|cn |

0

(a)

–3 –2 –1 1 2 3 4–4

0.320.32

0.160.16

0.110.11
0.80.8

n

un

0

(b)

–3

–2

–1 1

2

3

4–4

90°

−90°

Figure 16.32 For Practice Prob. 16.11: (a) amplitude spectrum, (b) phase spectrum.

16.7 FOURIER ANALYSIS WITH PSPICE
Fourier analysis is usually performed with PSpice in conjunction with
transient analysis. Therefore, we must do a transient analysis in order to
perform a Fourier analysis.

To perform the Fourier analysis of a waveform, we need a circuit
whose input is the waveform and whose output is the Fourier decomposi-
tion. A suitable circuit is a current (or voltage) source in series with a 1-*
resistor as shown in Fig. 16.33. The waveform is inputted as vs(t) using
VPULSE for a pulse or VSIN for a sinusoid, and the attributes of the
waveform are set over its period T . The output V(1) from node 1 is the
dc level (a0) and the first nine harmonics (An) with their corresponding
phases ψn; that is,

vo(t) = a0 +
9∑

n=1

An sin(nω0t + ψn) (16.73)

where

An =
√
a2
n + b2

n, ψn = φn − π

2
, φn = tan−1 bn

an

(16.74)

Notice in Eq. (16.74) that the PSpice output is in the sine and angle form
rather than the cosine and angle form in Eq. (16.10). The PSpice output
also includes the normalized Fourier coefficients. Each coefficient an

is normalized by dividing it by the magnitude of the fundamental a1 so
that the normalized component is an/a1. The corresponding phase ψn is
normalized by subtracting from it the phase ψ1 of the fundamental, so
that the normalized phase is ψn − ψ1.

vs vo

1

0

(b)

1 Ω+
−

+

−
is vo

1

0

(a)

1 Ω
+

−

Figure 16.33 Fourier analysis with PSpice
using: (a) a current source, (b) a voltage
source.
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There are two types of Fourier analyses offered by PSpice for Win-
dows: Discrete Fourier Transform (DFT) performed by the PSpice pro-
gram and Fast Fourier Transform (FFT) performed by the Probe program.
While DFT is an approximation of the exponential Fourier series, FTT
is an algorithm for rapid efficient numerical computation of DFT. A full
discussion of DFT and FTT is beyond the scope of this book.

16 . 7 . 1 D i s c r e t e Four i e r Tr an s fo rm
A discrete Fourier transform (DFT) is performed by the PSpice program,
which tabulates the harmonics in an output file. To enable a Fourier
analysis, we select Analysis/Setup/Transient and bring up the Transient
dialog box, shown in Fig. 16.34. The Print Step should be a small fraction
of the period T , while the Final Time could be 6T . The Center Frequency
is the fundamental frequency f0 = 1/T . The particular variable whose
DFT is desired, V(1) in Fig. 16.34, is entered in the Output Vars com-
mand box. In addition to filling in the Transient dialog box, DCLICK
Enable Fourier. With the Fourier analysis enabled and the schematic
saved, run PSpice by selecting Analysis/Simulate as usual. The pro-
gram executes a harmonic decomposition into Fourier components of the
result of the transient analysis. The results are sent to an output file which
you can retrieve by selecting Analysis/Examine Output. The output file
includes the dc value and the first nine harmonics by default, although
you can specify more in the Number of harmonics box (see Fig. 16.34).

Figure 16.34 Transient dialog box.

16 . 7 . 2 F a s t Four i e r Tr an s fo rm
A fast Fourier transform (FFT) is performed by the Probe program and
displays as a Probe plot the complete spectrum of a transient expression.
As explained above, we first construct the schematic in Fig. 16.33(b) and
enter the attributes of the waveform. We also need to enter the Print Step
and the Final Time in the Transient dialog box. Once this is done, we can
obtain the FFT of the waveform in two ways.

One way is to insert a voltage marker at node 1 in the schematic
of the circuit in Fig. 16.33(b). After saving the schematic and selecting
Analysis/Simulate, the waveform V(1) will be displayed in the Probe
window. Double clicking the FFT icon in the Probe menu will auto-
matically replace the waveform with its FFT. From the FFT-generated
graph, we can obtain the harmonics. In case the FFT-generated graph
is crowded, we can use the User Defined data range (see Fig. 16.35) to
specify a smaller range.

Another way of obtaining the FFT of V(1) is to not insert a voltage
marker at node 1 in the schematic. After selecting Analysis/Simulate, the
Probe window will come up with no graph on it. We select Trace/Add
and type V(1) in the Trace Command box and DCLICKL OK. We
now select Plot/X-Axis Settings to bring up the X Axis Setting dialog
box shown in Fig. 16.35 and then select Fourier/OK. This will cause
the FFT of the selected trace (or traces) to be displayed. This second
approach is useful for obtaining the FFT of any trace associated with the
circuit.

A major advantage of the FFT method is that it provides graphical
output. But its major disadvantage is that some of the harmonics may be
too small to see.
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Figure 16.35 X axis settings dialog box.

In both DFT and FFT, we should let the simulation run for a large
number of cycles and use a small value of Step Ceiling (in the Transient
dialog box) to ensure accurate results. The Final Time in the Transient
dialog box should be at least five times the period of the signal to allow
the simulation to reach steady state.

E X A M P L E 1 6 . 1 2

Use PSpice to determine the Fourier coefficients of the signal in Fig. 16.1.

Solution:

Figure 16.36 shows the schematic for obtaining the Fourier coefficients.
With the signal in Fig. 16.1 in mind, we enter the attributes of the voltage
source VPULSE as shown in Fig. 16.36. We will solve this example
using both the DFT and FFT approaches.

0

1
V1=0
V2=1
TD=0
TF=1u
TR=1u
PW=1
PER=2

1 R1V3−
+

V

Figure 16.36 Schematic for
Example 16.12.

METHOD 1 DFT Approach: (The voltage marker in Fig. 16.36 is
not needed for this method.) From Fig. 16.1, it is evident that T = 2 s,

f0 = 1

T
= 1

2
= 0.5 Hz

So, in the transient dialog box, we select the Final Time as 6T = 12 s,
the Print Step as 0.01 s, the Step Ceiling as 10 ms, the Center Frequency
as 0.5 Hz, and the output variable as V(1). (In fact, Fig. 16.34 is for
this particular example.) When PSpice is run, the output file contains the
following result.

FOURIER COEFFICIENTS OF TRANSIENT RESPONSE V(1)

DC COMPONENT = 4.989950E-01

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 5.000E-01 6.366E-01 1.000E+00 -1.809E-01 0.000E+00
2 1.000E+00 2.012E-03 3.160E-03 -9.226E+01 -9.208E+01
3 1.500E+00 2.122E-01 3.333E-01 -5.427E-01 -3.619E-01

(continued)
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(continued)

4 2.000E+00 2.016E-03 3.167E-03 -9.451E+01 -9.433E+01
5 2.500E+00 1.273E-01 1.999E-01 -9.048E-01 -7.239E-01
6 3.000E+00 2.024E-03 3.180E-03 -9.676E+01 -9.658E+01
7 3.500E+00 9.088E-02 1.427E-01 -1.267E+00 -1.086E+00
8 4.000E+00 2.035E-03 3.197E-03 -9.898E+01 -9.880E+01
9 4.500E+00 7.065E-02 1.110E-01 -1.630E+00 -1.449E+00

Comparing the result with that in Eq. (16.1.7) (see Example 16.1) or with
the spectra in Fig. 16.4 shows a close agreement. From Eq. (16.1.7), the
dc component is 0.5 while PSpice gives 0.498995. Also, the signal has
only odd harmonics with phase ψn = −90◦, whereas PSpice seems to
indicate that the signal has even harmonics although the magnitudes of
the even harmonics are small.

METHOD 2 FFT Approach: With voltage marker in Fig. 16.36 in
place, we run PSpice and obtain the waveform V(1) shown in Fig. 16.37(a)
on the Probe window. By double clicking the FFT icon in the Probe menu
and changing the X-axis setting to 0 to 10 Hz, we obtain the FFT of V(1)
as shown in Fig. 16.37(b). The FFT-generated graph contains the dc and
harmonic components within the selected frequency range. Notice that
the magnitudes and frequencies of the harmonics agree with the DFT-
generated tabulated values.

(a)

0 s 2 s 4 s 6 s

Time

8 s 10 s 12 s

1.0 V

0 V

(b)

0 Hz
V(1)

2 Hz 4 Hz 6 Hz 8 Hz 10 Hz

Frequency

1.0 V

0 V

V(1)

Figure 16.37 (a) Original waveform of Fig. 16.1, (b) FFT of the waveform.

P R A C T I C E P R O B L E M 1 6 . 1 2

Obtain the Fourier coefficients of the function in Fig. 16.7 using PSpice.
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Answer:

FOURIER COEFFICIENTS OF TRANSIENT RESPONSE V(1)

DC COMPONENT = 4.950000E-01

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 1.000E+00 3.184E-01 1.000E+00 -1.782E+02 0.000E+00
2 2.000E+00 1.593E-01 5.002E-01 -1.764E+02 1.800E+00
3 3.000E+00 1.063E-01 3.338E-01 -1.746E+02 3.600E+00
4 4.000E+00 7.979E-02 2.506E-03 -1.728E+02 5.400E+00
5 5.000E+00 6.392E-01 2.008E-01 -1.710E+02 7.200E+00
6 6.000E+00 5.337E-02 1.676E-03 -1.692E+02 9.000E+00
7 7.000E+00 4.584E-02 1.440E-01 -1.674E+02 1.080E+01
8 8.000E+00 4.021E-02 1.263E-01 -1.656E+02 1.260E+01
9 9.000E+00 3.584E-02 1.126E-01 -1.638E+02 1.440E+01

E X A M P L E 1 6 . 1 3

If vs in the circuit of Fig. 16.38 is a sinusoidal voltage source of amplitude
12 V and frequency 100 Hz, find current i(t).

vs

i (t)

1 H1 Ω

1 Ω

+
−

Figure 16.38 For Example 16.13.

Solution:

The schematic is shown in Fig. 16.39. We may use the DFT approach
to obtain the Fourier coefficents of i(t). Since the period of the input
waveform is T = 1/100 = 10 ms, in the Transient dialog box we select
Print Step: 0.1 ms, Final Time: 100 ms, Center Frequency: 100 Hz,
Number of harmonics: 4, and Output Vars: I(L1). When the circuit is
simulated, the output file includes the following.

FOURIER COEFFICIENTS OF TRANSIENT RESPONSE I(VD)

DC COMPONENT = 8.583269E-03

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 1.000E+02 8.730E-03 1.000E+00 -8.984E+01 0.000E+00
2 2.000E+02 1.017E-04 1.165E-02 -8.306E+01 6.783E+00
3 3.000E+02 6.811E-05 7.802E-03 -8.235E+01 7.490E+00
4 4.000E+02 4.403E-05 5.044E-03 -8.943E+01 4.054E+00

With the Fourier coefficients, the Fourier series describing the cur-
rent i(t) can be obtained using Eq. (16.73); that is,

i(t) = 8.5833 + 8.73 sin(2π · 100t − 89.84◦)
+ 0.1017 sin(2π · 200t − 83.06◦)
+ 0.068 sin(2π · 300t − 82.35◦) + · · · mA
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We can also use the FFT approach to cross-check our result. The
current marker is inserted at pin 1 of the inductor as shown in Fig. 16.39.
Running PSpice will automatically produce the plot of I(L1) in the Probe
window, as shown in Fig. 16.40(a). By double clicking the FFT icon and
setting the range of the X-axis from 0 to 200 Hz, we generate the FFT
of I(L1) shown in Fig. 16.40(b). It is clear from the FFT-generated plot
that only the dc component and the first harmonic are visible. Higher
harmonics are negligibly small.

R1

1

0

VAMPL=12
FREQ=100
VOFF=0

1H L1V1 R2 1−
+

I

Figure 16.39 Schematic of the circuit in
Fig. 16.38.

(a)

0 s
I (L1)

20 ms 40 ms 60 ms 80 ms 100 ms

Time

20 mA

–20 mA

(b)

0 Hz
I (L1)

40 Hz 80 Hz 120 Hz 160 Hz 200 Hz

Frequency

10 mA

0 A

Figure 16.40 For Example 16.13: (a) plot of i(t), (b) the FFT of i(t).

P R A C T I C E P R O B L E M 1 6 . 1 3

A sinusoidal current source of amplitude 4 A and frequency 2 kHz is ap-
plied to the circuit in Fig. 16.41. Use PSpice to find v(t). is(t) v(t) 2 F10 Ω

+

−

Figure 16.41 For Practice Prob. 16.14.

Answer: v(t) = −150.72 + 145.5 sin(4π · 103t + 90◦)+ · · · µV. The
Fourier components are shown below.

FOURIER COEFFICIENTS OF TRANSIENT RESPONSE V(R1:1)

DC COMPONENT = -1.507169E-04

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 2.000E+03 1.455E-04 1.000E+00 9.006E+01 0.000E+00
2 4.000E+03 1.851E-06 1.273E-02 9.597E+01 5.910E+00
3 6.000E+03 1.406E-06 9.662E-03 9.323E+01 3.167E+00
4 8.000E+03 1.010E-06 6.946E-02 8.077E+01 -9.292E+00
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†16.8 APPLICATIONS
We demonstrated in Section 16.4 that the Fourier series expansion per-
mits the application of the phasor techniques used in ac analysis to cir-
cuits containing nonsinusoidal periodic excitations. The Fourier series
has many other practical applications, particularly in communications
and signal processing. Typical applications include spectrum analysis,
filtering, rectification, and harmonic distortion. We will consider two of
these: spectrum analyzers and filters.

TABLE 16.4 Frequency ranges of
typical signals.

Signal Frequency Range

Audible sounds 20 Hz to 15 kHz
AM radio 540–1600 kHz
Short-wave radio 3–36 MHz
Video signals dc to 4.2 MHz

(U.S. standards)
VHF television, 54–216 MHz

FM radio
UHF television 470–806 MHz
Cellular telephone 824–891.5 MHz
Microwaves 2.4–300 GHz
Visible light 105–106 GHz
X-rays 108–109 GHz

16 . 8 . 1 Spec t rum Ana l y z e r s
The Fourier series provides the spectrum of a signal. As we have seen, the
spectrum consists of the amplitudes and phases of the harmonics versus
frequency. By providing the spectrum of a signal f (t), the Fourier series
helps us identify the pertinent features of the signal. It demonstrates
which frequencies are playing an important role in the shape of the output
and which ones are not. For example, audible sounds have significant
components in the frequency range of 20 Hz to 15 kHz, while visible
light signals range from 105 GHz to 106 GHz. Table 16.4 presents some
other signals and the frequency ranges of their components. A periodic
function is said to be band-limited if its amplitude spectrum contains only
a finite number of coefficients An or cn. In this case, the Fourier series
becomes

f (t) =
N∑

n=−N

cne
jnω0t = a0 +

N∑
n=1

An cos(nω0t + φn) (16.75)

This shows that we need only 2N+1 terms (namely, a0, A1, A2, . . . , AN,

φ1, φ2, . . . , φN ) to completely specify f (t) if ω0 is known. This leads to
the sampling theorem: a band-limited periodic function whose Fourier
series contains N harmonics is uniquely specified by its values at 2N + 1
instants in one period.

A spectrum analyzer is an instrument that displays the amplitude of
the components of a signal versus frequency. In other words, it shows the
various frequency components (spectral lines) that indicate the amount
of energy at each frequency. It is unlike an oscilloscope, which displays
the entire signal (all components) versus time. An oscilloscope shows the
signal in the time domain, while the spectrum analyzer shows the signal
in the frequency domain. There is perhaps no instrument more useful to a
circuit analyst than the spectrum analyzer. An analyzer can conduct noise
and spurious signal analysis, phase checks, electromagnetic interference
and filter examinations, vibration measurements, radar measurements,
and more. Spectrum analyzers are commercially available in various
sizes and shapes. Figure 16.42 displays a typical one.

16 . 8 . 2 F i l t e r s
Filters are an important component of electronics and communications
systems. Chapter 14 presented a full discussion on passive and active fil-
ters. Here, we investigate how to design filters to select the fundamental
component (or any desired harmonic) of the input signal and reject other
harmonics. This filtering process cannot be accomplished without the
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Figure 16.42 A typical spectrum analyzer.
(Courtesy of Hewlett-Packer.)

Fourier series expansion of the input signal. For the purpose of illustra-
tion, we will consider two cases, a lowpass filter and a bandpass filter. In
Example 16.6, we already looked at a highpass RL filter.

The output of a lowpass filter depends on the input signal, the trans-
fer function H(ω) of the filter, and the corner or half-power frequency
ωc. We recall that ωc = 1/RC for an RC passive filter. As shown in
Fig. 16.43(a), the lowpass filter passes the dc and low-frequency com-
ponents, while blocking the high-frequency components. By making ωc

sufficiently large (ωc � ω0, e.g., making C small), a large number of the

0 v0 2v0 3v0

vc

v 0 v0 2v0 3v0 v

0

dcLowpass
filter

vc << v0

A

(a)

(b)

v

1
1
2

|H |

A
2

Figure 16.43 (a) Input and output spectra of a lowpass filter, (b) the lowpass filter passes
only the dc component when ωc � ω0.
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harmonics can be passed. On the other hand, by making ωc sufficiently
small (ωc � ω0), we can block out all the ac components and pass only
dc, as shown typically in Fig. 16.43(b). (See Fig. 16.2(a) for the Fourier
series expansion of the square wave.)

Similarly, the output of a bandpass filter depends on the input signal,
the transfer function of the filter H(ω), its bandwidth B, and its center
frequency ωc. As illustrated in Fig. 16.44(a), the filter passes all the
harmonics of the input signal within a band of frequencies (ω1 < ω < ω2)
centered around ωc. We have assumed that ω0, 2ω0, and 3ω0 are within
that band. If the filter is made highly selective (B � ω0) and ωc = ω0,
whereω0 is the fundamental frequency of the input signal, the filter passes
only the fundamental component (n = 1) of the input and blocks out all
higher harmonics. As shown in Fig. 16.44(b), with a square wave as
input, we obtain a sine wave of the same frequency as the output. (Again,
refer to Fig. 16.2(a).)

In this section, we have used ωc for the center
frequency of the bandpass filter instead of ω0 as
in Chapter 14, to avoid confusing ω0 with the
fundamental frequency of the input signal.

0 v0 2v0 3v0

v1 v2vc

v 0 v0 2v0 3v0 v

0

Bandpass
filter

vc = v0
B << v0

(a)

(b)

v

1

|H |

1
2

T

T

Figure 16.44 (a) Input and output spectra of a bandpass filter, (b) the bandpass filter
passes only the fundamental component when B � ω0.

E X A M P L E 1 6 . 1 4

If the sawtooth waveform in Fig. 16.45(a) is applied to an ideal lowpass
filter with the transfer function shown in Fig. 16.45(b), determine the
output.

Solution:

The input signal in Fig. 16.45(a) is the same as the signal in Fig. 16.9.
From Practice Prob. 16.2, we know that the Fourier series expansion is

x(t) = 1

2
− 1

π
sinω0t − 1

2π
sin 2ω0t − 1

3π
sin 3ω0t − · · ·
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where the period is T = 1 s and the fundamental frequency is ω0 = 2π
rad/s. Since the corner frequency of the filter is ωc = 10 rad/s, only the
dc component and harmonics with nω0 < 10 will be passed. For n = 2,
nω0 = 4π = 12.566 rad/s, which is higher than 10 rad/s, meaning that
second and higher harmonics will be rejected. Thus, only the dc and
fundamental components will be passed. Hence the output of the filter is

y(t) = 1

2
− 1

π
sin 2πt

t

x(t)

2 3–1 0

1

1

(a)

v

|H |

0

1

10

(b)

Figure 16.45 For Example 16.14.

P R A C T I C E P R O B L E M 1 6 . 1 4

Rework Example 16.14 if the lowpass filter is replaced by the ideal band-
pass filter shown in Fig. 16.46.

v

|H |

15 350

1

Figure 16.46 For Practice Prob. 16.14.

Answer: y(t) = − 1

3π
sin 3ω0t − 1

4π
sin 4ω0t − 1

5π
sin 5ω0t .

16.9 SUMMARY
1. A periodic function is one that repeats itself every T seconds; that

is, f (t ± nT ) = f (t), n = 1, 2, 3, . . . .

2. Any nonsinusoidal periodic function f (t) that we encounter in
electrical engineering can be expressed in terms of sinusoids using
Fourier series:

f (t) = a0︸︷︷︸
dc

+
∞∑
n=1

(an cos nω0t + bn sin nω0t)︸ ︷︷ ︸
ac

where ω0 = 2π/T is the fundamental frequency. The Fourier series
resolves the function into the dc component a0 and an ac compo-
nent containing infinitely many harmonically related sinusoids. The
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Fourier coefficients are determined as

a0 = 1

T

∫ T

0
f (t) dt, an = 2

T

∫ T

0
f (t) cos nω0t dt

bn = 2

T

∫ T

0
f (t) sin nω0t dt

If f (t) is an even function, bn = 0, and when f (t) is odd, a0 = 0
and an = 0. If f (t) is half-wave symmetric, a0 = an = bn = 0 for
even values of n.

3. An alternative to the trigonometric (or sine-cosine) Fourier series is
the amplitude-phase form

f (t) = a0 +
∞∑
n=1

An cos(nω0t + φn)

where

An =
√
a2
n + b2

n, φn = − tan−1 bn

an

4. Fourier series representation allows us to apply the phasor method
in analyzing circuits when the source function is a nonsinusoidal
periodic function. We use phasor technique to determine the
response of each harmonic in the series, transform the responses to
the time domain, and add them up.

5. The average-power of periodic voltage and current is

P = VdcIdc + 1

2

∞∑
n=1

VnIn cos(θn − φn)

In other words, the total average power is the sum of the average
powers in each harmonically related voltage and current.

6. A periodic function can also be represented in terms of an expo-
nential (or complex) Fourier series as

f (t) =
∞∑

n=−∞
cne

jnω0t

where

cn = 1

T

∫ T

0
f (t)e−jnω0t dt

and ω0 = 2π/T . The exponential form describes the spectrum of
f (t) in terms of the amplitude and phase of ac components at posi-
tive and negative harmonic frequencies. Thus, there are three basic
forms of Fourier series representation: the trigonometric form, the
amplitude-phase form, and the exponential form.

7. The frequency (or line) spectrum is the plot of An and φn or |cn|
and θn versus frequency.

8. The rms value of a periodic function is given by

Frms =
√√√√a2

0 + 1

2

∞∑
n=1

A2
n
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The power dissipated by a 1-* resistance is

P1* = F 2
rms = a2

0 + 1

2

∞∑
n=1

(a2
n + b2

n) =
∞∑

n=−∞
|cn|2

This relationship is known as Parseval’s theorem.

9. Using PSpice, a Fourier analysis of a circuit can be performed in
conjunction with the transient analysis.

10. Fourier series find application in spectrum analyzers and filters.
The spectrum analyzer is an instrument that displays the discrete
Fourier spectra of an input signal, so that an analyst can determine
the frequencies and relative energies of the signal’s components.
Because the Fourier spectra are discrete spectra, filters can be
designed for great effectiveness in blocking frequency components
of a signal that are outside a desired range.

R E V I EW QU E S T I ON S

16.1 Which of the following cannot be a Fourier series?

(a) t − t2

2
+ t3

3
− t4

4
+ t5

5
(b) 5 sin t + 3 sin 2t − 2 sin 3t + sin 4t
(c) sin t − 2 cos 3t + 4 sin 4t + cos 4t
(d) sin t + 3 sin 2.7t − cosπt + 2 tanπt

(e) 1 + e−jπt + e−j2πt

2
+ e−j3πt

3
16.2 If f (t) = t, 0 < t < π, f (t + nπ) = f (t), the

value of ω0 is
(a) 1 (b) 2 (c) π (d) 2π

16.3 Which of the following are even functions?

(a) t + t2 (b) t2 cos t (c) et
2

(d) t2 + t4 (e) sinh t

16.4 Which of the following are odd functions?
(a) sin t + cos t (b) t sin t

(c) t ln t (d) t3 cos t
(e) sinh t

16.5 If f (t) = 10 + 8 cos t + 4 cos 3t + 2 cos 5t + · · ·,
the magnitude of the dc component is:
(a) 10 (b) 8 (c) 4
(d) 2 (e) 0

16.6 If f (t) = 10 + 8 cos t + 4 cos 3t + 2 cos 5t + · · ·,
the angular frequency of the 6th harmonic is
(a) 12 (b) 11 (c) 9
(d) 6 (e) 1

16.7 The function in Fig. 16.14 is half-wave symmetric.
(a) True (b) False

16.8 The plot of |cn| versus nω0 is called:
(a) complex frequency spectrum
(b) complex amplitude spectrum
(c) complex phase spectrum

16.9 When the periodic voltage 2 + 6 sinω0t is applied to
a 1-* resistor, the integer closest to the power (in
watts) dissipated in the resistor is:
(a) 5 (b) 8 (c) 20
(d) 22 (e) 40

16.10 The instrument for displaying the spectrum of a
signal is known as:
(a) oscilloscope (b) spectrogram
(c) spectrum analyzer (d) Fourier spectrometer

Answers: 16.1a,d, 16.2b, 16.3b,c,d, 16.4d,e, 16.5a, 16.6d, 16.7a,
16.8b, 16.9d ,16.10c.

P RO B L E M S

Section 16.2 Trigonometric Fourier Series

16.1 Evaluate each of the following functions and see if it
is periodic. If periodic, find its period.
(a) f (t) = cosπt + 2 cos 3πt + 3 cos 5πt

(b) y(t) = sin t + 4 cos 2πt

(c) g(t) = sin 3t cos 4t

(d) h(t) = cos2 t

(e) z(t) = 4.2 sin(0.4πt + 10◦)
+0.8 sin(0.6πt + 50◦)

(f) p(t) = 10
(g) q(t) = e−πt
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16.2 Determine the period of these periodic functions:
(a) f1(t) = 4 sin 5t + 3 sin 6t
(b) f2(t) = 12 + 5 cos 2t + 2 cos(4t + 45◦)
(c) f3(t) = 4 sin2 600πt

(d) f4(t) = ej10t

16.3 Give the Fourier coefficients a0, an, and bn of the
waveform in Fig. 16.47. Plot the amplitude and
phase spectra.

t

g(t)

4 5 60 1 2 3–2 –1–3–4

5

10

Figure 16.47 For Prob. 16.3.

16.4 Find the Fourier series expansion of the backward
sawtooth waveform of Fig. 16.48. Obtain the
amplitude and phase spectra.

t

f (t)

4 6–2–4 0

10

2

Figure 16.48 For Probs. 16.4 and 16.50.

16.5∗ A voltage source has a periodic waveform defined
over its period as

v(t) = t (2π − t) V, 0 < t < 2π

Find the Fourier series for this voltage.

16.6 A periodic function is defined over its period as

h(t) =
{

10 sin t, 0 < t < π

20 sin(t − π), π < t < 2π

Find the Fourier series of h(t).

16.7 Find the quadrature (cosine and sine) form of the
Fourier series

f (t) = 2 +
∞∑
n=1

10

n3 + 1
cos

(
2nt + nπ

4

)
16.8 Express the Fourier series

f (t) = 10 +
∞∑
n=1

4

n2 + 1
cos 10nt + 1

n3
sin 10nt

(a) in a cosine and angle form,
(b) in a sine and angle form.

*An asterisk indicates a challenging problem.

16.9 The waveform in Fig. 16.49(a) has the following
Fourier series:

v1(t) = 1

2
− 4

π 2

(
cosπt + 1

9
cos 3πt

+ 1

25
cos 5πt + · · ·

)
V

Obtain the Fourier series of v2(t) in Fig. 16.49(b).

t

v1(t)

0 1

(a)

(b)

–2 –1 2 3 4

1

t

v2(t)

0–1–2 2 31 4

1

–1

Figure 16.49 For Probs. 16.9 and 16.52.

Section 16.3 Symmetry Considerations

16.10 Determine if these functions are even, odd, or
neither.
(a) 1 + t (b) t2 − 1 (c) cos nπt sin nπt

(d) sin2 πt (e) e−t

16.11 Determine the fundamental frequency and specify
the type of symmetry present in the functions in Fig.
16.50.

t

f1(t)

2 3–2 –1 0

2

–2

1

(a)

t

f2(t)

2 3 54–2 0–1

2
1

1

(b)
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t

f3(t)

2 4–2–4 0

2

1

–2

–1

(c)

Figure 16.50 For Probs. 16.11 and 16.48.

16.12 Obtain the Fourier series expansion of the function
in Fig. 16.51.

t

f (t)

0–1–2–3 2 31

1

–1

Figure 16.51 For Prob. 16.12.

16.13 Find the Fourier series for the signal in Fig. 16.52.
Evaluate f (t) at t = 2 using the first three nonzero
harmonics.

t

f (t)

0 2 4 6 8–2–4

4

Figure 16.52 For Probs. 16.13 and 16.51.

16.14 Determine the trigonometric Fourier series of the
signal in Fig. 16.53.

t

f (t)

4 5–5 –4 –3 –2 –1 0

2

1 2 3

Figure 16.53 For Prob. 16.14.

16.15 Calculate the Fourier coefficients for the function in
Fig. 16.54.

t

f (t)

4 5–5 –4 –3 –2 –1 0

4

1 2 3

Figure 16.54 For Prob. 16.15.

16.16 Find the Fourier series of the function shown in Fig.
16.55.

t

f (t)

0–1–2 2 31

1

–1

Figure 16.55 For Prob. 16.16.

16.17 In the periodic function of Fig. 16.56,
(a) find the trigonometric Fourier series coefficients

a2 and b2,
(b) calculate the magnitude and phase of the

component of f (t) that has ωn = 10 rad/s,
(c) use the first four nonzero terms to estimate

f (π/2),
(d) show that

π

4
= 1

1
− 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ · · ·

t

f (t)

0–2π –π π 2π 3π 4π

2

1

–1

–2

Figure 16.56 For Prob. 16.17.
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16.18 Determine the Fourier series representation of the
function in Fig. 16.57.

t

f (t)

0–4 –2

–1

42

1

Figure 16.57 For Prob. 16.18.

16.19 Find the Fourier series representation of the signal
shown in Fig. 16.58.

t(s)

f (t)

0–4 –3 –2 –1 8 97654321

10

5

Figure 16.58 For Prob. 16.19.

16.20 For the waveform shown in Fig. 16.59 below,
(a) specify the type of symmetry it has,
(b) calculate a3 and b3,
(c) find the rms value using the first five nonzero

harmonics.

16.21 Obtain the trigonometric Fourier series for the
voltage waveform shown in Fig. 16.60.

t

v(t)

0 1 2–3 –1 3 4

2

–2

Figure 16.60 For Prob. 16.21.

16.22 Determine the Fourier series expansion of the
sawtooth function in Fig. 16.61.

t

f (t)

0 2pp–2p –p

p

–p

Figure 16.61 For Prob. 16.22.

Section 16.4 Circuit Applications

16.23 Find i(t) in the circuit of Fig. 16.62 given that

is(t) = 1 +
∞∑
n=1

1

n2
cos 3nt A

is

i(t)

2 H1 Ω

2 Ω

Figure 16.62 For Prob. 16.23.

16.24 Obtain vo(t) in the network of Fig. 16.63 if

v(t) =
∞∑
n=1

10

n2
cos

(
nt + nπ

4

)
V

v(t) vo(t)

2 Ω 1 H

0.5 F

+

−
+
−

Figure 16.63 For Prob. 16.24.

t

f (t)

0 1–4 –3 –2

–1

542

1

–5 3–1

Figure 16.59 For Prob. 16.20.
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16.25 If vs in the circuit of Fig. 16.64 is the same as
function f2(t) in Fig. 16.50(b), determine the dc
component and the first three nonzero harmonics of
vo(t).

vs vo

1 Ω

1 Ω

1 H

1 F+
−

+

−

Figure 16.64 For Prob. 16.25.

16.26 Determine io(t) in the circuit of Fig. 16.65 if

vs(t) =
∞∑

n = 1
n = odd

(−1

nπ
sin

nπ

2
cos nt + 3

nπ
sin nt

)

vs

io(t)

2 H1 Ω

1 Ω

+
−

Figure 16.65 For Prob. 16.26.

16.27 The periodic voltage waveform in Fig. 16.66(a) is
applied to the circuit in Fig. 16.66(b). Find the
voltage vo(t) across the capacitor.

t

vs(t)

3210–1–2

10

(a)

(b)

vs vo

20 Ω

10 mF+
−

+

−

Figure 16.66 For Prob. 16.27.

16.28 If the periodic voltage in Fig. 16.67(a) is applied to
the circuit in Fig. 16.67(b), find io(t).

t

vs(t)

3210

7.5

2.5

(a)

(b)

vs

20 Ω

100 mH50 mF

40 Ω

+
−

io(t)

Figure 16.67 For Prob. 16.28.

16.29∗ The signal in Fig. 16.68(a) is applied to the circuit in
Fig. 16.68(b). Find vo(t).

t

vs(t)

3 4 5210

2

(a)

(b)

vs vo

1 Ω
2vx

vx 3 Ω0.25 F+
−

+−

+

−

+

−

Figure 16.68 For Prob. 16.29.
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16.30 The full-wave rectified sinusoidal voltage in Fig.
16.69(a) is applied to the lowpass filter in Fig.
16.69(b). Obtain the output voltage vo(t) of the
filter.

t

vin(t)

2pp–p 0

1

(a)

(b)

vin(t) vo

2 H

10 Ω0.1 F+
−

+

−

Figure 16.69 For Prob. 16.30.

Section 16.5 Average Power and RMS Values

16.31 The voltage across the terminals of a circuit is

v(t) = 30 + 20 cos(60πt + 45◦)
+ 10 cos(60πt − 45◦) V

If the current entering the terminal at higher
potential is

i(t) = 6 + 4 cos(60πt + 10◦)
− 2 cos(120πt − 60◦) A

find:
(a) the rms value of the voltage,
(b) the rms value of the current,
(c) the average power absorbed by the circuit.

16.32 A series RLC circuit has R = 10 *,L = 2 mH,
and C = 40 µF. Determine the effective current and
average power absorbed when the applied voltage is

v(t) = 100 cos 1000t + 50 cos 2000t

+ 25 cos 3000t V

16.33 Consider the periodic signal in Fig. 16.53. (a) Find
the actual rms value of f (t). (b) Use the first five
nonzero harmonics of the Fourier series to obtain an
estimate for the rms value.

16.34 Calculate the average power dissipated by the 10-*
resistor in the circuit of Fig. 16.70 if

is(t) = 3 + 2 cos(50t − 60◦)
+ 0.5 cos(100t − 120◦) A

is(t) 10 Ω5 Ω

80 mH

Figure 16.70 For Prob. 16.34.

16.35 For the circuit in Fig. 16.71,

i(t) = 20 + 16 cos(10t + 45◦)
+ 12 cos(20t − 60◦) mA

(a) find v(t), and
(b) calculate the average power dissipated in the

resistor.

i(t) v(t)2 kΩ100 mF
+

−

Figure 16.71 For Prob. 16.35.

Section 16.6 Exponential Fourier Series

16.36 Obtain the exponential Fourier series for f (t) = t,
−1 < t < 1, with f (t + 2n) = f (t).

16.37 Determine the exponential Fourier series for
f (t) = t2, −π < t < π , with f (t + 2πn) = f (t).

16.38 Calculate the complex Fourier series for f (t) =
et ,−π < t < π , with f (t + 2πn) = f (t).

16.39 Find the complex Fourier series for f (t) = e−t ,
0 < t < 1, with f (t + n) = f (t).

16.40 Find the exponential Fourier series for the function
in Fig. 16.72.

t

f (t)

–1

2

1

0 1 3 42 5 6–1–3–4

Figure 16.72 For Prob. 16.40.

16.41 Obtain the exponential Fourier series expansion of
the half-wave rectified sinusoidal current of Fig.
16.73.
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t

i(t)

3p2p–2p p–p 0

1 sin t

Figure 16.73 For Prob. 16.41.

16.42 The Fourier series trigonometric representation of a
periodic function is

f (t) = 10 +
∞∑
n=1

(
1

n2 + 1
cos nπt + n

n2 + 1
sin nπt

)
Find the exponential Fourier series representation of
f (t).

16.43 The coefficients of the trigonometric Fourier series
representation of a function are:

bn = 0, an = 6

n3 − 2
, n = 0, 1, 2, . . .

If ωn = 50n, find the exponential Fourier series for
the function.

16.44 Find the exponential Fourier series of a function
which has the following trigonometric Fourier series
coefficients

a0 = π

4
, bn = (−1)n

n
, an = (−1)n − 1

πn2

Take T = 2π .

16.45 The complex Fourier series of the function in Fig.
16.74(a) is

f (t) = 1

2
−

∞∑
n=−∞

je−j (2n+1)t

(2n + 1)π

Find the complex Fourier series of the function h(t)
in Fig. 16.74(b).

t

f (t)

3p2p–2p p–p 0

(a)

(b)

1

t

h(t)

2 3–2 –1 0

2

–2

1

Figure 16.74 For Prob. 16.45.

16.46 Obtain the complex Fourier coefficients of the signal
in Fig. 16.56.

16.47 The spectra of the Fourier series of a function are
shown in Fig. 16.75. (a) Obtain the trigonometric
Fourier series. (b) Calculate the rms value of the
function.

0 1 2 3 4

4

6

An

2

1

vn (rad/s)

0

1 2 3 4

–50°

fn

–35°

–25°
–20°

vn (rad/s)

1
2

Figure 16.75 For Prob. 16.47.

16.48 Plot the amplitude spectrum for the signal f2(t) in
Fig. 16.50(b). Consider the first five terms.

16.49 Given that

f (t) =
∞∑
n=1

n=odd

(
20

n2π 2
cos 2nt − 3

nπ
sin 2nt

)

plot the first five terms of the amplitude and phase
spectra for the function.

Section 16.7 Fourier Analysis with PSpice

16.50 Determine the Fourier coefficients for the waveform
in Fig. 16.48 using PSpice.

16.51 Calculate the Fourier coefficients of the signal in
Fig. 16.52 using PSpice.

16.52 Use PSpice to obtain the Fourier coefficients of the
waveform in Fig. 16.49(a).

16.53 Rework Prob. 16.29 using PSpice.

16.54 Use PSpice to solve Prob. 16.28.
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Section 16.8 Applications

16.55 The signal displayed by a medical device can be
approximated by the waveform shown in Fig. 16.76.
Find the Fourier series representation of the signal.

t

f (t)

0 2 4 6–6 –4 –2

–10

10

Figure 16.76 For Prob. 16.55.

16.56 A spectrum analyzer indicates that a signal is made
up of three components only: 640 kHz at 2 V,
644 kHz at 1 V, 636 kHz at 1 V. If the signal is
applied across a 10-* resistor, what is the average
power absorbed by the resistor?

16.57 A certain band-limited periodic current has only
three frequencies in its Fourier series representation:

dc, 50 Hz, and 100 Hz. The current may be
represented as

i(t) = 4 + 6 sin 100πt + 8 cos 100πt

− 3 sin 200πt − 4 cos 200πt A

(a) Express i(t) in amplitude-phase form.
(b) If i(t) flows through a 2-* resistor, how many

watts of average power will be dissipated?

16.58 The signal in Fig. 16.66(a) is applied to the
high-pass filter in Fig. 16.77. Determine the value of
R such that the output signal vo(t) has an average
power of least 70 percent of the average power of
the input signal.

Vs Vo

1 H

R10 Ω+
−

+

−

Figure 16.77 For Prob. 16.58.

COM P R E H EN S I V E P RO B L E M S

16.59 The voltage across a device is given by

v(t) = −2 + 10 cos 4t + 8 cos 6t + 6 cos 8t

− 5 sin 4t − 3 sin 6t − sin 8t V

Find:
(a) the period of v(t),
(b) the average value of v(t),
(c) the effective value of v(t).

16.60 A certain band-limited periodic voltage has only
three harmonics in its Fourier series representation.
The harmonics have the following rms values:
fundamental 40 V, third harmonic 20 V, fifth
harmonic 10 V.
(a) If the voltage is applied across a 5-* resistor,

find the average power dissipated by the resistor.
(b) If a dc component is added to the periodic

voltage and the measured power dissipated
increases by 5 percent, determine the value of
the dc component added.

16.61 Write a program to compute the Fourier coefficients
(up to the 10th harmonic) of the square wave in
Table 16.3 with A = 10 and T = 2.

16.62 Write a computer program to calculate the
exponential Fourier series of the half-wave rectified

sinusoidal current of Fig. 16.73. Consider terms up
to the 10th harmonic.

16.63 Consider the full-wave rectified sinusoidal current in
Table 16.3. Assume that the current is passed
through a 1-* resistor.
(a) Find the average power absorbed by the resistor.
(b) Obtain cn for n = 1, 2, 3, and 4.
(c) What fraction of the total power is carried by the

dc component?
(d) What fraction of the total power is carried by the

second harmonic (n = 2)?

16.64 A band-limited voltage signal is found to have the
complex Fourier coefficients presented in the table
below. Calculate the average power that the signal
would supply a 4-* resistor.

nω0 |cn| θn

0 10.0 0◦

ω 8.5 15◦

2ω 4.2 30◦

3ω 2.1 45◦

4ω 0.5 60◦

5ω 0.2 75◦

http://www.mhhe.com/engcs/electrical/alexander/student/olc/ch16_ppt.htm

	6653_Thomas_FM_WEB_p_i-ii
	Thomas12e_ch17p001-031
	Help
	EWB Help Page
	We want your feedback
	e-Text Main Menu
	Textbook Table of Contents
	Problem Solving Workbook
	Textbook Website
	OLC Student Center Website
	McGraw-Hill Website

	Preface
	Part 1 DC Circuits
	Chapter 1 Basic Concepts
	Chapter 2 Basic Laws
	Chapter 3 Methods of Analysis
	Chapter 4 Circuit Theorems
	Chapter 5 Operational Amplifiers
	Chapter 6 Capacitors and Inductors
	Chapter 7 First-Order Circuits
	Chapter 8 Second-Order Circuits

	Part 2 AC Circuits
	Chapter 9 Sinusoids and Phasors
	Chapter 10 Sinusoidal Steady-State Analysis
	Chapter 11 AC Power Analysis
	Chapter 12 Three-Phase Circuits
	Chapter 13 Magnetically Coupled Circuits
	Chapter 14 Frequency Response

	Part 3 Advanced Circuit Analysis
	Chapter 15 The Laplace Transform
	Chapter 16 The Fourier Series
	16.1 Introduction
	16.2 Trigonometric Fourier Series
	16.3 Symmetry Considerations
	16.4 Circuit Applications
	16.5 Average Power and RMS Values
	16.6 Exponential Fourier Series
	16.7 Fourier Analysis with PSpice
	† 16.8 Applications
	16.9 Summary
	Review Questions
	Problems
	Comprehensive Problems

	Chapter 17 Fourier Transform
	Chapter 18 Two-Port Networks

	Appendix A Solution of Simultaneous Equations Using Cramer’s Rule
	Appendix B Complex Numbers
	Appendix C Mathematical Formulas
	Appendix D PSpice for Windows
	Appendix E Answers to Odd-Numbered Problems
	Bibliography
	Index

	sctoc: 
	TOC: 
	e-text: 
	forward: 
	back-first: 
	background: 
	back: 
	forward-last: 
	studentolc: 


