Graphing in Polar Coordinates

This section describes techniques for graphing equations in polar coordinates.

Symmetry

Figure illustrates the standard polar coordinate tests for symmetry.
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FIGURE Three tests for symmetry in polar coordinates.

Symmetry Tests for Polar Graphs

1. Symmetry about the x-axis: If the point (r, #) lies on the graph, the point
(r, —0) or (—r, @ — ) lies on the graph (Figure a).

2. Symmetry about the y-axis. If the point (r, #) lies on the graph, the point
(r,7m — 8) or (—r, —0) lies on the graph (Figure b).

3. Symmetry about the origin: If the point (r, #) lies on the graph, the point
(—r, ) or (r,0 + ) lies on the graph (Figure c).

EXAMPLE A Cardioid

Graph the curver = 1 — cos#.
2w hi

Fo 1 coss 3 Solution The curve is symmetric about the x-axis because
/AT\\ (r,#) onthe graph = r = 1 — cosé
N / = r=1—cos(—8) cos fl = cos (—#)

N
=> (r, —t) on the graph.
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x As # increases from 0 to 7, cos # decreases from 1 to —1, and » = 1 — cos # increases
from a minimum wvalue of 0 to a maximum value of 2. As # continues on from 7 to
247, cos 0 increases from — 1 back to 1 and r decreases from 2 back to 0. The curve starts to
repeat when # = 27 because the cosine has period 27 .
The curve leaves the origin with slope tan (0) = 0 and returns to the origin with slope
tan (27) = 0.
(© We make a table of values from # = 0to 8 = 7, plot the points, draw a smooth curve
through them with a horizontal tangent at the origin, and reflect the curve across the x-axis
FIGURE The steps in graphing the to complete the graph . The curve is called a cardioid because of its heart
cardioid r = | — cos # (Example 1). The shape. Cardioid shapes appear in the cams that direct the even layering of thread on bob-
arrow shows the direction of increasing #.  bins and reels, and in the signal-strength pattern of certain radio antennas.
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EXAMPLE Graph the Curve > = 4 cos 6.

Solution The equation »> = 4 cos # requires cos # = 0, so we get the entire graph by
running # from —7/2 to 7/2. The curve is symmetric about the x-axis because

(r, #) on the graph = r? = 4 cos ¥
= r? = 4cos (—H) cos# = cos(—#)
= (r, —0) on the graph.
The curve is also symmetric about the origin because
(r, #) on the graph = r*> = 4 cosh
= (—7)’ = 4cos ¥
= (—r, 0) on the graph.
Together, these two symmetries imply symmetry about the y-axis.
The curve passes through the origin when 8 = —7/2 and # = /2. It has a vertical

tangent both times because tan # is infinite.
For each value of f in the interval between —7/2 and 7/2, the formula 7> = 4 cos #

gives two values of r:
j—
r= £2Vcos#H.

We make a short table of values, plot the corresponding points, and use information
about symmetry and tangents to guide us in connecting the points with a smooth curve

0 |cosf |[r==*2Vcos# rr=4cos@
0 1 +2
Lm | ML
6 2 2 2
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-3 0 0 Loop for r = -2V cos#, Loop forr =2V cos 6,
o T o m
(@) 2 =0=3 2=7=3

(b)
FIGURE The graph of 72 = 4 cos 6. The arrows show the direction

of increasing 0. The values of r in the table are rounded

EXAMPLE
Find the points of intersection of the curves

r? = 4cosh and r=1— cos#.



Solution In Cartesian coordinates, we can always find the points where two curves
cross by solving their equations simultaneously. In polar coordinates, the story is different.
Simultaneous solution may reveal some intersection points without revealing others. In
this example, simultaneous solution reveals only two of the four intersection points. The
others are found by graphing.

If we substitute cos # = r*/4 in the equation 7 = 1 — cos f, we get

2

r=1 —cosB=l—%
4r =4 — 5?
rP+4r—4=0
r=-2x 2\/{5. Quadratic formula
The value r = —2 — 2VE has too large an absolute value to belong fo either curve.
The values of # corresponding tor = —2 + 2/ 2 are
0 =cos (1 —r) Fromr = 1 — cos#

2005_1(1 - (2\/’5—2)) Setr = 232 — 2.
= cos ! (3 — 2\/”5)

= x80°. Rounded to the nearest degree

We have thus identified two intersection points: (r, #) = (2V2 — 2, £80°).

If we graph the equations 7> = 4 cosfand r = 1 — cos 6 together , as
we can now do by combining the graphs in Figures 10.44 and 10.45, we see that the curves
also intersect at the point (2, 77) and the origin. Why weren’t the r-values of these points
revealed by the simultaneous solution? The answer is that the points (0, 0) and (2, 77) are
not on the curves “simultaneously.” They are not reached at the same value of #. On the
curver = 1 — cos#, the point (2, 7) is reached when 8 = 7. On the curve 72 = 4dcosh,
it is reached when # = 0, where it is identified not by the coordinates (2, 7), which do
not satisfy the equation, but by the coordinates (—2, 0), which do. Similarly, the cardioid
reaches the origin when # = 0, but the curve »> = 4 cos reaches the origin when

6= w/2.

r=1—cos#
i

rf=4cos#

FIGURE The four points of intersection of the
curves 7 = 1 — cosfl and r* = 4 cos f

Only 4 and B were found by simultaneous solution.
The other two were disclosed by graphing.



Areas and Lengths in Polar Coordinates

This section shows how to calculate areas of plane regions, lengths of curves, and areas of
surfaces of revolution in polar coordinates.

Area of the Fan-Shaped Region Between the Origin and the Curve

r=f0,a=0=2p
31 ,
A =£ 57 do.

This is the integral of the area differential (Figure 10.49)

dA = %rz do = %U{B))Zd&?.

EXAMPLE Finding Area

Find the area of the region in the plane enclosed by the cardioid » = 2(1 + cos ).

Solution We graph the cardioid and determine that the radius OF
sweeps out the region exactly once as f runs from 0 to 2+ . The area is therefore

H=2rrl 211'1
1oy 1, N 2
/H 5" df ﬁ 3 4(1 + cosB)* dp

6=0
d 2w
1 :/ 2(1 + 2cos® + cos*6) db
0
12
dA = Sr-db 5
2
\ Plr, 6) =/ (24—40059—2%)&;9
0
a9 ! 27
: =/ (3 + 4cos® + cos26) df
[} ' 0
’ ) sin 26 [
=36'+45in8+T — 67 — 0 = 6.
0

FIGURE The area differential d4
for the curve n = f(#).

EXAMPLE Finding Area

Find the area inside the smaller loop of the limagon

r =21 +cos#) = 2cosf + 1.
P(r. )
Solution After sketching the curve we see that the smaller loop is
L # =027  traced out by the point (r, #) as @ increases from # = 27/3 to # = 47 /3. Since the curve
4 . is symmetric about the x-axis (the equation is unaltered when we replace # by —#), we may
o calculate the area of the shaded half of the inner loop by integrating from # = 27/3 to
# = . The area we seek will be twice the resulting integral:
w m
A= 2/ Jride - f rdo.
2mf3 27/3



Since

r?=(2cosf + 1)° = 4cos’@ + dcosf + 1

y 1 + cos 28
r—2cosf 4 I =4-72 + dcost + 1
=2+ 2cos260 + dcosf + 1

3+ 2cos26 + 4cosf,

we have
A A= [ (3+2cos20 + 4cosb)db
/4 273
=17
3 T
= {38 + sin 20 + 4sin#
27/3
_ (3 V3
= (37) (Zu 3 + 4 3 )
. 3\3
— 2 .
y
Area of the Region 0 = r(0) = r = r(0), a=0=p8

B B 8
_ 1 5 _ 1. _ lr 2 2
A—l st do /ﬂzn do /ﬂz(rz ri2) do

0

FIGURE The area of the shaded

region is calculated by subtracting the area
of the region between 7 and the origin
from the area of the region between r; and

the origin.
Solution ‘We sketch the region to determine its boundaries and find the limits of inte-
gration . The outer curve is »; = 1, the innercurveisr; = 1 — cosf,and ¢
runs from —7/2 to 7/2.
¥ Upper limit w2 1
rp=1-cosf i =m/2 A=] *(P22*P'|2)d|9
.
rn=1
~ w2 1
/ = Zf 2 (rf — rlz) do Symmetry
I/l @ 0
,\'"I /2
0 . =] (1 — (1 — 2cosO + cos>0))do
0
w2 wf2 o
=/ (2c053*cos29)d’8=/ (2(:058*%)&?
Lower limit 0 0
0=-m/2 . w2
_ .. B sin2¢ _L,_ 7
= {2 sin 2 2 L 2 1



Length of a Polar Curve

We can obtain a polar coordinate formula for the length of a curve » = f(#),« = 0 = 3,
by parametrizing the curve as

x = rcosfl = f(#)cosfl, y = rsinfl = f(0)sind, a=6=p.
dx v\
/\( ) . (@) .
dr
dn
- (&)

The parametric length formula,

This equation becomes

L=

Length of a Polar Curve
If » = f(#) has a continuous first derivative for « = 6 = 8 and if the point
P(r, f) traces the curve » = f(#) exactly once as f runs from « to 3, then the

length of the curve is
g 2
L=[ [P+ (ﬂ) .
o \I

EXAMPLE Finding the Length of a Cardioid
Find the length of the cardioid r = 1 — cos#.

Solution We sketch the cardioid to determine the limits of integration

The point P(r, ) traces the curve once, counterclockwise as # runs from 0 to 27, so these

are the values we take for « and 3.

' With
=1- [Z]
Pir ;) o r=1—cosf, % = sin#,
4 1) we have
f
x dar 2 .
2 0 2+ (5 ) =(1 — cost)? + (sin®)?
dan

=1—2cosf + cos?f + sin®f =2 — 2cosd

!

and

g [ , (dr)z jzn [
L= [re+ 57| do = V2 — 2cosfdf
I \ll as [i]

2] o | N
= ldsin?=do — cost =2 sin“y
f oS

27 ] 0
= f 2 sin=df sng =0 for 0=0=127
0 2 -



Area of a Surface of Revolution

To derive polar coordinate formulas for the area of a surface of revolution, we parametrize
the curve r = f(A), a = 0 = 3,

Area of a Surface of Revolution of a Polar Curve

If ¥ = f(#) has a continuous first derivative for « = 6§ = B and if the point
P(r, 6) traces the curve » = f(f) exactly once as # runs from « to 3, then the
areas of the surfaces generated by revolving the curve about the x- and y-axes are
given by the following formulas:

1. Revolution about the x-axis (y = 0):
B / 2
S= [ 2mrsing /r2+ ar ) g
13 \ dB

2. Revolution about the y-axis (x = 0):

A / dr\?
S = 271'?'{:056\/';' + Y do

P m
e

r
6 X
Nﬂ/

EXAMPLE Finding Surface Area

Find the area of the surface generated by revolving the right-hand loop of the lemniscate
% = cos 26 about the y-axis.

Solution ‘We sketch the loop to determine the limits of integration . The
point P(r, 0) traces the curve once, counterclockwise as @ runs from —/4 10 7/4, so
these are the values we take for « and 3.

We evaluate the area integrand

f dr\? / :
[ 2 '\ _ n dr
ZWrcosﬁvr + (_d9> 217(:039\!!' + (r_dﬁ) .

Next, r> = cos 28, so

dr .
® 2r i 2 sin 26

FIGURE The right-hand half of a r% = —sin 26

lemniscate (a) is revolved about the y-axis

to generate a surface (b), ~ ' (r E)z - sin20
a6 ) ’



Finally, »* = (+%)* = cos® 26,

I|I 4 ﬁ
\ o+ (rdﬁ
All together, we have
B [ 2
> dar
S—lz.rcosﬂ\,r (dﬁ‘) di
w4
=] 27 cosf-(1)dp
—/4
w4
= Ew[sin 9}
—m /4
{\fz . \;z} S



CHAPTER 17

THOMAS’

CALCULUS

Twelfth Edition

Based on the original work by
George B. Thomas, Jr.
Massachusetts Institute of Technology

as revised by

Maurice D. Weir
Naval Postgraduate School

Joel Hass
University of California, Davis

Addison-Wesley
Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto
Delhi Mexico City Sao Paulo Sydney HongKong Seoul Singapore Taipei Tokyo

Copyright © 2010 Pearson Education, Inc. All rights reserved



Editor-in-Chief: Deirdre Lynch

Senior Acquisitions Editor: William Hoffman

Senior Project Editor: Rachel S. Reeve

Associate Editor: Caroline Celano

Associate Project Editor: Leah Goldberg

Senior Managing Editor: Karen Wernholm

Senior Production Supervisor: Sheila Spinney

Senior Design Supervisor: Andrea Nix

Digital Assets Manager: Marianne Groth

Media Producer: Lin Mahoney

Software Development: Mary Durnwald and Bob Carroll
Executive Marketing Manager: Jeff Weidenaar
Marketing Assistant: Kendra Bassi

Senior Author Support/Technology Specialist: Joe Vetere
Senior Prepress Supervisor: Caroline Fell
Manufacturing Manager: Evelyn Beaton

Production Coordinator: Kathy Diamond
Composition: Nesbitt Graphics, Inc.

Ilustrations: Karen Heyt, [llustraTech

Cover Design: Rokusek Design

Cover image: Forest Edge, Hokuto, Hokkaido, Japan 2004 © Michael Kenna

About the cover: The cover image of a tree line on a snow-swept landscape, by the photographer Michael Kenna,
was taken in Hokkaido, Japan. The artist was not thinking of calculus when he composed the image, but rather, of a
visual haiku consisting of a few elements that would spark the viewer’s imagination. Similarly, the minimal design
of this text allows the central ideas of calculus developed in this book to unfold to ignite the learner’s imagination.

For permission to use copyrighted material, grateful acknowledgment is made to the copyright holders on page C-1,
which is hereby made part of this copyright page.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the designa-
tions have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Weir, Maurice D.
Thomas’ Calculus / Maurice D. Weir, Joel Hass, George B. Thomas.—12th ed.
p. cm
ISBN 978-0-321-58799-2
1. Calculus—Textbooks. 1. Hass, Joel. II. Thomas, George B. (George Brinton), 1914-2006. III. Thomas,
George B. (George Brinton), 1914-2006. Calculus. IV. Title V. Title: Calculus.

QA303.2.W45 2009b
515-dc22 2009023069

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United
States of America. For information on obtaining permission for use of material in this work, please submit a written
request to Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900, Boston, MA
02116, fax your request to 617-848-7047, or e-mail at http://www.pearsoned.com/legal/permissions.htm.

123456789 10—CRK—1211 1009

Addison-Wesley
is an imprint of

ISBN-10: 0-321-58799-5
www.pearsoned.com ISBN-13: 978-0-321-58799-2
Copyright © 2010 Pearson Education, Inc. All rights reserved




SECOND-ORDER
DIFFERENTIAL EQUATIONS

OVERVIEW In this chapter we extend our study of differential equations to those of second
order. Second-order differential equations arise in many applications in the sciences and
engineering. For instance, they can be applied to the study of vibrating springs and electric
circuits. You will learn how to solve such differential equations by several methods in this
chapter.

Second-Order Linear Equations

An equation of the form

Py"(x) + Q0)y'(x) + R¥(x) = G(x), (1)

which is linear in y and its derivatives, is called a second-order linear differential equa-
tion. We assume that the functions P, O, R, and G are continuous throughout some open
interval I. If G(x) is identically zero on /, the equation is said to be homogeneous; other-
wise it is called nonhomogeneous. Therefore, the form of a second-order linear homoge-
neous differential equation is

Px)y" + 0" + R(x)y = 0. (@)

We also assume that P(x) is never zero for any x € /.

Two fundamental results are important to solving Equation (2). The first of these says
that if we know two solutions y; and y, of the linear homogeneous equation, then any
linear combination y = c;y; + ¢, is also a solution for any constants c¢; and c;.

THEOREM 1—The Superposition Principle If y1(x) and y,(x) are two solutions
to the linear homogeneous equation (2), then for any constants c¢; and c;, the
function

Y(x) = ci(x) + caya(x)

is also a solution to Equation (2).

Copyright © 2010 Pearson Education, Inc. All rights reserved 17-1
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Chapter 17: Second-Order Differential Equations

Proof Substituting y into Equation (2), we have

Plx)y"” + O(x)y" + R(x)y
= P)(c1y1 + c2y2)" + 0@)(ciyr + c2y2)" + Rx)(c1y1 + c2y2)
= Px) (" + cay”) + 0x) ey + ey2) + Rx)(ciyr + c2y2)
= ci(PCy" + 01" + R(x)y1) + (P2 + O(x)y2" + R(x)y2)

= 0, y is a solution =0, y, is asolution
= ¢1(0) + ¢(0) = 0.

Therefore, y = c¢;y; + ¢y, is a solution of Equation (2). [ |

Theorem 1 immediately establishes the following facts concerning solutions to the
linear homogeneous equation.

1. A sum of two solutions y; + y, to Equation (2) is also a solution. (Choose c¢; =
Cy = 1)

2. A constant multiple ky; of any solution y; to Equation (2) is also a solution. (Choose
c) = kandcz = 0)

3. The trivial solution y(x) = 0 is always a solution to the linear homogeneous equa-
tion. (Choose ¢; = ¢; = 0.)

The second fundamental result about solutions to the linear homogeneous equation
concerns its general solution or solution containing all solutions. This result says that
there are two solutions y; and y, such that any solution is some linear combination of them
for suitable values of the constants c¢; and c,. However, not just any pair of solutions will
do. The solutions must be linearly independent, which means that neither y| nor y, is a
constant multiple of the other. For example, the functions f(x) = e* and g(x) = xe™ are
linearly independent, whereas f(x) = x? and g(x) = 7x? are not (so they are linearly de-
pendent). These results on linear independence and the following theorem are proved in
more advanced courses.

THEOREM 2 If P, Q, and R are continuous over the open interval / and P(x) is
never zero on /, then the linear homogeneous equation (2) has two linearly
independent solutions y; and y, on 1. Moreover, if y; and y, are any two linearly
independent solutions of Equation (2), then the general solution is given by

yx) = c1yix) + capa(x),

where c| and ¢; are arbitrary constants.

We now turn our attention to finding two linearly independent solutions to the special
case of Equation (2), where P, O, and R are constant functions.

Constant-Coefficient Homogeneous Equations
Suppose we wish to solve the second-order homogeneous differential equation

ay" + by +cy =0, (3)

Copyright © 2010 Pearson Education, Inc. All rights reserved



17.1 Second-Order Linear Equations ~ 17-3

where a, b, and ¢ are constants. To solve Equation (3), we seek a function which when
multiplied by a constant and added to a constant times its first derivative plus a constant
times its second derivative sums identically to zero. One function that behaves this way is
the exponential function y = e™, when r is a constant. Two differentiations of this expo-
nential function give y' = re’™ and y” = r2e’™, which are just constant multiples of the

original exponential. If we substitute y = ¢’ into Equation (3), we obtain
ar’e’™ + bre’™ + ce™ = 0.

Since the exponential function is never zero, we can divide this last equation through by
e™. Thus, y = e™ is a solution to Equation (3) if and only if 7 is a solution to the algebraic
equation

ar’ + br + ¢ = 0. (4)

Equation (4) is called the auxiliary equation (or characteristic equation) of the differen-
tial equation ay” + by’ + ¢y = 0. The auxiliary equation is a quadratic equation with
roots

—b — Vb?* - dac

2a

r and =

_ —b + Vb% — 4ac
B 2a

There are three cases to consider which depend on the value of the discriminant 5> — 4ac.

Case 1: b> — 4ac > 0. In this case the auxiliary equation has two real and unequal roots
rpand rp. Then y; = e"""and y, = ¢"** are two linearly independent solutions to Equation
(3) because e"** is not a constant multiple of e"* (see Exercise 61). From Theorem 2 we
conclude the following result.

THEOREM 3 If ; and r, are two real and unequal roots to the auxiliary
equation ar? + br + ¢ = 0, then

y = e + e

is the general solution to ay” + by" + ¢y = 0.

EXAMPLE 1  Find the general solution of the differential equation

y' =y =6y =0.
Solution Substitution of y = ¢’ into the differential equation yields the auxiliary
equation

r2—r—6=0,

which factors as

r—3)(r+2)=0.
The roots are r; = 3 and r, = —2. Thus, the general solution is

y = c1e> + cre .

Copyright © 2010 Pearson Education, Inc. All rights reserved
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Case 2: b2 — 4ac = 0. In this case 7| = r, = —b/2a. To simplify the notation, let
r = —b/2a. Then we have one solution y; = ¢’ with 2ar + b = 0. Since multiplication
of e’ by a constant fails to produce a second linearly independent solution, suppose we try
multiplying by a function instead. The simplest such function would be u(x) = x, so let’s
see if y, = xe'* is also a solution. Substituting y; into the differential equation gives

ay,” + by, + ¢y = aQre™ + r’xe’™) + b(e"™ + rxe’™) + cxe’™

Qar + b)e™ + (ar* + br + c)xe™
= 0(e’™) + (0)xe™ = 0.

The first term is zero because » = —b/2a; the second term is zero because r solves the
auxiliary equation. The functions y; = ¢’ and y, = xe'" are linearly independent (see
Exercise 62). From Theorem 2 we conclude the following result.

THEOREM 4 If 7 is the only (repeated) real root to the auxiliary equation
ar’* + br + ¢ = 0, then

y = cre™ + cyxe™

is the general solution to ay” + by’ + ¢y = 0.

EXAMPLE 2  Find the general solution to
V' + 4y + 4y = 0.

Solution The auxiliary equation is
rP+d4r+4 =0,
which factors into
(r+2)?2=0.

Thus, » = —2 is a double root. Therefore, the general solution is

y = cre™® + cyxe .

]
Case 3: b®—4ac < 0. In this case the auxiliary equation has two complex roots
ri = a + iBandr, = a — if3, where o and 8 are real numbers and i* = —1. (These real

numbers are @ = —b/2a and B = Vdac — b?/2a.) These two complex roots then give
rise to two linearly independent solutions

y1 = e@HPY = ¢¥(cos Bx + isin Bx) and y, = @ PX = ¢*(cos Bx — isin Bx).

(The expressions involving the sine and cosine terms follow from Euler’s identity in Sec-
tion 9.9.) However, the solutions y; and y, are complex valued rather than real valued.
Nevertheless, because of the superposition principle (Theorem 1), we can obtain from
them the two real-valued solutions

_1 1 _ D U N
V=50 + S =e cos Bx and Va= 5Ty Te sin Bx.

The functions y3 and y4 are linearly independent (see Exercise 63). From Theorem 2 we
conclude the following result.

Copyright © 2010 Pearson Education, Inc. All rights reserved



17.1 Second-Order Linear Equations ~ 17-5

THEOREM 5 Ifri = a + iBand r, = a — i are two complex roots to the
auxiliary equation ar®> + br + ¢ = 0, then

y = e*(c) cos Bx + ¢;sin Bx)

is the general solution to ay” + by" + ¢y = 0.

EXAMPLE 3  Find the general solution to the differential equation
y' =4y + 5y =0.
Solution The auxiliary equation is
rP—4r+5=0.

The roots are the complex pair r = (4 £ V16 — 20)/2orry =2 +iandr, =2 — i.
Thus, @« = 2 and B = 1 give the general solution

y = e*(c; cosx + ¢, sin x). [

Initial Value and Boundary Value Problems

To determine a unique solution to a first-order linear differential equation, it was sufficient
to specify the value of the solution at a single point. Since the general solution to a second-
order equation contains two arbitrary constants, it is necessary to specify two conditions.
One way of doing this is to specify the value of the solution function and the value of its
derivative at a single point: y(xo) = yo and y'(xo) = y1. These conditions are called initial
conditions. The following result is proved in more advanced texts and guarantees the exis-
tence of a unique solution for both homogeneous and nonhomogeneous second-order
linear initial value problems.

THEOREM 6 If P, O, R, and G are continuous throughout an open interval /,
then there exists one and only one function y(x) satisfying both the differential
equation

P)y"(x) + O(x)y'(x) + Rx)y(x) = G(x)
on the interval /, and the initial conditions

yxo) =yo  and  y'(x0) =y

at the specified point x € /.

It is important to realize that any real values can be assigned to y, and y; and Theorem 6
applies. Here is an example of an initial value problem for a homogeneous equation.

Copyright © 2010 Pearson Education, Inc. All rights reserved
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FIGURE 17.1 Particular solution curve
for Example 4.

EXAMPLE 4  Find the particular solution to the initial value problem
V=2 +y=0, »0)=1 (0 =-1

Solution The auxiliary equation is
rPP=2r+1=@-1=0.
The repeated real root is » = 1, giving the general solution
y = cie’ + cyxe”.
Then,
V' = cie’ + o(x + 1)e”.
From the initial conditions we have
1=c +¢+0 and —1=c +c-1.
Thus, ¢; = 1 and ¢; = —2. The unique solution satisfying the initial conditions is
y = e* — 2xe".

The solution curve is shown in Figure 17.1. [

Another approach to determine the values of the two arbitrary constants in the general
solution to a second-order differential equation is to specify the values of the solution

function at two different points in the interval /. That is, we solve the differential equation
subject to the boundary values

yx1) =y and  y(x2) =y,

where x; and x, both belong to /. Here again the values for y; and y, can be any real
numbers. The differential equation together with specified boundary values is called a
boundary value problem. Unlike the result stated in Theorem 6, boundary value prob-
lems do not always possess a solution or more than one solution may exist (see Exercise
65). These problems are studied in more advanced texts, but here is an example for which
there is a unique solution.

EXAMPLE 5  Solve the boundary value problem

V' 4y =0,  0) =0, y(lwz) = 1.
Solution The auxiliary equation is > + 4 = 0, which has the complex roots r = +2i.
The general solution to the differential equation is
y = c¢1cos 2x + ¢, sin 2x.
The boundary conditions are satisfied if

y0)=c+1+c+0=0

y(lﬂé) = ¢ cos(?) + o sin(E) =1.

It follows that ¢; = 0 and ¢; = 2. The solution to the boundary value problem is

y = 2sin 2x. [
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17.1 Second-Order Linear Equations ~ 17-7

In Exercises 1-30, find the general solution of the given equation.

1. y" =y =12y =0 2. 3" =y =0

3.y"+3y =4 =0 4. y" =9 =0

5.y" =4y =0 6. y' — 64y =0

7.2 —y —=3y=0 8 9" —y=0

9. 8" — 10y’ — 3y =0 10. 3y" — 200" + 12y =0

11. y" + 9y =0 12. y' + 4" +5p=0

13. y" + 25y =0 14. y" +y=0

15. y" =2y + 5y =0 16. y" + 16y =0

17. 3" + 2y + 4y =0 18. v" — 2y +3y =0

19. " +4" +99 =0 20. 4" — 4" + 13y =0

21. y" =0 22. y" + 8 + 16y =0
d dy d’  dy

23.@"‘45*‘4}/—0 24.E_6E+9y_0
d  dy d’y dy

25.;4—6%4—9)/—0 26'4ﬁ_123+9y_0
d dy d’  dy

27.4E+4$+y70 28.4E—4a+)}70
d  dy d’y dy

29.9@‘5‘6@4’)/—0 30.9E—125+4y—0

In Exercises 31-40, find the unique solution of the second-order
initial value problem.

31. y" + 6y + 59y =0, y0)=0,»'(0)=3
32. y" + 16y =0, y(0) =2, y'(0)= -2

33. y" + 12y =0, y(0) =0, y'(0) =1

34, 12" + 5" =2y =0, »0) =1, y'(0)=—1
35. y" + 8 =0, »0) = -1, »'(0)=2

36. y' + 4y +4y =0, »0) =0,y (0 =1

37. y' =4 +4y =0, y0)=1,y'(0)=0
38. 4" — 4" +y =0, ¥0)=4,)y0) =4

.42 % om0 w0 =2 Y=t
. dxz dx y = U, y( )_ 5 dx( )_
d*y dy dy
40. 9@ - IZa +4y =0, »0) = -1, 5(0) =1
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In Exercises 41-55, find the general solution.

41. y" — 2y =3y =0 42. 60" —y'—y=0
43. 4" + 4" +y =0 44. 9" + 12y + 4y =0
45. 4" + 20y = 0 46. y" +2y' +2y =0
47. 25" + 10" +y =0 48. 6y" + 13y’ — 5y =10
49. 4" + 4" + 5y =0 50. y" + 4" +6y=0

51. 16y" —24y" + 9y =0 52. " =5 — 6y =0
53. 9" +24y" + 16y = 0 54. 49" + 16y" + 52y =0
55. 6" — 5 —4y =0

In Exercises 56—60, solve the initial value problem.

56. y" —2y' +2y=0, »0)=0,)y(0) =2

57. y" + 2y +y =0, y0)=1,0)=1

58. 4" —4y" +y =0, y0) =-1, »'(0)=2

59. 3y" +y' — 14y =0, p0) =2, y'(0)=—1

60. 4" + 4y + 5y =0, ym)=1, y'(m) =10

61. Prove that the two solution functions in Theorem 3 are linearly in-
dependent.

62. Prove that the two solution functions in Theorem 4 are linearly in-
dependent.

63. Prove that the two solution functions in Theorem 5 are linearly in-
dependent.

64. Prove that if y; and y, are linearly independent solutions to the
homogeneous equation (2), then the functions y3; = y; + y, and
v4 = y1 — ), are also linearly independent solutions.

65. a. Show that there is no solution to the boundary value problem

y'+4y =0, y0) =0, y(m) = 1.

b. Show that there are infinitely many solutions to the boundary
value problem

y' +4 =0, y0)=0, ym) = 0.

66. Show that if a, b, and c are positive constants, then all solutions of
the homogeneous differential equation

ay”" + by +cy=0

approach zero as x — 00.
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Nonhomogeneous Linear Equations

In this section we study two methods for solving second-order linear nonhomogeneous
differential equations with constant coefficients. These are the methods of undetermined
coefficients and variation of parameters. We begin by considering the form of the general
solution.

Form of the General Solution
Suppose we wish to solve the nonhomogeneous equation
ay”" + by + ¢y = G(x), (1)

where a, b, and ¢ are constants and G is continuous over some open interval /. Let
Ve = c1y1 T c2»; be the general solution to the associated complementary equation

ay" + by + ¢y = 0. (2)

(We learned how to find y. in Section 17.1.) Now suppose we could somehow come up
with a particular function y, that solves the nonhomogeneous equation (1). Then the sum

Y=yt » (3)
also solves the nonhomogeneous equation (1) because
a(ye + yp)" + b(ye + yp)' + c(ye + »p)
= (ay." + by + cye) + (ayp” + byp, + cyp)
0+ G(x) ye solves Eq. (2) and y, solves Eq. (1)

G(x).

Moreover, if y = y(x) is the general solution to the nonhomogeneous equation (1), it must
have the form of Equation (3). The reason for this last statement follows from the observa-
tion that for any function yj, satisfying Equation (1), we have

a(y = yp)" + by = )" + (v = )
(@" + by + cy) — (ay,” + by’ + cyp)
G(x) — G(x) = 0.

Thus, y. = y — y, is the general solution to the homogeneous equation (2). We have
established the following result.

THEOREM 7 The general solution y = y(x) to the nonhomogeneous differen-
tial equation (1) has the form

Y=Yt ¥ps

where the complementary solution y, is the general solution to the associated
homogeneous equation (2) and y, is any particular solution to the nonhomoge-
neous equation (1).
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The Method of Undetermined Coefficients

This method for finding a particular solution y, to the nonhomogeneous equation (1) ap-
plies to special cases for which G(x) is a sum of terms of various polynomials p(x) multi-
plying an exponential with possibly sine or cosine factors. That is, G(x) is a sum of terms
of the following forms:

pi(x)e’, Ppa(x)e™ cos Bx, p3(x)e™ sin Bx.

For instance, 1 — x, e, xe*, cos x, and 5e* — sin 2x represent functions in this category.

(Essentially these are functions solving homogeneous linear differential equations with
constant coefficients, but the equations may be of order higher than two.) We now present
several examples illustrating the method.

EXAMPLE 1 Solve the nonhomogeneous equation y” — 2y’ — 3y = 1 — x2.
Solution The auxiliary equation for the complementary equation y” — 2y’ — 3y = 0 is
PP—=2r—=3=@+1)r—3)=0.

It has the roots » = —1 and » = 3 giving the complementary solution
Ve = cre 4 e’

Now G(x) = 1 — x? is a polynomial of degree 2. It would be reasonable to assume that a
particular solution to the given nonhomogeneous equation is also a polynomial of degree 2
because if y is a polynomial of degree 2, then y” — 2y’ — 3y is also a polynomial of de-
gree 2. So we seek a particular solution of the form

yp=Ax2+Bx+C.

We need to determine the unknown coefficients 4, B, and C. When we substitute the poly-
nomial y, and its derivatives into the given nonhomogeneous equation, we obtain

24 — 2(24x + B) — 3(Ax* + Bx + C) = 1 — x?
or, collecting terms with like powers of x,
—34x* + (=44 — 3B)x + (24 — 2B — 3C) = 1 — x°.

This last equation holds for all values of x if its two sides are identical polynomials of
degree 2. Thus, we equate corresponding powers of x to get

—34 = —1, —44 — 3B =0, and 24 — 2B — 3C = 1.

These equations imply in turn that 4 = 1/3, B = —4/9, and C = 5/27. Substituting these
values into the quadratic expression for our particular solution gives

1 4
Yp = §x — §x + —.
By Theorem 7, the general solution to the nonhomogeneous equation is
1, 4 .5

X+ == | |

_ _ - 3
y—yc+yp—cle‘+czex+3 9 27
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EXAMPLE 2  Find a particular solution of y” — ' = 2 sin x.

Solution If we try to find a particular solution of the form
yp = Asinx
and substitute the derivatives of y, in the given equation, we find that 4 must satisfy the
equation
—Asinx + Acosx = 2sinx

for all values of x. Since this requires 4 to equal both —2 and 0 at the same time, we con-
clude that the nonhomogeneous differential equation has no solution of the form A sin x.
It turns out that the required form is the sum

Yp = Asinx + B cos x.

The result of substituting the derivatives of this new trial solution into the differential
equation is

—Asinx — Bcosx — (Acosx — Bsinx) = 2sinx
or
(B—A)sinx — (4 + B)cosx = 2sinx.

This last equation must be an identity. Equating the coefficients for like terms on each side
then gives

B—-—4=2 and A+ B=0.

Simultaneous solution of these two equations gives 4 = —1 and B = 1. Our particular
solution is

Yp = COSX — sinx. u

EXAMPLE 3  Find a particular solution of y" — 3y’ + 2y = 5¢*.

Solution If we substitute
Yo = Ae*

and its derivatives in the differential equation, we find that

Ae* — 34e* + 24e" = 5e*
or

0 = 5e*.
However, the exponential function is never zero. The trouble can be traced to the fact that
y = e is already a solution of the related homogeneous equation
y' =3y +2y=0.
The auxiliary equation is
PP =3r+2=0- -2 =0,

which has » = 1 as a root. So we would expect Ae* to become zero when substituted into
the left-hand side of the differential equation.

The appropriate way to modify the trial solution in this case is to multiply 4e* by x.
Thus, our new trial solution is

yp = Axe”.
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The result of substituting the derivatives of this new candidate into the differential equation is

(Axe™ + 24e*) — 3(Axe™ + Ae¥) + 24xe™ = 5¢*
or
—Ae* = 5e”.
Thus, A = —5 gives our sought-after particular solution
Yp = —5xe”. ]

EXAMPLE 4  Find a particular solution of y” — 6y’ + 9y = 3%

Solution The auxiliary equation for the complementary equation
PP—6r+9=0r-372=0
has » = 3 as a repeated root. The appropriate choice for y, in this case is neither Ae™* nor

Axe™ because the complementary solution contains both of those terms already. Thus, we
choose a term containing the next higher power of x as a factor. When we substitute

= Ax2e3*
and its derivatives in the given differential equation, we get
(94x%e™ + 124xe® + 24e*) — 6(34x%e> + 24xe™) + 9dx%e™ = ¥
or
24> = 3,
Thus, 4 = 1/2, and the particular solution is
Yp = %x2e3x. [

When we wish to find a particular solution of Equation (1) and the function G(x) is the
sum of two or more terms, we choose a trial function for each term in G(x) and add them.

EXAMPLE 5  Find the general solution to " — 3’ = 5¢* — sin 2x.

Solution We first check the auxiliary equation
P —r=0.
Its roots are » = 1 and » = 0. Therefore, the complementary solution to the associated ho-
mogeneous equation is
Ve = cre* + .

We now seek a particular solution y,. That is, we seek a function that will produce
Se* — sin 2x when substituted into the left-hand side of the given differential equation.
One part of y;, is to produce 5e”, the other —sin 2x.

Since any function of the form ce” is a solution of the associated homogeneous equa-
tion, we choose our trial solution y,, to be the sum

Vp = Axe™ + Bcos 2x + Csin 2x,

including xe* where we might otherwise have included only e*. When the derivatives of y,
are substituted into the differential equation, the resulting equation is

(Axe* + 24e* — 4B cos 2x — 4C sin 2x)

— (Axe™ + Ae™ — 2B sin 2x + 2C cos 2x) = 5e* — sin 2x
Copyright © 2010 Pearson Education, Inc. All rights reserved
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or
Ae* — (4B + 2C)cos 2x + (2B — 4C) sin 2x = 5¢* — sin 2x.
This equation will hold if
A=25, 4B + 2C = 0, 2B —4C = —1,
ord =5,B= —1/10,and C = 1/5. Our particular solution is

. 1y
Yp = Sxe 1o €8 2x + 5 sin 2x.

The general solution to the differential equation is

X X 1 1 .
Y=yt y =cie’ +c; + Sxe —Tocos2x+§sm2x. ]

You may find the following table helpful in solving the problems at the end of this
section.

TABLE 17.1  The method of undetermined coefficients for selected equations

of the form
ay” + by’ + ¢y = G(x).
If G(x) has a term Then include this
that is a constant expression in the
multiple of . .. And if trial function for y,.
e’ r is not a root of Ae™

the auxiliary equation

r is a single root of the Axe™
auxiliary equation
r is a double root of the Ax%e’™

auxiliary equation

sin kx, cos kx ki is not a root of Bcoskx + Csinkx
the auxiliary equation

x>+ gx +m 0 is not a root of the Dx*+ Ex + F
auxiliary equation
0 is a single root of the Dx3 + Ex* + Fx
auxiliary equation
0 is a double root of the Dx* + Ex? + Fx?

auxiliary equation

The Method of Variation of Parameters

This is a general method for finding a particular solution of the nonhomogeneous equation
(1) once the general solution of the associated homogeneous equation is known. The
method consists of replacing the constants ¢; and ¢; in the complementary solution by

functions v; = v(x) and v, = vy(x) and requiring (in a way to be explained) that the
Copyright © 2010 Pearson Education, Inc. All rights reserved
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resulting expression satisfy the nonhomogeneous equation (1). There are two functions to
be determined, and requiring that Equation (1) be satisfied is only one condition. As a sec-
ond condition, we also require that

v’y + vy, = 0. (4)
Then we have

Yy =viy + v,
Y=o’ + vy,
Y=o " oy +u'y

If we substitute these expressions into the left-hand side of Equation (1), we obtain

vilayt” + by1" + cy) + va(@y” + by + o) + oa(vi'y + v'y') = Gx).

The first two parenthetical terms are zero since y; and y, are solutions of the associated
homogeneous equation (2). So the nonhomogeneous equation (1) is satisfied if, in addition
to Equation (4), we require that

a(ui’'yi” + v2'y') = G). (5)
Equations (4) and (5) can be solved together as a pair
vi'y1 + vy, =0,
G(x)
vy + v =

for the unknown functions v’ and v,’. The usual procedure for solving this simple system
is to use the method of determinants (also known as Cramer’s Rule), which will be demon-
strated in the examples to follow. Once the derivative functions v, and v," are known, the
two functions v; = v(x) and v, = vy(x) can be found by integration. Here is a summary
of the method.

Variation of Parameters Procedure

To use the method of variation of parameters to find a particular solution to the
nonhomogeneous equation

ay" + by’ + ¢y = G(x),
we can work directly with Equations (4) and (5). It is not necessary to rederive
them. The steps are as follows.
1. Solve the associated homogeneous equation
ay" + by +cy=0
to find the functions y; and y;.
2. Solve the equations

09

- o GW
vyt =4

vi'yr + vy

simultaneously for the derivative functions v;" and v;’.
3. Integrate v’ and v;’ to find the functions v; = vi(x) and v, = vy(x).
4. Write down the particular solution to nonhomogeneous equation (1) as

Yp = vy T vayn.
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EXAMPLE 6  Find the general solution to the equation
y" + y = tanx.

Solution The solution of the homogeneous equation
V' +y=0
is given by
Ve = c1cosx + ¢ sinx.

Since yi(x) = cos x and y,(x) = sin x, the conditions to be satisfied in Equations (4) and
(5) are

vy’ cosx + vy’ sinx = 0,
—v;'sinx + vy’ cosx = tanx. a=1
Solution of this system gives

0 sin x

, _ ltanx cosx —tanxsinx _ —sin’x
Vi —‘ - T cosx

cosx sinx cos®x + sin’x

sinx  cosx
Likewise,

‘ cosx 0
!

—sinx tanx .
v, = ————"— =ginx.
‘ cosx sinx

—sinx  cosx

After integrating v," and v, we have
: 2
—sin” x
vi(x) = /cosx dx

—/(secx — cos x) dx

—In|secx + tan x| + sinx,

and

vy(x) = /sinxdx = —COS X.

Note that we have omitted the constants of integration in determining v; and v,. They
would merely be absorbed into the arbitrary constants in the complementary solution.
Substituting v; and v, into the expression for y, in Step 4 gives

¥p = [In|secx + tan x| + sinx] cosx + (—cos x) sin x
= (—cosx) In|sec x + tan x|.

The general solution is

Yy =cjcosx + ¢ysinx — (cosx) In|secx + tan x| ]
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EXAMPLE 7  Solve the nonhomogeneous equation
V' +y = 2y = xe".
Solution The auxiliary equation is
PHr=2=0rC+2r-1)=0
giving the complementary solution
Ve = cre” X + e,
The conditions to be satisfied in Equations (4) and (5) are
vi'e ™™ + et =0,
—2u)'e ™ + vy'et = xet. a=1

Solving the above system for v’ and v," gives

0 e
o xe* e —xe* _ lxe&*
1 ‘ e—2x ¥ 3e " 3 :
_26—2)( ex
Likewise,
‘ e 0
, —2e¢™ % xe* xe X
U = — = — = 7'
2 3e " 3¢ 3

Integrating to obtain the parameter functions, we have

vl(x)Z/—;xe&‘dx
__l xe3x_ Lh
505 [5)

and

2
vy(x) = /;C dx = %

[ =30 . 2\ .
W = [27 e + 6 e

Therefore,

= 2*176’6 - %xex + %xzex.
The general solution to the differential equation is
y =cie ¥+ et — %xex + %xzex,
where the term (1/27)e” in y, has been absorbed into the term ce” in the complementary
solution. -
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EXERCISES 17.2

Solve the equations in Exercises 1-16 by the method of undetermined
coefficients.

Ly =3y —10y=-3 2. " =3y — 1y =2x-3
3. )" =y =sinx 4. )"+ +y=x
5. y" + y = cos3x 6.y +y=e"
7. " —y —2y=20cosx 8. " +y=2x+3e"
9.y —y=e"+x? 10. y" +2y" +p = 65sin2x
11. y" —y — 6y = e — Tcosx
12. y) + 3y +2p=e "+ e —x
d> _dy s d’y dy
13 E‘FS@ 15 14-E_%__SX+3
d’y dy . d’y dy 2
15,;—35—(2 — 12x 16.;4—75—4% + 5x + 1

Solve the equations in Exercises 17-28 by variation of parameters.
17. y" +y' =x

" — _E E
18. y" + y = tanx, 2<x<2
19. y" + y = sinx 20. y' + 2" +y=¢"
21. y' + 2y +y =" 22. y" —y=x
23. )" —y=e' 24. y" — y =sinx
25. y" + 4" + 5y =10 26. y" —y' =27
dzy T T
B - <x<
27 I + y = secx, 5 X 5
d’ d
28. l—l=e“‘cosx, x>0
dx?®  dx

In each of Exercises 29-32, the given differential equation has a par-
ticular solution y, of the form given. Determine the coefficients in y,.
Then solve the differential equation.

29. y" — 5y = xe™, Yp = Ax?e> + Bxe™
30. y”
31. y" +y =2cosx + sinx, y, = Axcosx + Bxsinx
32. y"

, . _ .
— )y =cosx + sinx, y, = Acosx + Bsinx

+y =2y =xe, y, = Ax%e* + Bxe®

In Exercises 33-36, solve the given differential equations (a) by
variation of parameters and (b) by the method of undetermined
coefficients.

dy &y _ dy ,dy 2
33.72—5—6 + e 34.E—4a+4y—26
d* dy N d*y d o

35.?—4$—Sy—e +4 36.E—9T—9e
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Solve the differential equations in Exercises 37—46. Some of the equa-
tions can be solved by the method of undetermined coefficients, but
others cannot.

37. y" + y=cotx, 0<x<m
38. y' +y=cscx, 0<x<m
39. y" — 8y = e
41, y" =y =¥ 42. y" + 4 +5y=x+2
43. y" + 2y = x> — ¢

40. y" + 4y = sinx

44. y" + 9y = 9x — cosx

45. y" + y = secxtanx, —% <x < %

46. y" — 3y 4+ 2y =" — ¥

The method of undetermined coefficients can sometimes be used to
solve first-order ordinary differential equations. Use the method to
solve the equations in Exercises 47-50.

47. y' — 3y =¢€* 48. y' + 4y =x
49. y' — 3y = 5¢* 50. y' + y =sinx

Solve the differential equations in Exercises 51 and 52 subject to the

given initial conditions.
d*y

51. S ty= seczx, —
dx

SIS}

<x<3; y(0) =y =1

d%y . , 2
52-E+y—e 5 2(0) =0,50) =%

In Exercises 53-58, verify that the given function is a particular solu-
tion to the specified nonhomogeneous equation. Find the general solu-
tion and evaluate its arbitrary constants to find the unique solution sat-
isfying the equation and the given initial conditions.

2
n ! x !
3.7V =x =75 —x y0)=0y0)=0

54. y" +y=x, yp,=2sinx +x, »0)=0,»(0)=0

55. %y" + '+ y = 4e*(cosx — sinx),

Yp = 2e*cosx, ¥(0) =0,y (0) =1
56. y" —y' —2y=1-2x, yp=x—1, p0)=0,y'(0) =1
57. 0" =2y +y=2e", y,=x%, y0)=1,(0)=0
58. ' — 2y +y=x"lef, x>0,

Yo =xe"lnx, y(1)=-e, y'(1) =0
In Exercises 59 and 60, two linearly independent solutions y; and y;
are given to the associated homogeneous equation of the variable-
coefficient nonhomogeneous equation. Use the method of variation of

parameters to find a particular solution to the nonhomogeneous equa-
tion. Assume x > 0 in each exercise.

59. x7y" + 2xy' — 2y = xz, Y= xiz, =X
60. XZyH + xy! —y=x, y= x_l, V=X



17.3  Applications 17-17

Applications

mass m
at equilibrium

FIGURE 17.2 Massm
stretches a spring by
length s to the equilibrium
position at y = 0.

a position T
after release

I—
|

Yo i start F,
position

y

FIGURE 17.3  The propulsion
force (weight) £, pulls the mass
downward, but the spring
restoring force F and frictional
force F; pull the mass upward.
The motion starts at y = y, with
the mass vibrating up and down.

In this section we apply second-order differential equations to the study of vibrating
springs and electric circuits.

Vibrations

A spring has its upper end fastened to a rigid support, as shown in Figure 17.2. An object
of mass m is suspended from the spring and stretches it a length s when the spring comes
to rest in an equilibrium position. According to Hooke’s Law (Section 6.5), the tension
force in the spring is ks, where £ is the spring constant. The force due to gravity pulling
down on the spring is mg, and equilibrium requires that

ks = mg. (1)

Suppose that the object is pulled down an additional amount y, beyond the equilibrium po-
sition and then released. We want to study the object’s motion, that is, the vertical position
of its center of mass at any future time.

Let y, with positive direction downward, denote the displacement position of the ob-
ject away from the equilibrium position y = 0 at any time ¢ after the motion has started.
Then the forces acting on the object are (see Figure 17.3)

F, = mg, the propulsion force due to gravity,

Fs = k(s + ), the restoring force of the spring’s tension,

d
F, = 8%, a frictional force assumed proportional to velocity.
The frictional force tends to retard the motion of the object. The resultant of these forces is
F = F, — Fy — F}, and by Newton’s second law I = ma, we must then have

d’y dy
m?—mg—ks—ky—ﬁa.

By Equation (1), mg — ks = 0, so this last equation becomes

d’ d
mT;+5%+ky=O, @)
subject to the initial conditions y(0) = yg and y'(0) = 0. (Here we use the prime notation
to denote differentiation with respect to time ¢.)

You might expect that the motion predicted by Equation (2) will be oscillatory about
the equilibrium position y = 0 and eventually damp to zero because of the retarding fric-
tional force. This is indeed the case, and we will show how the constants m, §, and k deter-
mine the nature of the damping. You will also see that if there is no friction (so 6 = 0),
then the object will simply oscillate indefinitely.

Simple Harmonic Motion

Suppose first that there is no retarding frictional force. Then 6 = 0 and there is no damp-
ing. If we substitute w = V k/m to simplify our calculations, then the second-order equa-
tion (2) becomes

Y+ @’y =0, with ¥(0) = yo and y'(0) = 0.
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FIGURE 17.4
¢ = Ccos ¢.

c; = Csin ¢ and

The auxiliary equation is
2+ @ =0,

having the imaginary roots » = twi. The general solution to the differential equation in
(2)is

y = cjcoswt + ¢ sin wt. (3)
To fit the initial conditions, we compute
y' = —ciwsin ot + c,w cos wt
and then substitute the conditions. This yields ¢; = yp and ¢; = 0. The particular solution
y = Yo cos wt (4)

describes the motion of the object. Equation (4) represents simple harmonic motion of
amplitude y, and period 7 = 27/ w.

The general solution given by Equation (3) can be combined into a single term by
using the trigonometric identity

sin(wt + ¢) = cos wt sin ¢ + sin wt cos ¢.
To apply the identity, we take (see Figure 17.4)
¢y = Csin ¢ and c; = Ccos ¢,

where

. c
C= Ve + ¢? and ¢ = tan [t

&)

Then the general solution in Equation (3) can be written in the alternative form
y = Csin (ot + ¢). (5)

Here C and ¢ may be taken as two new arbitrary constants, replacing the two constants c;
and ¢;. Equation (5) represents simple harmonic motion of amplitude C and period
T = 27/w. The angle wt + ¢ is called the phase angle, and ¢ may be interpreted as its
initial value. A graph of the simple harmonic motion represented by Equation (5) is given
in Figure 17.5.

y=Csin(wt + ¢)

FIGURE 17.5 Simple harmonic motion of amplitude C
and period T with initial phase angle ¢ (Equation 5).
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Damped Motion

Assume now that there is friction in the spring system, so & # 0. If we substitute
® = Vk/mand 2b = §/m, then the differential equation (2) is

Y+ 2by + @’y = 0. (6)
The auxiliary equation is
r? 4 2br + w? =0,

with roots » = —b + Vb? — w?* Three cases now present themselves, depending upon
the relative sizes of b and w.

Case 1: b = w. The double root of the auxiliary equation is real and equals » = w. The
general solution to Equation (6) is

y = (c1 + cat)e” .

This situation of motion is called critical damping and is not oscillatory. Figure 17.6a
shows an example of this kind of damped motion.

Case 2: b > w. The roots of the auxiliary equation are real and unequal, given by
r=—-b+ Vb?>— wandr, = —b — Vb* — *. The general solution to Equation (6)
is given by

y= cle(fm\/bth)t + 626(7};7\/17270;2);_
Here again the motion is not oscillatory and both | and r, are negative. Thus y approaches
zero as time goes on. This motion is referred to as overdamping (see Figure 17.6b).

Case 3: b < w. The roots to the auxiliary equation are complex and given by
r=—b + iVw? — b2 The general solution to Equation (6) is given by

y = e_b’<cl cosVa? — bt + ¢, sinVa? — b2t>.

This situation, called underdamping, represents damped oscillatory motion. It is analo-
gous to simple harmonic motion of period 7 = 27/ w? — b? except that the amplitude
is not constant but damped by the factor e . Therefore, the motion tends to zero as ¢
increases, so the vibrations tend to die out as time goes on. Notice that the period
T =27/ V> — b? is larger than the period 7) = 27/w in the friction-free system.
Moreover, the larger the value of b = §/2m in the exponential damping factor, the more
quickly the vibrations tend to become unnoticeable. A curve illustrating underdamped mo-
tion is shown in Figure 17.6c.

Yy y Yy
A
t ’ t /\ t
0 0 0
y=(+0e! y=2¢2_¢! y=e"'sin(5t + w/4)
(a) Critical damping (b) Overdamping (c) Underdamping

FIGURE 17.6 Three examples of damped vibratory motion for a spring system with
friction, so 6 # 0.
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An external force F(f) can also be added to the spring system modeled by Equation
(2). The forcing function may represent an external disturbance on the system. For in-
stance, if the equation models an automobile suspension system, the forcing function
might represent periodic bumps or potholes in the road affecting the performance of the
suspension system; or it might represent the effects of winds when modeling the vertical
motion of a suspension bridge. Inclusion of a forcing function results in the second-order
nonhomogeneous equation

d  dy

m? + SE + ky = F(). (7)

We leave the study of such spring systems to a more advanced course.

Electric Circuits

The basic quantity in electricity is the charge g (analogous to the idea of mass). In an elec-
tric field we use the flow of charge, or current / = dq/dt, as we might use velocity in a
gravitational field. There are many similarities between motion in a gravitational field and
the flow of electrons (the carriers of charge) in an electric field.

Consider the electric circuit shown in Figure 17.7. It consists of four components:
voltage source, resistor, inductor, and capacitor. Think of electrical flow as being like a
fluid flow, where the voltage source is the pump and the resistor, inductor, and capacitor
tend to block the flow. A battery or generator is an example of a source, producing a volt-
age that causes the current to flow through the circuit when the switch is closed. An elec-
tric light bulb or appliance would provide resistance. The inductance is due to a magnetic
field that opposes any change in the current as it flows through a coil. The capacitance is
normally created by two metal plates that alternate charges and thus reverse the current
flow. The following symbols specify the quantities relevant to the circuit:

q: charge at a cross section of a conductor measured in coulombs (abbreviated c);

I: current or rate of change of charge dq/dt (flow of electrons) at a cross section of a
conductor measured in amperes (abbreviated A);

E: electric (potential) source measured in volts (abbreviated V);
V. difference in potential between two points along the conductor measured in volts (V).

R, Resistor

NV

Voltage

source L, Inductor

C, Capacitor

FIGURE 17.7 An electric circuit.

Ohm observed that the current / flowing through a resistor, caused by a potential dif-
ference across it, is (approximately) proportional to the potential difference (voltage drop).
He named his constant of proportionality 1/R and called R the resistance. So Ohm s law is
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Similarly, it is known from physics that the voltage drops across an inductor and a ca-

pacitor are
dil q
L 7 and C

where L is the inductance and C is the capacitance (with g the charge on the capacitor).

The German physicist Gustav R. Kirchhoff (1824—-1887) formulated the law that the
sum of the voltage drops in a closed circuit is equal to the supplied voltage E(f). Symboli-
cally, this says that

dl | 94

RI + L di + C
Since I = dg/dt, Kirchhoff’s law becomes

d’q dg |

L?—’_RE_FECI_E(O. (8)

The second-order differential equation (8), which models an electric circuit, has exactly

the same form as Equation (7) modeling vibratory motion. Both models can be solved

using the methods developed in Section 17.2.

= E().

Summary

The following chart summarizes our analogies for the physics of motion of an object in a
spring system versus the flow of charged particles in an electrical circuit.

Linear Second-Order Constant-Coefficient Models

Mechanical System Electrical System

my" + 8y + ky = F(¢) Lg" + Rq' + %q = E(1)

Vi displacement q: charge

v velocity q'": current

y":  acceleration q": change in current

m mass L: inductance

o: damping constant R: resistance

k: spring constant 1/C:  where C is the capacitance

F(¢): forcing function E(f):  voltage source

EXERCISES 17.3
1. A 16-1b weight is attached to the lower end of a coil spring sus- 2. An 8-1b weight stretches a spring 4 ft. The spring—mass system re-

pended from the ceiling and having a spring constant of 1 Ib/ft. sides in a medium offering a resistance to the motion that is nu-
The resistance in the spring—mass system is numerically equal to merically equal to 1.5 times the instantaneous velocity. If the
the instantaneous velocity. At + = 0 the weight is set in motion weight is released at a position 2 ft above its equilibrium position
from a position 2 ft below its equilibrium position by giving it a with a downward velocity of 3 ft/sec, write an initial value prob-
downward velocity of 2 ft/sec. Write an initial value problem that lem modeling the given situation.
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3. A 20-1b weight is hung on an 18-in. spring and stretches it 6 in.

The weight is pulled down 5 in. and 5 1b are added to the weight. If
the weight is now released with a downward velocity of vy in./sec,
write an initial value problem modeling the vertical displacement.

. A 10-1b weight is suspended by a spring that is stretched 2 in. by
the weight. Assume a resistance whose magnitude is 20/ Vg Ib
times the instantaneous velocity v in feet per second. If the weight
is pulled down 3 in. below its equilibrium position and released,
formulate an initial value problem modeling the behavior of the
spring—mass system.

. An (open) electrical circuit consists of an inductor, a resistor, and
a capacitor. There is an initial charge of 2 coulombs on the capac-
itor. At the instant the circuit is closed, a current of 3 amperes is
present and a voltage of E(¢) = 20 cos ¢ is applied. In this circuit
the voltage drop across the resistor is 4 times the instantaneous
change in the charge, the voltage drop across the capacitor is
10 times the charge, and the voltage drop across the inductor is
2 times the instantaneous change in the current. Write an initial
value problem to model the circuit.

. An inductor of 2 henrys is connected in series with a resistor
of 12 ohms, a capacitor of 1/16 farad, and a 300 volt battery.
Initially, the charge on the capacitor is zero and the current is
zero. Formulate an initial value problem modeling this electrical
circuit.

Mechanical units in the British and metric systems may be helpful
in doing the following problems.

Unit British System MKS System
Distance Feet (ft) Meters (m)
Mass Slugs Kilograms (kg)
Time Seconds (sec) Seconds (sec)
Force Pounds (1b) Newtons (N)
g(earth) 32 ft/sec? 9.81 m/sec?

. A 16-1b weight is attached to the lower end of a coil spring sus-
pended from the ceiling and having a spring constant of 1 1b/ft.
The resistance in the spring—mass system is numerically equal to
the instantaneous velocity. At + = 0 the weight is set in motion
from a position 2 ft below its equilibrium position by giving it a
downward velocity of 2 ft/sec. At the end of 7 sec, determine
whether the mass is above or below the equilibrium position and
by what distance.

. An 8-1b weight stretches a spring 4 ft. The spring—mass system
resides in a medium offering a resistance to the motion equal to
1.5 times the instantaneous velocity. If the weight is released at a
position 2 ft above its equilibrium position with a downward
velocity of 3 ft/sec, find its position relative to the equilibrium
position 2 sec later.

. A 20-1b weight is hung on an 18-in. spring stretching it 6 in. The
weight is pulled down 5 in. and 5 1b are added to the weight. If the
weight is now released with a downward velocity of v in./sec,
find the position of mass relative to the equilibrium in terms of vy
and valid for any time # = 0.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

A mass of 1 slug is attached to a spring whose constant is 25/4
Ib/ft. Initially the mass is released 1 ft above the equilibrium posi-
tion with a downward velocity of 3 ft/sec, and the subsequent
motion takes place in a medium that offers a damping force nu-
merically equal to 3 times the instantaneous velocity. An external
force f(f) is driving the system, but assume that initially f(¢) = 0.
Formulate and solve an initial value problem that models the
given system. Interpret your results.

A 10-1b weight is suspended by a spring that is stretched 2 in. by
the weight. Assume a resistance whose magnitude is 40/ Vg Ib
times the instantaneous velocity in feet per second. If the weight
is pulled down 3 in. below its equilibrium position and released,
find the time required to reach the equilibrium position for the
first time.

A weight stretches a spring 6 in. It is set in motion at a point 2 in. be-
low its equilibrium position with a downward velocity of 2 in./sec.

a. When does the weight return to its starting position?
b. When does it reach its highest point?
c. Show that the maximum velocity is 2V2g + 1 in./sec.

A weight of 10 Ib stretches a spring 10 in. The weight is drawn
down 2 in. below its equilibrium position and given an initial ve-
locity of 4 in./sec. An identical spring has a different weight at-
tached to it. This second weight is drawn down from its equilib-
rium position a distance equal to the amplitude of the first motion
and then given an initial velocity of 2 ft/sec. If the amplitude of
the second motion is twice that of the first, what weight is at-
tached to the second spring?

A weight stretches one spring 3 in. and a second weight stretches
another spring 9 in. If both weights are simultaneously pulled
down 1 in. below their respective equilibrium positions and then
released, find the first time after r = 0 when their velocities are
equal.

A weight of 16 1b stretches a spring 4 ft. The weight is pulled
down 5 ft below the equilibrium position and then released. What
initial velocity vy given to the weight would have the effect of
doubling the amplitude of the vibration?

A mass weighing 8 1b stretches a spring 3 in. The spring—mass sys-
tem resides in a medium with a damping constant of 2 lb-sec/ft. If
the mass is released from its equilibrium position with a velocity
of 4 in./sec in the downward direction, find the time required for
the mass to return to its equilibrium position for the first time.

A weight suspended from a spring executes damped vibrations with
a period of 2 sec. If the damping factor decreases by 90% in 10 sec,
find the acceleration of the weight when it is 3 in. below its equilib-
rium position and is moving upward with a speed of 2 ft/sec.

A 10-1b weight stretches a spring 2 ft. If the weight is pulled down
6 in. below its equilibrium position and released, find the highest
point reached by the weight. Assume the spring—mass system re-
sides in a medium offering a resistance of 10/V/g Ib times the in-
stantaneous velocity in feet per second.



19.

20.

21.

22.

23.

An LRC circuit is set up with an inductance of 1/5 henry, a resist-
ance of 1 ohm, and a capacitance of 5/6 farad. Assuming the initial
charge is 2 coulombs and the initial current is 4 amperes, find the
solution function describing the charge on the capacitor at any time.
What is the charge on the capacitor after a long period of time?

An (open) electrical circuit consists of an inductor, a resistor, and
a capacitor. There is an initial charge of 2 coulombs on the capac-
itor. At the instant the circuit is closed, a current of 3 amperes is
present but no external voltage is being applied. In this circuit the
voltage drops at three points are numerically related as follows:
across the capacitor, 10 times the charge; across the resistor, 4
times the instantaneous change in the charge; and across the in-
ductor, 2 times the instantaneous change in the current. Find the
charge on the capacitor as a function of time.

A 16-1b weight stretches a spring 4 ft. This spring—mass system is
in a medium with a damping constant of 4.5 1b-sec/ft, and an ex-
ternal force given by f(f) = 4 + e % (in pounds) is being ap-
plied. What is the solution function describing the position of the
mass at any time if the mass is released from 2 ft below the equi-
librium position with an initial velocity of 4 ft/sec downward?

A 10-kg mass is attached to a spring having a spring constant of
140 N/m. The mass is started in motion from the equilibrium po-
sition with an initial velocity of 1 m/sec in the upward direction
and with an applied external force given by f(f) = 5 sin 7 (in new-
tons). The mass is in a viscous medium with a coefficient of re-
sistance equal to 90 N-sec/m. Formulate an initial value problem
that models the given system; solve the model and interpret the
results.

A 2-kg mass is attached to the lower end of a coil spring sus-
pended from the ceiling. The mass comes to rest in its equilibrium

Euler Equations

17.4

24.

25.

26.
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position thereby stretching the spring 1.96 m. The mass is in a
viscous medium that offers a resistance in newtons numerically
equal to 4 times the instantaneous velocity measured in meters
per second. The mass is then pulled down 2 m below its equilib-
rium position and released with a downward velocity of 3 m/sec.
At this same instant an external force given by f(f) = 20 cos # (in
newtons) is applied to the system. At the end of 7 sec determine
if the mass is above or below its equilibrium position and by how
much.

An 8-1b weight stretches a spring 4 ft. The spring—mass system re-
sides in a medium offering a resistance to the motion equal to 1.5
times the instantaneous velocity, and an external force given by
f() = 6 + e~ (in pounds) is being applied. If the weight is re-
leased at a position 2 ft above its equilibrium position with down-
ward velocity of 3 ft/sec, find its position relative to the equilib-
rium after 2 sec have elapsed.

Suppose L = 10 henrys, R = 10 ohms, C = 1/500 farads,
E = 100 volts, g(0) = 10 coulombs, and ¢'(0) = i(0) = 0. For-
mulate and solve an initial value problem that models the given
LRC circuit. Interpret your results.

A series circuit consisting of an inductor, a resistor, and a capaci-
tor is open. There is an initial charge of 2 coulombs on the capac-
itor, and 3 amperes of current is present in the circuit at the instant
the circuit is closed. A voltage given by E(f) = 20 cos ¢ is ap-
plied. In this circuit the voltage drops are numerically equal to the
following: across the resistor to 4 times the instantaneous change
in the charge, across the capacitor to 10 times the charge, and
across the inductor to 2 times the instantaneous change in the cur-
rent. Find the charge on the capacitor as a function of time. Deter-
mine the charge on the capacitor and the current at time ¢ = 10.

In Section 17.1 we introduced the second-order linear homogeneous differential equation

Py"(x) + Q()y'(x) + Rx)y(x) = 0

and showed how to solve this equation when the coefficients P, O, and R are constants. If
the coefficients are not constant, we cannot generally solve this differential equation in
terms of elementary functions we have studied in calculus. In this section you will learn
how to solve the equation when the coefficients have the special forms

P(x) = ax?,

and

Ox) = bx, R(x) = ¢,

where a, b, and c are constants. These special types of equations are called Euler equa-
tions, in honor of Leonhard Euler who studied them and showed how to solve them. Such
equations arise in the study of mechanical vibrations.

The General Solution of Euler Equations

Consider the Euler equation

Copyright © 2010 Pearson Education, Inc. All rights reserved
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To solve Equation (1), we first make the change of variables
z=lInx and y(x) = Y(2).

We next use the chain rule to find the derivatives y'(x) and »"(x):
’ — i — i @ — ! l
y(x) - de(Z) - dZY(Z)dx - Y(z)x
and
" _ir _ir lz_ir l/r QZ_L! L!I
y (X) - dxy (X) - de (Z)x sz (Z) + xY (Z)dx xz Y (Z) + sz (Z)

Substituting these two derivatives into the left-hand side of Equation (1), we find
ax®y" + bxy' + ¢y = axZ(—l2 Y'(z) + le”(z)> + bx(}cY’(z)) + cY(2)
X x

=aY"(2) + (b — a)Y'(2) + c¥(2).

Therefore, the substitutions give us the second-order linear differential equation with con-
stant coefficients

a¥"(z) + (b — a)Y'(z) + c¥(z) = 0. 2)

We can solve Equation (2) using the method of Section 17.1. That is, we find the roots to
the associated auxiliary equation

ar’ + (b —ayr+c=0 (3)
to find the general solution for Y(z). After finding Y(z), we can determine y(x) from the
substitution z = In x.

EXAMPLE 1 Find the general solution of the equation x2y" + 2xy" — 2y = 0.
Solution This is an Euler equation witha = 1, b = 2, and ¢ = —2. The auxiliary equa-
tion (3) for Y(z) is
P+ Q-Dr—2=@F—-1)r+2) =0,
with roots » = —2 and » = 1. The solution for ¥(z) is given by
Y(z) = cie” ¥ + cpe’.
Substituting z = In x gives the general solution for y(x):

Y(x) = cre 2 + el = x72 + ox [

EXAMPLE 2 Solve the Euler equation x%y” — 5xy’ + 9y = 0.

Solution Sincea = 1,b = —5, and ¢ = 9, the auxiliary equation (3) for ¥(z) is
P+ (=5-1r+9=@F-32%=0.
The auxiliary equation has the double root » = 3 giving
Y(z) = cie¥ + ¢, ze*
Substituting z = In x into this expression gives the general solution

3lnx

y(x) = 13" + calnx e = ¢ x? + px’Inx m
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Find the particular solution to x%y” — 3xy’ + 68y = 0 that satisfies the

initial conditions y(1) = 0 and y'(1) = 1.

Solution Here a = 1, b =

gives

—3, and ¢ = 68 substituted into the auxiliary equation (3)

Z—4r+68=0.

The roots are » = 2 + 8iand » = 2 — 8i giving the solution

Y(z) = e%(c) cos 8z + ¢, sin 82).

Substituting z = In x into this expression gives

y(@) = e2¥(cy cos (8 Inx) + ¢y sin (8 Inx)).

From the initial condition y(1) = 0, we see that ¢; = 0 and

y(x) = c;x2 sin (8 In x).

To fit the second initial condition, we need the derivative

¥'(x) = c2(8x cos (8 Inx) + 2xsin (8 Inx)).

Since y'(1) = 1, we immediately obtain ¢; = 1/8. Therefore, the particular solution satis-
fying both initial conditions is

of 2 N/ 6 \8 10

%2
_5F y= §sin(81nx)

—-10+

X

Since —1 =

FIGURE 17.8 Graph of the solution to

Example 3.

EXERCISES 17.4

sin(8Inx) =

y(x) = x sin (8 In x).

1, the solution satisfies

2 2
X X
3 = yx) = g
A graph of the solution is shown in Figure 17.8. ]

In Exercises 1-24, find the general solution to the given Euler
equation. Assume x > ( throughout.

1. 2”-i-2xy—2y—0 2.
3. —6y=0 4.
5. x3" — 5xy' + 8y =0 6.
7. 3x%" + 4xy =0 8.
9. x" —xy' +y=0 10.
11. x5 —xy' + 5y =0 12.

13. X" +3x + 10y =0 14.
15. 4x2 "+ 8y +5 =0 16.
17. x5 + 3" +y =0 18.

19. x5 + x' =0 20.
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2y”-i-xy'—4y=0
X"+ xy —y=0
2"+ Ty’ + 2y =0
X"+ 6xy’ + 4y =0
xy —xy'+2y=0
X"+ Ty’ + 13y =0
x2y" = 5xy’ + 10y =0
dx?y" — dxy' + 5y =0
X" = 3xy" + 9y =0
4" +y =0

21. 9x%y" + 155" + y =0
22. 16x%" — 8xy' + 9y =0
23. 16x%" + 56xy" + 25y = 0
24. 4x%y" — 16xy" + 259 =0

In Exercises 25-30, solve the given initial value problem.
25. X" + 30y — 3y =0, p)=1,y1)= -1
26. 6x2 T+ Ty =2y =0, y1)=0,y(1)=1
27. X" —xy' +y =0, y(1)=1,y(1)=1

28. X" + Txy' + 9y =0, p(1)=1,y(1)=0

29. x5 —xy' +2y=0, y1)=-1,y()=1
30. X" + 30y + 5y =0, p()=1,y(1)=0
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Power-Series Solutions

In this section we extend our study of second-order linear homogeneous equations with
variable coefficients. With the Euler equations in Section 17.4, the power of the variable x
in the nonconstant coefficient had to match the order of the derivative with which it was
paired: x> with y”, x! with y’, and x°(=1) with y. Here we drop that requirement so we
can solve more general equations.

Method of Solution

The power-series method for solving a second-order homogeneous differential equation
consists of finding the coefficients of a power series

o0
y(x) = 2 epx" = ¢y + oox + ex? - (1)
n=0

which solves the equation. To apply the method we substitute the series and its derivatives
into the differential equation to determine the coefficients ¢, ¢y, ¢z, . . . . The technique for
finding the coefficients is similar to that used in the method of undetermined coefficients
presented in Section 17.2.

In our first example we demonstrate the method in the setting of a simple equation
whose general solution we already know. This is to help you become more comfortable
with solutions expressed in series form.

EXAMPLE 1  Solve the equation y” + y = 0 by the power-series method.

Solution We assume the series solution takes the form of

o0
y= 2 enx”
n=0
and calculate the derivatives
o0 [o¢]
y = E ne,x" ! and y" = E n(n — e,x" 2.
n=1 n=2
Substitution of these forms into the second-order equation gives us
o0 o0
E n(n — De,x" 2 + E cpx" = 0.
n=2 n=0
Next, we equate the coefficients of each power of x to zero as summarized in the following
table.
Power of x Coefficient Equation
x° 2(1)cy; +¢co =0 or c = —% co
1
x! 32)c; + ¢ =0 or 6= 350
x? 4(3)cs + ¢ =0 or cy = —ﬁ (653
1
x> 54)cs + ¢35 =0 or €= ~5.44
x* 6(5)ce + ¢4 =0 or ce = 1 cy
] 6-5
n—2 — — 1
X nn — e, + ch—2 =0 or cp =
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From the table we notice that the coefficients with even indices (n = 2k, k = 1,2,3,...)
are related to each other and the coefficients with odd indices (n = 2k + 1) are also inter-
related. We treat each group in turn.

Even indices: Here n = 2k, so the power is x>~ 2. From the last line of the table, we have

2k(2k - 1)Cgk + Cof—2 — 0

or

-1
€% T Tok2k — 1) 2

From this recursive relation we find

_ 1 1 1] 1
Cz"‘{ 2h(2k — I)M (2k—2>(2k—3>]”[ 4(3)” 2}"’0

G
~ QR
Odd indices: Here n = 2k + 1, so the power is x2*~!. Substituting this into the last
line of the table yields
(2/{ + 1)(2k)02k+1 + Co—1 — 0
or
1 -1 __ 1
2k+1 (2k + 1)(2k) 2k—1-
Thus,

B 1 1 1 1
Cokt+1 = { 2k + 1)(2]{)H 2k — D2k — 2)}'[ 5(4)” 3(2)]61

G
T @k+ €

Writing the power series by grouping its even and odd powers together and substitut-
ing for the coefficients yields

n=0
00
— 2k 2k+1
= E CopX + 2 Cof+1X
k=0 k

From Table 9.1 in Section 9.10, we see that the first series on the right-hand side of the last
equation represents the cosine function and the second series represents the sine. Thus, the
general solution to " + y = 0is

y = ¢pcosx + ¢ sinux. ]
Copyright © 2010 Pearson Education, Inc. All rights reserved
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EXAMPLE 2  Find the general solution to y” + xy’ + y = 0.

Solution We assume the series solution form

o0
y = E cpx”
n=0
and calculate the derivatives
o0 o0
y' = E nepx" ! and y' = En(n — Depx" 2
n=1 n=2
Substitution of these forms into the second-order equation yields
o0 o0 o0
E n(n — l)c,lx'”2 + 2 ne,x" + E c,x" = 0.
n=2 n=1 n=0

We equate the coefficients of each power of x to zero as summarized in the following table.

Power of x Coefficient Equation
x? 2(1)cs +co=0 or ¢ = —% co
x! 3+ ata=0 o ¢=-3c
x2 4(3)cy + 2¢0 + =0 or ¢4 = —% c
x3 5(@)cs + 3¢c3 +¢c3=0 or c¢5= —% 3
x* 6(5)ce +4cy + ¢4 =0 or ¢g= —% cq
n 1
X n+2)n+ Deygo t(n+ e, =0 OF Cut2 = =5 Cn

From the table notice that the coefficients with even indices are interrelated and the coeffi-
cients with odd indices are also interrelated.

Even indices: Here n = 2k — 2, so the power is x?*~2. From the last line in the table,
we have

1
Cok = T C2%-2e

From this recurrence relation we obtain

S D U (S SR DU (DI Y R 0 Y
C2% 2%k )\ 2k -2 6)\"4)\72)
(—D*
=—— .
Q)(#)(6) -~ (2k)
Odd indices: Here n = 2k — 1, so the power is x**~!. From the last line in the table,
we have

1
Cok+1 = Top g %l

From this recurrence relation we obtain

o () ) ()

_ (—1)¥
TG Qk+ )

Copyright © 2010 Pearson Education, Inc. All rights reserved
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Writing the power series by grouping its even and odd powers and substituting for the
coefficients yields

y= E cux? + E o x 21
k=0 k=0
< (_l)k 2k < (_l)k 2%+1
W 2@ -2k C% B35 Ck+ 1)

EXAMPLE 3  Find the general solution to
(1 —x¥" —6xy —4y =0, P <I.

Solution Notice that the leading coefficient is zero when x = +1. Thus, we assume the
solution interval /: —1 < x < 1. Substitution of the series form

o0
y= 2"
n=0
and its derivatives gives us

[o@] [o¢] (o]
(1 - xz)z n(n — De,x" 2 — 62 ne,x" — 42 cpx" =0,
n=2 n=1 n=0

2 n(n — Nex" 2 — 2 n(n — De,x" — 62 ne,x" — 42 cpx" = 0.
n=2 n=2 n=1 n=0

Next, we equate the coefficients of each power of x to zero as summarized in the following

table.
Power of x Coefficient Equation
x° 2(1)cs —4cy =0 or cy = %co
x! 3(2)cs —6(1)cy —4e1 =0 o e =3c
x? 4(3)cs — 2(1)cy — 6(2)cy — 4cy = or cy = gcz
x? 5#)cs — 3(2)cs — 6(3)c; — 43 =0 or cs = %03
x" (n+2)(n+ Vcpep — [n(n — 1) + 6n + 4Jc, = 0
n+2)n+ Deyso —(m+4)m+ e, =0 or cuen = Z i gcn

Again we notice that the coefficients with even indices are interrelated and those with odd
indices are interrelated.

Even indices: Here n = 2k — 2, so the power is x%*. From the right-hand column and
last line of the table, we get

_2k+2
Co = 72]( Cok—2

- (52)2) G =3) 4G

k + Do
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Odd indices: Here n = 2k — 1, so the power is x2*!. The right-hand column and last
line of the table gives us

2k +3
Ck+1 = mcﬁ—l

_ (2 +3\[(2k+ 1\ (26 -1\ 7(5
2%+ 1 )\2k—1)\2k — 3 5\3 )4
2% + 3

= Cq.

w

The general solution is
o]
y = 2 cpx”

[oe]
_ 2%k 2%+1
= E Cop X"+ E Cok+1X
k=0 =0

co D (k+ Dx* + ¢, 2k37+3xﬂ‘+1. n
k=0 k=0

EXAMPLE 4  Find the general solution to " — 2xy’ + y = 0.

Solution Assuming that

substitution into the differential equation gives us

[o¢]

(o¢] [oe]
E n(n — De,x" 2 — 22 ne,x" + E c,x" = 0.
n=2 n=1 n=0

We next determine the coefficients, listing them in the following table.

Power of x Coefficient Equation

x0 2(1)cs +c=0 or c = —% co

x! 32)c3; —2¢1 t ¢ =0 or = 3%01

x2 4(B)cy —4cr + =0 or cy = %cz

x> 54)cs — 6¢c3 + ¢35 =0 or cs = %03

x* 6(5)ce — 8¢c4 + c4 =0 or ce = %64

X 1+ 20+ Dewss — 2n — Dey =0 or 2n — 1

2= Gk 2+ O

Copyright © 2010 Pearson Education, Inc. All rights reserved



17.5 Power-Series Solutions

From the recursive relation

o = 2n — 1 ‘
T+ )+ 1)

we write out the first few terms of each series for the general solution:

17-31

y = co<1 - %xz — ‘%x“ - %x6 - )
+cl<x+3l!x3+55!x5+é;?x7+'~>. u
EXERCISES 17.5
In Exercises 1-18, use power series to find the general solution of the 9. 2 —1)p" + 20 — 2y =0
differential equation. 10. )"+ —x =0
Ly +2'=0 11. x> — 1" — 6y =0
2.0y =0 12. 0" — (x + 2 + 29 =0
34y =0 13. (% — Dy + 4w’ +2y =0
4 =y + =0 14. y" —2x' + 4 =0
5. XY =2+ =0 15. " — 20 + 3y = 0
6.y —x' +y=0 16.(1—x2)y”—xy’+4y=0
R S 17. 5" —xy' +3y =0
8. (1 —x%)" —4xy' + 6y =0

18. x%" —4xy' + 6y =0

Copyright © 2010 Pearson Education, Inc. All rights reserved



Laplace Transformation for ODE 1

1 The Laplace Transform

Definition 1. Let f be an arbitrary (complex valued or real valued) function, defined on the semi-infinite interval
[0,00); then the integral

PO = (L) () = / T ey di 1)

is said to be the Laplace transform of f, if the integral (1) converges for some value X = Xo. Therefore the
Laplace transform of a function (if it exists) depends on a parameter A which could be either a real number or a
complex number.

Saying that a function f(t) has a Laplace transform f%()) means, that for some A = \g, the limit

N
lim / f@)e rtdt = fE(N)
0

N—o0

exists. The integral in the right-hand side of Eq.(1) is an integral over an unbounded interval. Such integrals
are called improper integrals and they are defined as a limit of integrals over finite intervals. If such a limit does
not exist the improper integral is said to diverge.

From the definition of the integral, it follows that if the Laplace transform exists for a particular function
then it does not depend on the values of a function at a finite number of points. Namely, we can change the
values of a function at a finite number of points and its Laplace transform will still be the same.

The parameter A in the definition of the Laplace transform is not necessarily a positive or real number, but
a complex number. Thus, A = a + i where « is the real part of A, denoted by a = RA and § is an imaginary
part of a complex number A, 5 = . The set of all complex numbers is denoted as C whereas the set of all real
numbers is denoted as R.

Theorem 1. The Laplace transform is a linear operator, that is

(LCF)(A) =C(Lf)(N), and (L(f +9)) (A) = (Lf) (A) + (Lg) (N),
where C' is a constant and f and g are arbitrary functions for which the Laplace transforms exist.

Theorem 2. If a function f is absolutely integrable over finite intervals and the integral (1) converges for some
complex number \ = p, then it converges in the half-space RA > Ry, i.e. in {\ € C: RA > Ru}.

There is some real value o, called the abscissa of convergence of the function f such that the integral
(1) is convergent in the half-plane A > o, and divergent in the half-plane A < o.. We don’t know precisely
whether or not there are points of convergence on the line £\ = o, itself.

Example 1. Let p be any positive number (not necessarily an integer). Then the Laplace transform of the
function f(t) =P, t >0 is
oo oo
(L) (\) = / e MNP dt = / e~ (A)PATP dt
0 0

e I I'(p+1)
— p—1 T =P —
= A /0 e "1t Pdr = SYISE

where

(v) = /0 T ety (2)

is the Gamma function of Fuler. This improper integral converges for v > 0 and by integrating by parts we
obtain
P(v+1) =vI(v). (3)

Indeed, for v > 0 we have

T(v+1)

Il
S—
8
Cb‘
3
\]
<
IS
\]
Il
|
c\
8
\]
<
jo W
Cb‘
3

Il
B
o

7=0

_T|T:°°+1// e T dr = vT(v).
0



Laplace Transformation for ODE 2

The most remarkable property of the T'-function is obtained when we set v = n, an integer. The comparison with
the result of the previous example yields

Pn+1)=n!l, n=0,1,2,....

Definition 2. A function f is said to be piecewise continuous on a finite interval [a,b] if this interval
can be subdivided into finitely many intervals so that f(t) is continuous on each subinterval and approaches a
finite limit at the end points of each subinterval from the interior. That is, there are finite number of points
{aj}, 7 =1,2,...,N where a function f has a jump discontinuity when both

lim £ + 1) = f(a; +0) and lim f(a; — ) = f(a; = 0)

h>0 h>0
exist but are different.

Note that an infinite number of discontinuities is allowed, as long as just a finite number occur on a finite
interval. However, all these jumps must be finite.

Remember that for a continuous function f we have f(t) = f(t + 0) = f(¢ — 0). If, at some point ¢t = g this
is not valid, then a function is discontinuous at ¢t = tg. In other words, the finite discontinuity occurs if the left
hand side and the right hand side limits are finite and are not equal.

Definition 3. The Heaviside function H(t) is the unit step function, equal to zero for t negative and unity for
t positive, with H(0) =1/2, i.e.

1, t>0
H(t)={ 1/2, t=0 (4)
0, t<0

Remark. Of course, we can define the value of the Heaviside function at the point ¢ = 0 whatever we want.
As we will see in the next example, it will not effect the value of its Laplace transformation. That is why we can
change the value at a finite number of points of any function and it will not change the value of the corresponding
Laplace transform. But if we wish to restore a function from it’s Laplace transform value we will get a function
that possesses the same property as the Heaviside function. Namely, a value of the function at any point will be
equal to the mean of it’s right hand side and left hand side limit values:

7t = 5L +0) + f—0)]. O

Definition 4. A function f(t), t € [0,00) is said to be a function-original if it has on every finite interval
only a finite number of points of discontinuity and

lfF@)] < Me® (t>T) ()

for some values of ¢, M and T, which may be very large. Moreover we assume that at points of discontinuity the
value of a function-original is equal to the corresponding mean value, thus

Flto) = S1fto+0) + Flto — 0)] = lim LTI E Mo =) ©)

e>0

The Laplace transform of such a function is called the image.

Definition 5. We say that a function f is of exponential order if for some values ¢, M, and T (5) holds. We
abbreviate this as f = O (e®t). A function f is said to be of exponential order «, or eo(a) for abbreviation, if
f =0 (e) for any real number ¢ > a, but not when ¢ < a.

Definition 6. The integral (1) is said to be absolutely convergent, if the integral

Aweﬁ“v@Nﬁ @)

converges. The greatest lower bound o, of such numbers R\ for which the integral (7) converges is called the
abscissa of absolute convergence.

Theorem 3. If |f(t)] < C fort > T, then the Laplace transform (1) converges absolutely for any Ao with
RXo > 0. In particular, the Laplace transform exists for any positive (real) \.

Theorem 4. The integral (1) converges for any function-original. Moreover, if a function f is of exponential
order «, then the integral (1) absolutely converges for R\ > «. Furthermore, if f and g are piecewise continuous
functions whose Laplace transforms exist and satisfy (Lf) = (Lg), then f = g at their points of continuity. Thus,
if F(A\) has a continuous inverse f, then f is unique.
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# Function-original TIts Laplace Transform
1. H(t) 3

2. H(t—a) e

3. t e

4. ", n=12,... e

5. v Heth

6. et = RA>Ra

7. e, n=12,... W, R > Ra
8. sin at TraT RA>0

9. cosat W)@Z’ RA>0

10. et sin Bt m, RA > Ra
11. ot cos Bt m, R > Ra
12. sinh St ﬁQ, RA > R

13. cosh 5t W, R\ > RSB

14. tsin Bt oz, RA> 0

15. tcos Bt ()f‘; 522)2, RA>0

16. et — Pt m, R > Ra, RB
17. et [cos Bt + §sin ﬂt] m R > Ra
18. et — “;gft o RA>0

19. Leinpt oty RA>0

20. et sinh Bt m, R > R(a £ )
21. et cosh Bt m, RA > R(a £+ )

Table 1: A Table of Elementary Laplace Transforms. Note: Each function in the left column is zero for negative
t; that is, they must be multiplied by the Heaviside function H (t).
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2 Properties of the Laplace Transform

The success of transformation techniques in solving initial value problems and other applications hinges on their
operational properties. Rules that govern how operations in the time domain translate to operations in the
image domain are called operational laws or rules. In this section we present the basic 6 rules that are useful
in applications of the Laplace Transformation to differential equations. The justification of these laws involve
technical details that are beyond the scope of the text and therefore, is omitted. So we simply point to [1], [2].
We start with the following

Definition 7. The convolution of two functions f and g, defined on the half-line [0, 00), is the integral

(f+g) (t) = / ft—7)g(r)dr = (g% 1) (2).

It is easy to veryfy that the convolution of two contsants is

t
1*1:/ dr =t.
0

Many examples of convolutions the reader will find later in the following sections. Now we list the properties of
the Laplace transform.

10

20

30

40

50

The differential rule

n

L[F™@] ) =) = 30 Ak fED (40, (8)

k=1

Integration by parts gives us the equality (8). In particular,
LIF' BT A) = A fEQ) = £(0). 9)
LIF"@®I ) = A2 fEA) = Af(0) = £'(0). (10)

The convolution rule

The Laplace transform of the convolution of two functions is equal to the product of its images:
L(f*g)N) = fFENg" (V). (11)
The similarity rule

A
a

Clf @) = L (

a

) . R\ > aoe, (12)

if a is a positive number.

The shift rule
If we know G()\), which is the Laplace transform of g(t), then the retarded function f(t) = g(t—a)H(t—a)

has the Laplace transform G(\)e=*¢, namely,
LIH(t—a)g(t—a)](N) =e*g*(N), a>0, (13)
Similarly )
L[ft+a)](N) = e {fL(/\) —/0 e M F(t) dt} , a>0. (14)

where H is the Heaviside function.

The attenuation rule

Ll fH] N = A\ +a). (15)
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6° The integration rule

LtV L f £/ )V f(r) dr Wf%\), n=12,.... (16)
If n =1, then
=€ / i (a7
Remark. We can unite (12) and (15) so that
L E e bt g (2)] \) = fL(ar + D). (18)

3 The Inverse Laplace Transform

We employ the symbol £L~[F(\)], corresponding to the direct Laplace transform defined by Eq.(1.1), to denote
a function f(t) whose Laplace transform is F'()\). Thus, we have the Laplace pair

FO) = (Lf) (N,  f) = LTFEN]O.

It has already been demonstrated that the Laplace transform fL()) of a given function f(t) can be calculated
by direct integration. The inverse Laplace transform is more complicated. However, it is very important because
the solution of practical problems usually provides a known F()A) from which the function f(¢) must be found
such that f£(\) = F()\). Thomas John I’Anson Bromwich (1875 — 1929) answered the question of how to find
this function, f(t), which is the inverse Laplace transform of a given function F'()\), in 1916. He expressed the
inverse Laplace transform as the contour integral

c+ioco
S0+ £ = g [ e (19

27TZ —ioco

where ¢ is any number greater than the abscissa of convergence for f(\) and the integration is defined in the
sense of the Cauchy principle value.

Remark. From this formula (19), it follows that the inverse Laplace transform restores a function-original
from its image in such a way that the value of a function-original at any point is equal to a mean of its right-hand
side limit value and its left-hand side limit value. If a function is continuous at a point then its value at this
point coincides with its mean value. O

In this section we will not use Eq. (19) as it is very complicated. Instead, we consider three methods to
find the inverse Laplace transform: Partial Fraction Decomposition, the Convolution Theorem, and the Cauchy
Residue Theorem. We will restrict ourselves to finding the inverse Laplace transform of rational functions or
their products on exponentials, that is,

PR —ax
QN

where P()\) and Q()) are polynomials!. This case is one of the most important in applications of the Laplace
transform to differential equations with constant coefficients. In this section we only consider cases in which the
degree of the denominator is larger than the degree of the numerator.

The case of the product of a rational function and an exponential can be easily reduced to the case without
the exponential multiplier by the shift rule (13). In fact, suppose we know

Fa()‘) =

f(t) = LFW(0) = £ [%} (0,

the original of a rational function F()). Then according to (13) we have

H(t—a)f(t—a) = LTIF(\) e~ ).

IThe result is valid for the case when @ is an entire function, that is, Q()\) is represented by a series which converges everywhere
except infinity.
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3.1 Partial Fraction Decomposition

The fraction

can be easily expanded into partial fractions, that is, P/ can be represented as a linear combination of simple
rational functions of the form 1/(A —a), 1/(A —a)?, and so forth. To do this, it is first necessary to find all nulls
of the denominator Q(A) or, equivalently, to find all roots of the equation

Q) =0. (20)
Then @Q(A) can be factored as
QA) = co(A = A)™ (A = Ag)™2 -+ (A = X)) ™,

where A1, A2, ..., Ax are the distinct roots of Eq. (20) and my, ma, ..., my are their respective multiplicities.
A root of the Eq. (20) is called simple if its multiplicity equals 1. A root which appears twice is often called a
double root. Recall that a polynomial of degree n has n roots, counting miltiplicities, so m; +ma+- - -+my = n.
Thus if the equation (20) has a simple real root A = A¢ then the polynomial Q(\) has a factor A — Ag. To this
factor in F' = P/Q) corresponds the partial fraction decomposition of the form

A
A=Xo’
where A is a constant to be found. The inverse Laplace transform of this fraction is (see Table 1, formula 6)

A
o[ 2| s aem )
P e " H(t)

where H is the Heaviside function (4).
The attenuation rule (15) gives us the clue about how get rid of Ag in the denominator. Thus, using formula
1 from Table 1, yields

£t [é] = AH(t).

Therefore, £ [e** AH(t)] = (A — Xo) L.

If a polynomial Q(A) has a repeated factor (A — Ag)™, that is , if Eq. (20) has a root Ag with multiplicity m,
then the partial fraction decomposition of F' = P/Q contains a sum of m fractions

Am A’m—l Al

CEE Y N SN v I B W v

The inverse Laplace transform of each term is (see Table 1, formula 7):
A tmfl
L7 | = Ay ——— e H(1).
LA—MVJ "m0

_ Suppose a polynomial () has an unrepeated complex factor (A — Ag)(A — Xo), where Ao = a +if, and
Ao = @ —if3 is the complex conjugate of Ag. The coefficients of Q()\) are real, complex roots occur in conjugate
pairs. The pair of conjugate roots of Eq. (20) corresponding to this factor gives rise to the term

AN+ B
=)+ 7

in the partial fraction decomposition, since
A=A =Xo) =(A—a)? + 52
The expansion of the fraction F' = P/ can be rewritten as

AA—a)+aA+ B
G ay + 72
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From Table 1 formulas 9 and 10 and the shift rule (13) we obtain the inverse transform

5_1{ AN+ B aA+B
A—a)*+p° B

If the polynomial Q()) has the repeated complex factor [(A — Ag)(A — Xo)]? then the sum of the form

} = e [A cos Bt + sin Bt| H (t). (21)

AN+ B C\+D
O —aZ+FE  D-aZ+p

corresponds to this factor in partial fraction decomposition of F = P/@). The last fraction is as in Eq. (21). To
find the inverse Laplace transform of the first factor we can use formulas 17 and 18 from Table 1 and the shift
rule (13). This leads us to
AN+ B A aA+ B
—1 _ at . .
L {W} =€ [%t smﬂt-}—-&-w(smﬂt—ﬁtcosﬁt) H(t)

3.2 Convolution Theorem

Let the given function F()\) be represented as a product of two other functions: F(A) = Fy(\) - F>()\). Assume
that we know the inverse Laplace transforms f(t) and f2(t) of these functions F; and F,. Then the inverse
Laplace transform can be defined according to the convolution rule (11) to obtain

t t
LHEOW} () = (fi + f2)(t) = / H) folt = 1) dr = / fi(t = 1) falr) dr.

It turns out that one can calculate the inverse of such a product in terms of the known inverses, with the
intervention of an integral.

3.3 Residue Method

Suppose a function F(A) = P(A\)/Q(A) is a fraction of two polynomials (or entire functions). We denote by
Aj, 5=1,2,...,N all nulls? of the denominator @ (). Then the inverse Laplace transform of a function F' can
be found as

f@)=LH{F\)} = Z Res F(\)e™, (22)

A

where the sum covers all zeros of the equation (20) and residues Resy; F(X\)e* are evaluated as follows.
If \; is a simple root of Eq. (20) then

Res F(\)e" = 6123’((12)) Mt (23)
If A; is a double root of Eq. (20) then
RA?s F(\)eM = Ali}rr){j % (A=X)?F(\)eM}. (24)
In general, when ); is a n-fold root of Eq. (20) then
Res FO)eM = Tim — - & ((\ 2" F()eM). O (25)
X; A=x; (n—1)1 dan1

2N = oo if Q(}) is an entire function.
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THE FOURIER SERIES

Do not worry about your difficulties in mathematics, | assure you that

mine are greater.
—Albert Einstein

Historical Profiles

Jean Baptiste Joseph Fourier (1768-1830), a French mathematician, first presente
the series and transform that bear his name. Fourier’s results were not enthusiastic
received by the scientific world. He could not even get his work published as a pape

Born in Auxerre, France, Fourier was orphaned at age 8. He attended a lo
military college run by Benedictine monks, where he demonstrated great proficiency;
mathematics. Like most of his contemporaries, Fourier was swept into the politics
the French Revolution. He played an important role in Napoleon’s expeditions to Egy
in the later 1790s. Due to his political involvement, he narrowly escaped death twice

Alexander Graham Bell (1847-1922) inventor of the telephone, was a Scottish
American scientist.

Bell was born in Edinburgh, Scotland, a son of Alexander Melville Bell, a
well-known speech teacher. Alexander the younger also became a speech tea
after graduating from the University of Edinburgh and the University of London. |
1866 he became interested in transmitting speech electrically. After his older brot
died of tuberculosis, his father decided to move to Canada. Alexander was asked
come to Boston to work at the School for the Deaf. There he met Thomas A. Watsd
who became his assistant in his electromagnetic transmitter experiment. On Ma
10, 1876, Alexander sent the famous first telephone message: “Watson, come he|
wantyou.” The bel, the logarithmic unitintroduced in Chapter 14, is named in his hond
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The harmonic frequency w, is anintegral multiple
of the fundamental frequency wy, i.e., 0, = ney.

PART 3 Advanced Circuit Analyses

l6.1 INTRODUCTION

We have spent a considerable amount of time on the analysis of circuits
with sinusoidal sources. This chapter is concerned with a means of an-
alyzing circuits with periodic, nonsinusoidal excitations. The notion of
periodic functions was introduced in Chapter 9; it was mentioned there
that the sinusoid is the most simple and useful periodic function. This
chapter introduces the Fourier series, a technique for expressing a peri-
odic functionin terms of sinusoids. Once the source functionis expressed
in terms of sinusoids, we can apply the phasor method to analyze circuits.

The Fourier series is named after Jean Baptiste Joseph Fourier
(1768-1830). In 1822, Fourier's genius came up with the insight that
any practical periodic function can be represented as a sum of sinusoids.
Such a representation, along with the superposition theorem, allows us
to find the response of circuits to arbitrary periodic inputs using phasor
techniques.

We begin with the trigonometric Fourier series. Later we consider
the exponential Fourier series. We then apply Fourier series in circuit
analysis. Finally, practical applications of Fourier series in spectrum
analyzers and filters are demonstrated.

16.2 TRIGONOMETRIC FOURIER SERIES

While studying heat flow, Fourier discovered that a nonsinusoidal periodic
function can be expressed as an infinite sum of sinusoidal functions.
Recall that a periodic function is one that repeats eeeconds. In
other words, a periodic functiofi(r) satisfies

f@) = ft+nT) (16.1)

wheren is an integer and’ is the period of the function.

According to theFourier theorem, any practical periodic function
of frequencywy can be expressed as an infinite sum of sine or cosine
functions that are integral multiples @f. Thus, f (¢) can be expressed
as

f(t) = ap + a1 COSwot + by Sinwot + az COS 2vgt

16.2
+ b2 Sin 2wt + a3 €0S Jvgt + b3 Sin 3wt + - - - (16.2)
or
[o¢]
f@®) = ap + Z(an cosnwot + b, Sinnwot) (16.3)
—

dc n=1

ac

wherewg = 27/ T is called thefundamental frequency in radians per
second. The sinusoid simor Or cosnwot is called thenth harmonic
of f(¢); itis an odd harmonic if: is odd and an even harmonicrifis
even. Equation 16.3 is called ttegonometric Fourier series of f(¢).
The constanta,, andb, are theFourier coefficients. The coefficientg
is the dc component or the average valug of). (Recall that sinusoids
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have zero average values.) The coefficientandb, (for n # 0) are the
amplitudes of the sinusoids in the ac component. Thus,

The Fourier series of a periodic function f (t) is a representation that resolves
f(t) into a dc component and an ac component comprising an
infinite series of harmonic sinusoids.

Afunctionthat can be represented by a Fourier seriesasin Eq. (16.3)
must meet certain requirements, because the infinite series in Eq. (16.3)
may or may not converge. These conditionsf@r) to yield a convergent
Fourier series are as follows:

1. f(¢) is single-valued everywhere.

2. f(¢r) has a finite number of finite discontinuities in any one
period.

3. f(¢) has a finite number of maxima and minima in any one
period.

to+T
4. The integraM | f()|dt < oo foranyry.

fo
These conditions are calléirichlet conditions. Although they are not
necessary conditions, they are sufficient conditions for a Fourier series to
exist.

A major task in Fourier series is the determination of the Fourier
coefficientsag, a,, andb,.. The process of determining the coefficients is
calledFourier analysis. The following trigonometric integrals are very
helpful in Fourier analysis. For any integexrsandn,

T
/ Sinnwot dt =0 (16.4a)
0
T
/ cosnwot dt =0 (16.4b)
0
T
/ Sinnwgt cOSmagt dt = 0 (16.4c)
0
T
/ Sinnwgt Sinmawgt dt = 0, (m # n) (16.4d)
0
T
/ coSnwot COSmwpt dt = 0, (m # n) (16.4e)
0

T T
f Sirf nwot dt = = (16.4f)

0 2

T T
/ coS nwot df = — (16.4g)

0 2

Let us use these identities to evaluate the Fourier coefficients.

709

Historical note: Although Fourier published his
theorem in 1822, it was P. G. L. Dirichlet (1805-
1859) who later supplied an acceptable proof of
the theorem.

A software package like Mathcad or Maple can
be used to evaluate the Fourier coefficients.
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We begin by findingiy. We integrate both sides of Eq. (16.3) over
one period and obtain

T T [ee]
f f@)dt = / |:ao + Z(a" cosnwot + by, Sinnwot):| dt
0 0

n=1

T 00 T
= / agdt + [f a, COSnaot dt (16.5)
0 n=1 0

T
+/ bnSinna)otdt:| dt
0

Invoking the identities of Eqs. (16.4a) and (16.4b), the two integrals in-
volving the ac terms vanish. Hence,

T T
/ f@)dt = / apdt = agT
0 0

l T
ap = —/ f@®) dt (16.6)
T Jo

or

showing thaty is the average value gf(z).
To evaluates,,, we multiply both sides of Eq. (16.3) by cagvgt
and integrate over one period:

T
/ f(t) cosmawot dt
0

T o]
= f |:ao + Z (a, coSnwot + b, sinnwot)} cosmawot dt
0 n=1

T 00 T
:/ ag COSmwot dt + Z [/ a, COSnwot COSmwot dt
0 n—=1 0

T

+/ b, sinnwgt COSMwot dti| dt (16.7)

0
The integral containingig is zero in view of Eq. (16.4b), while the
integral containing,, vanishes according to Eq. (16.4c). The integral

containinga, will be zero except whem = n, in which case it is'/2,
according to Egs. (16.4e) and (16.49). Thus,

r T
/ f(t) cosmwot dt = a”E’ form=n
0

or

2 T
a, = —f f(t) cosnwot dt (16.8)
T Jo

In a similar vein, we obtaib, by multiplying both sides of Eq.
(16.3) by sifmwot and integrating over the period. The result is

2 T
b, = —/ f () sinnwot dt (16.9)
T Jo
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Be aware that sincg (¢) is periodic, it may be more convenient to carry
the integrations above from7 /2 to T /2 or generally fromgtozy + T
instead of O tdI'. The result will be the same.

An alternative form of Eq. (16.3) is themplitude-phase form

f(t)=ao+ ) A, coSnwot + ¢,) (16.10)
n=1

We can use Egs. (9.11) and (9.12) to relate Eqg. (16.3) to Eq. (16.10), or
we can apply the trigonometric identity

coSa + B) = cosa cosB — sina sinB (16.11)
to the ac terms in Eq. (16.10) so that

ag+ Y _ A, coSnaxt + ¢,) = dao+ Y (A, COSp,) COSnwot

n=1 n=1

(16.12)
— (A, sing,) sinnwot

Equating the coefficients of the series expansions in Egs. (16.3) and
(16.12) shows that

a, = A, C0Sg,, b, = —A, sing, (16.13a)

or

b
A, =,/a?+ b2, ¢, = —tan? a—” (16.13b)
n

To avoid any confusion in determiningy,, it may be better to relate the
terms in complex form as

An (bn =da, — an (16.14)

The convenience of this relationship will become evident in Section 16.6.

The plot of the amplitudet,, of the harmonics versuswy is called the

amplitude spectrum of f(¢); the plot of the phase, versusnwy is the

phase spectrum of f(¢). Both the amplitude and phase spectra form

thefrequency spectrumof f (7). The frequency spectrum is also known as the
line spectrum in view of the discrete frequency

‘ components.

The frequency spectrum of a signal consists of the plots of the amplitudes
and phases of the harmonics versus frequency.

Thus, the Fourier analysis is also a mathematical tool for finding the
spectrum of a periodic signal. Section 16.6 will elaborate more on the
spectrum of a signal.

To evaluate the Fourier coefficients, a,, andb,,, we often need
to apply the following integrals:

1 .
/cosm dt = —sinat (16.15a)
a
. 1
sinat dt = —— cosat (16.15b)
a

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



712 PART 3 Advanced Circuit Analyses

1 1 .
/lCOSatdt = — cosat + ~t sinat (16.15¢)
a a
. 1 . 1
tsinat dt = — sinat — =t cosat (16.15d)
a? a

It is also useful to know the values of the cosine, sine, and exponential
functions for integral multiples of. These are givenin Table 16.1, where
n is an integer.

TABLE 6.  Values of cosine, sine, and
exponential functions for integral

multiples ofr.

Function Value

CoS i 1

sin 2n 0

cosnm (="

sinnm 0

nmw (=D"2, n=even
COS——
2 0, n = odd
. nm (=D@-b2 p =odd
sin —
2 0, n = even
el 1
ejmr (_1))1
__1\n/2 —
i 2 (=D"/=, n = even
j(=1)@-b2 5 = odd
e L N
f(t) Determine the Fourier series of the waveform shown in Fig. 16.1. Obtain
L the amplitude and phase spectra.
Solution:
The Fourier seriesis given by Eq. (16.3), namely,

-2 -1 0 1 2 3t ~
Figure 16.]  For Example 16.1; a square wave. fO) =ao+ ;(a” Cosnwot + by SiNnwot) (1611

Our god is to obtain the Fourier coefficients ag, a,, and b, using Egs.
(16.6), (16.8), and (16.9). First, we describe the waveform as

f(t)={1’ O<r<1 (16.1.2)
0, 1<t<?2
and f(t) = f(t+T). SinceT =2, wo=2r/T = . Thus,

1 (T 1 ¢ 2 1" 1
a0=7fo f(t)dtzé[/(; 1dt+/1 Odt:|=§t0=§ (16.1.3)
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Using Eq. (16.8) along with Eq. (16.154),
2 T
a, = —/ f(t) cosnwot dt
T Jo

2 1 2
=5 [/ lcosnmtdt +/ OCOSnntdt] (16.1.4)
0 1

1

1 .
= —9nnr =0
o nmw

1
= —sdinnnt
nmw

From Eq. (16.9) with the aid of Eq. (16.15b),

2 T
b, = —/ f(@) sSinnwet dt
T Jo

2 1 2
=—[f 1sinnmdt+/ Osinnmdt}
2 0 1

1

1
1
= ——(cosnm — 1), cosnm = (—1)"
ni
2
1 = =
~lno oy ag nmow
nw 0, n = even

Substituting the Fourier coefficientsin Egs. (16.1.3) to (16.1.5) into Eq.
(16.1.1) givesthe Fourier series as

1 2 . 2 . 2 .
f@)==-+—snxt+ —sn3rt+ —sSin5rzr + - -- (16.1.6)
2 7« 3T 5t

Since f(¢) contains only the dc component and the sine terms with the
fundamental component and odd harmonics, it may be written as

2

By summing the terms one by one as demonstrated in Fig. 16.2, Summing the Fourier terms by hand calculation
we notice how superposition of the terms can evolve into the original may be tedious. A computer is helpful to com-
square. As more and more Fourier components are added, the sum gets pute the terms and plot the sumlike those shown
closer and closer to the square wave. However, it is not possible in in Fig. 16.2.
practice to sum the series in Eq. (16.1.6) or (16.1.7) to infinity. Only a
partial sum(n =1, 2,3, ..., N,where N isfinite) ispossible. If we plot
the partial sum (or truncated series) over one period for alarge N asin
Fig. 16.3, we notice that the partial sum oscillates above and below the
actual value of f(¢). At the neighborhood of the points of discontinuity
(x=0,1,2,...), thereis overshoot and damped oscillation. In fact, an
overshoot of about 9 percent of the peak valueisal wayspresent, regardless Historical note: Named after the mathematical
of the number of terms used to approximate f (¢). Thisiscalled the Gibbs physicist Josiah Willard Gibbs, who first ob-
phenomenon. served it in 1899,

OES

NIH
:IH

sinnmnt, n=2k—-1 (16.1.7)

:I
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£(t) 4

NI

1/\ A

\'4 \4

dc component

A A

v V,

\/ t 0 1 2t

Figure 6.3 Truncating the Fourier series at
Fundamental ac component N = 11, Gibbs phenomenon.

@

Finally, let us obtain the amplitude and phase spectrafor the signal
inFig. 16.1. Sincea, = 0,

2
\/\/ t —, n=odd
A, = /a?+b% = |b,| = { nw (16.1.8)

0, n = even

Sum of first two ac components and
¢ = —tan™? by _ [-90% n=odd 16.1.9
" a, 0, n=even (16.19)
1 1 | >
\/V\/ t The plots of A, and ¢, for different values of nwg = nm provide the
amplitude and phase spectrain Fig. 16.4. Notice that the amplitudes of
the harmonics decay very fast with frequency.
Sum of first three ac components
A 2
I I | 05
\~
2
3w 2
Sum of first four ac components 5|77
l 1l 1l

0O 7w 27 3w 47w 57 67 ®

s |

a7 2w 3w 4o 5w 6

0° T T T
Sum of first five ac components @
b
(b) _o0°
Figure 6.2 Evolution of a b
square wave from its Fourier (0)

components. i
Flgure [64  For Example 16.1: (a) ampli-
tude and (b) phase spectrum of the function
shown in Fig. 16.1.
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PRACTICE PROBLEMMNEN

Find the Fourier series of thesquarewavein Fig. 16.5. Plot theamplitude f(t)
and phase spectra. 1

4,1
Answer: f(t) = — Y =sinnmt,n = 2k — 1. SeeFig. 16.6 for the
4 k:]_}’l

spectra. -2 -1 0 1 2 3| o

— ] L

4
Mt 7 Figure 6.5  For Practice Prob. 16.1.
¢
4 m 2w 3w 4w 5w 67w
3 4 0° T T T >
% w
It ! | Il > o
0O 7 27 3m 47 57 67 o -0
@ (b)
Figure [6.6  For Practice Prob. 16.1: amplitude and phase spectra for the function shown
in Fig. 16.5.
£ tp L e NI
Obtain the Fourier series for the periodic function in Fig. 16.7 and plot f(t)
the amplitude and phase spectra. 1
Solution: ﬂ
The function is described as 5 N 5 N ) s 1
t, O0<r<l1
fo = 0, 1<t<2 Figure [6.7  For Example 16.2.

SinceT =2, wp =2n/T = m. Then

1 (T 17 2 2 12" 1
= — t)dt = = tdt Odt | ==-—=| =- (@621
a T/Of() 2[/0 +/1 ] 33 =3 02
To evauate a,, and b,,, we need the integralsin Eq. (16.15):
2 T
a,,:—/ f(t) cosnwot dt
T Jo
2 1 2
:5[/ tCOSnJTtdt+/ OCOSnntdtj|
0 ! (16.2.2)

1

1 r
= [ﬁ cosnmt + — SNnwt
n<mw ni

0
D" -1

1
= (cosnmt —1)+0= o
n<im

n2m?2
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since cosnm = (—1)"; and

2 T
b, = —/ f (@) sinnwot dt
T Jo

2 1 2
=—[/ tsinnmdt+/ Osinnmdt}
2 0 1

) (16.2.3)

1 t
= |22 Slnnm‘ — —cosnrt
7[ ni

0
cosnt  (—1)"*t
nm o nm

Substituting the Fourier coefficients just found into Eq. (16.3) yields

f@) = —+Z[[( b —1] cosnut +

(nm)? i

(_1)n+1

Sinnnt]

To obtain the amplitude and phase spectra, we nhotice that, for even
harmonics, a, = 0, b, = —1/nm, so that

1
¢n =a, — jb, =0+ j— (16.2.4)
ni
AnA 038 Hence,
1
0.25 A, = bl = —, n=24,,...
0.16 nw (16.2.5)
o1l ¢n = 90°, n=24,...
0.08
| 0-|06 0.05 For odd harmonics, a, = —2/(n?7?), b, = 1/(n) o that
1
0 @ 27 3w 47w 57 6 o ) 2 1
@ A/ by =a, — jb, = R (16.2.6)
oA Thatis,
270° o 262.7°
23780 28
4 1
Ay =\Jai+bi= 7=+ 5
180° | 1 nr ner (16.2.7)
= — 2\/4+n2n2, n=13,
wrl | 9| o | o e
From Eq. (16.2.6), we observe that ¢ liesin the third quadrant, so that
> _ o - _
0 = 27 37 4m 57 6m o ¢, = 180° + tan > n=13, ... (16.2.8)
b
®) From Egs. (16.2.5), (16.2.7), and (16.2.8), weplot A,, and ¢, for different
Figure 16.8  For Example 16.2: () ampli- valuesof nwy = nr to obtain the amplitude spectrum and phase spectrum
tude spectrum, (b) phase spectrum. asshowninFig. 16.8.

PRACTICE PROBLEMNKIN

Determine the Fourier series of the sawtooth waveform in Fig. 16.9.
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Answer: f(t) = sin2mnt.

NI
|
Q|
=
agt
S|

—2 -1 0 1 2 3t

Figure 169 For Practice Prob. 16.2.

16.3 SYMMETRY CONSIDERATIONS

We noticed that the Fourier series of Example 16.1 consisted only of the
sineterms. One may wonder if a method exists whereby one can know
in advance that some Fourier coefficients would be zero and avoid the
unnecessary work involved in the tedious process of calculating them.
Such a method does exigt; it is based on recognizing the existence of
symmetry. Herewe discussthreetypes of symmetry: (1) even symmetry,
(2) odd symmetry, (3) half-wave symmetry.

16.3.1 Even Symmetry
A function f(¢) isevenif its plot is symmetrical about the vertical axis;

that is,
S@®) = f(-1) (16.16)
Examplesof evenfunctionsarer?, 4, and cost. Figure16.10 showsmore oy
examples of periodic even functions. Note that each of these examples . .
satisfies Eq. (16.16). A main property of an even function f,(¢) isthat: -5 A 5
r/2 r2 YA\ NAN
fdi=2[ " fod @i TN LN T
-T/2 0
because integrating from —7'/2 to 0 is the same as integrating from 0 to @
T /2. Utilizing this property, the Fourier coefficientsfor an even function
become 904
A
2 T/2
apg = — f(@)dt m r—| m
T Jo -T 0 T t
4 (7172 16.18
a, = T f(t) cosnwot dt ( ) (&)
0 h(t)
— Ny

Since b, = 0, Eq. (16.3) becomes a Fourier cosine series. This makes
sense because the cosine function is itself even. It also makes intuitive
sense that an even function contains no sine terms since the sine function ©
isodd. . )

To confirm Eqg. (16.18) quantitatively, we apply the property of an Figure 16.10 ;éﬁ"(fj}'c‘?ﬁ""n‘c‘fi’gf;’f e
even functionin Eq. (16.17) in evaluating the Fourier coefficientsin Egs.
(16.6), (16.8), and (16.9). It is convenient in each case to integrate over
theinterval —T/2 < r < T /2, which is symmetrical about the origin.
Thus,
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1 T/2 1 0 T/2
aw=7 f_ f(t)dt:T[ /_ Jwas | f(t)dt] (16.19)

T/2
We change variables for the integral over theinterval —7/2 < ¢ < O by
lettingr = —x, sothat dt = —dx, f(t) = f(—t) = f(x), since f(¢) is
an even function, andwhent = —T/2,x = T /2. Then,
T/2

1 0
ap = — [ J () (=dx) + f(l)dl}

T

1z 0 (16.20)
T/2
T f(@ dt]

showing that the two integrals are identical. Hence,
2 T/2
apg= — f@) dt (16.21)
T Jo
as expected. Similarly, from Eq. (16.8),

2 0 T/2
a, = — [ f(¢) cosnwot dt + (1) cosnwot dti| (16.22)
T [J_rp2 0
We makethe same change of variablesthat led to Eg. (16.20) and notethat
both f(z) and cosnwot are even functions, implying that f(—¢) = f ()
and cos(—nwot) = cosnwot. Equation (16.22) becomes
- 0

1 T/2
= —|: fx)dx +
0 0

2 T/2
a, = — f(—x) cos(—nwox)(—dx) -|-/ f(t) cosnwot dti|
T [Jr)2 0
2T 0 T/2
= — f(x) cos(nwox)(—dx) + f(t) cosnwot dt:|
T [Jrp 0
o r7/2 T/2
=7 f(x) cos(nwox) dx + f(t) cosnwot dtj|
| Jo 0
(16.23a)
or
4 T/2
a, = — f () cosnwot dt (16.230)
T Jo
as expected. For b, we apply Eq. (16.9),
2 0 T/2
b, = — [/ f () Sinnwot dt + f () sinnwot dt:| (16.24)
T [J_1p2 0

We make the same change of variables but keep in mind that f(—7) =
f(¢) but sSin(—nwot) = — Sinnwet. Equation (16.24) yields

27 0 T/2
bo=2| [ F=x)Sn(=nwo)(—dx) + / F@ sinnot dt]
T LJT/2 0
27T 0 T/2
= — f(x)Sinnwox dx + f (@) Sinnwot dt]
T LUrp2 0
2T T/2 T/2
=T f(x) sin(nwox) dx + f(@®) sinnwpt dz}
L 0 0
=0 (16.25)

confirming Eq. (16.18).
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16.3.2 Odd Symmetry
A function f(¢) is said to be odd if its plot is antisymmetrical about the
vertical axis:

f(=t)=—f@®

(16.26)

Examples of odd functions are, 3, and sinz. Figure 16.11 shows more
examples of periodic odd functions. All these examples satisfy Eq.
(16.26). An odd function f,(¢) hasthis major characteristic:
T/2
fo®)dt =0
-T/2
because integration from — 7' /2 to 0 isthe negative of that from0to 7/2.
With this property, the Fourier coefficients for an odd function become

(16.27)

ag =0, a, =0
4 [T/2 . (16.28)
b, = T f () Sinnwot dt
0

which give usaFourier sine series. Again, this makes sense because the
sinefunction isitself an odd function. Also, note that thereisno dc term
for the Fourier series expansion of an odd function.

The quantitative proof of Eq. (16.28) follows the same procedure
taken to prove Eq. (16.18) except that f(¢) is now odd, so that f(z) =
— f (). With thisfundamental but simple difference, it is easy to see that
ap = 0in Eg. (16.20), a, = 0in Eq. (16.23d), and b, in Eq. (16.24)
becomes

27T (0 T/2
by = — f(=x) sin(=nwox)(—dx) + f () sSinnwot dti|
T |72 0
2T 0 T/2
==|- f(x)sinnwox dx + f(t)sinnwot dz}
TL Jrp 0
27T r1/2 T/2
=7 f(x) sin(nwox) dx + £ (@) Sinnwot dti|
L 0
4 T/2
b, = T f(@) sinnwet dt (16.29)
0
as expected.

Itisinteresting to note that any periodic function f (z) with neither
even nor odd symmetry may be decomposed into even and odd parts.
Using the properties of even and odd functions from Egs. (16.16) and
(16.26), we can write

1 1
f() = é[f )+ f(=D]+ é[f (1) — f(=D] = fe(®) + fo(t) (16.30)
even odd

Notice that f,(t) = %[f(t) + f(—1)] satisfies the property of an even
function in Eq. (16.16), while £,(1) = 3[f(t) — f(—1)] satisfies the
property of an odd function in Eq. (16.26). The fact that f,(z) contains

719

K
©

Figure 6.1 Typical examples of odd

periodic functions.
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only thedc term and the cosineterms, while f,(¢) hasonly the sineterms,
can be exploited in grouping the Fourier series expansion of f(¢) as

o0 o0
f(t) = ao+ Z a, COSnwot + Z b, Sinnwot = £,(t) + f,(1) (16.31)
n=1 n=1

even odd

It follows readily from Eq. (16.31) that when f(¢) iseven, b, = 0, and
when f(¢) isodd, ap = 0 = a,.
Also, note the following properties of odd and even functions:

1. The product of two even functionsis also an even function.
2. The product of two odd functionsis an even function.

3. The product of an even function and an odd function is an odd
function.

4. The sum (or difference) of two even functionsis also an even
function.

5. The sum (or difference) of two odd functionsis an odd
function.

6. The sum (or difference) of an even function and an odd
function is neither even nor odd.

Each of these properties can be proved using Egs. (16.16) and (16.26).

16.3.3 Half-Wave Symmetry
A function is half-wave (odd) symmetric if

T
S (f - 5) =—f@) (16.32)

which means that each half-cycle is the mirror image of the next half-
cycle. Notice that functions cosnwot and sinnwot satisfy Eg. (16.32)
for odd values of n and therefore possess half-wave symmetry when
n isodd. Figure 16.12 shows other examples of half-wave symmetric
functions. ThefunctionsinFigs. 16.11(a) and 16.11(b) arealso half-wave
symmetric. Notice that for each function, one half-cycle is the inverted

£(t) 4 () 4

AW A [N\ N\ [
NGNS

@ (b

Figure [6.12 Typical examples of half-wave odd symmetric functions.
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version of the adjacent half-cycle. The Fourier coefficients become

ag = 0
4 T/2
T f(t) cosnwot dt, for n odd

a, = 0
0, for n even (16.33)
4 T/2

b T f(@)sinnwet dt, forn odd

n — 0

0, for n even

showing that the Fourier seriesof ahal f-wave symmetricfunction contains
only odd harmonics.

To derive Eq. (16.33), we apply the property of half-wave symmet-
ric functionsin Eq. (16.32) in evaluating the Fourier coefficientsin Egs.
(16.6), (16.8), and (16.9). Thus,

T/2 1 [ 0 T/2

1
ap = - f@)dt = T f@®dt + f(t)dti| (16.34)
0

T J_1p —1/2

We change variables for the integral over the interval —T/2 <t < 0
by letting x = ¢t + T/2, so that dx = dt; whent = —T/2,x = O
andwhent = 0,x = T/2. Also, we keep Eq. (16.32) in mind; that is,
f(x =T/2) = —f(x). Then,

1 T/2 T T/2
= — ——\)d d
dg T|:f0 f<x 2) x+/o f) t]

/2 (16.35)
f@) dti| =0

T/2
=7|:_ A fx)dx + A

confirming the expression for ag in Eq. (16.33). Similarly,

2 0 T/2
a, = T [ f(t) cosnwot dt + f(t) cosnwot dt] (16.36)
0

We make the same change of variablesthat led to Eq. (16.35) so that Eq.
(16.36) becomes

2 (172 T T
an:?[/; f(x—E>COSna)o(x—§>dx

—T/2

(16.37)
T/2
+ f(t) cosnwot dt:|
0
Since f(x — T/2) = —f(x) and
T
COSnwo (x — E) = COS(nwot — ni)
(16.38)

= COSnwogt COSn + SiNnwot SINnw
= (—1)" cosnwot

substituting these in Eq. (16.37) leadsto
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2 T/2
a, = —[1-(=1"] £ (t) cosnwot dt
T 0
T2 (16.39)
_1I7 f(t) cosnwot dt, for n odd
= 0
0, for n even

confirming Eq. (16.33). By following a similar procedure, we can derive
b, asin Eq. (16.33).

Table 16.2 summarizes the effects of these symmetries on the
Fourier coefficients. Table 16.3 providesthe Fourier series of some com-
mon periodic functions.

TABLE 6.2  Effects of symmetry on Fourier coefficients.
Symmetry ao a, b, Remarks
Even ap #0 a, #0 b, =0 Integrate over T/2 and multiply
by 2 to get the coefficients.
Odd ap=0 a,=0 b, #0 Integrate over T /2 and multiply
by 2 to get the coefficients.
Haf-wave ao=0 az, =0 by, =0 Integrate over T /2 and multiply
azi1 70 by #0 by 2to get the coefficients.
TABLE 163 The Fourier series of common functions.
Function Fourier series
1. Square wave
f(t)
A %
4A 1 .
. [0 = ?; 57 Sn@1 — Dot
0 T t
2. Sawtooth wave
f(t)
A £ = é é i SiNnwot
T2 n ~ n
0 T t

3. Triangular wave

A
o T t

f=

T 12 cos(2n — Dwgt

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



CHAPTER 16 The Fourier Series

TABLE [6.3  (continued)

Function Fourier series

4. Rectangular pulsetrain

f(®
A
At 2A X1 . ant
t)=— 4+ — Y —sin—— cosnwot
‘ \ ‘ \ f@®) T+T;n T nwo
1

OI
2

NIR

5. Half-wave rectified sine

f(®)

A A A 2A 1
)= —+ —Snhwyt — — COS 2nwot
/\ [\ O
0

6. Full-wave rectified sine

(1)

A 00
24 44
f = — T §=

T o= 4?1

cosnawot

723

M|e.3

Find the Fourier series expansion of f(¢) givenin Fig. 16.13.

(1) A

1

5| —4 -3 -2 -1 0 1 2 3 4 5 t

-1

Figure [6.13  For Example 16.3.

Solution:

Thefunction f (¢) isan odd function. Henceag = 0 = a,,. Theperiodis
T =4 andwy=2n/T = r/2, s0that
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4 T/2
b, = — f (@) Sinnwet dt
T Jo

4 1 nmw 2 niw
= - 1sin—ztdt O0sin—tdt
4 Uo 2 +/1 2 ]

2 nrt |t 2 nmw
= ——C0S—| =— 1—cos—>
nmw 2 | nn( 2
Hence,
231 nmw nmw
)= — — 1—cos—)sjn—t
r0=23 5 (1-es 7 )sn

which isaFourier sine series.

PRACTICE PROBLEMMENEKEE

Find the Fourier series of the function f(¢) in Fig. 16.14.

£(t)

—

=21 Tt 0 1T 21 3n

-1

Figure 16.14  For Practice Prob. 16.3.

4 1 .
Answer: f(t)=-—Y Zsinnt,n=2k—1
ﬂk:ln

Determine the Fourier series for the half-wave rectified cosine function
shownin Fig. 16.15.

f(t)

VA AN

-5 -3 -1 0 1 3 5 t

Figure [6.15 A haf-wave rectified cosine function; for

Example 16.4.
Solution:
Thisisanevenfunctionsothatb, = 0. Also, T = 4, wo = 2/ T = /2.
Over aperiod,
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CHAPTER 16 The Fourier Series

0, 2<t<-1

f = cos%t, 1<t<1

0, 1<r<2

2 T/2 2 1 T 2
== H)dt = - Ccos —t dt Odt
w=2 [ so 4[/0 " +/1 }
_12 7|1
S 2x 2, w
4 T2 4T Y g nwt
= = t) cos tdt = - cos—tcos—dt + 0
a 7/, f@) nwo 4[/0 > > + ]

But cosA cos B = 3[cos(A + B) + cos(A — B)]. Then

1t b T
a, = —/0 [cosE(n + Dyt +cos§(n — 1)[] dt

2
Forn =1,
1/t 1[sinmt !
alzzfo [cosm+1]dt=§[ +t]0=§
Forn > 1,
. T . T
“’1:msn§(n+l)+msn§(”_l)

Forn=o0dd(n =1,3,5,...), (n+ 1) and (n — 1) are both even, so
sin%(n—i—l):O:sin%(n—l), n = odd

Forn =even(n = 2,4,6,...), (m + 1) and (n — 1) are both odd. Also,

sin%(n-i—l):—sin%(n—l):cos%=(—1)”/2, n = even

Hence,

_ (=p"? (=12 _ —2(—1"/? _
an_n(n—f—l) an—1  am?-1)" n=even

Thus,

2 & (—D)'"?  am

f@t) = 1~|—1cos:ﬂt Z
T 2 2 T, A, (n2—1) 2

To avoid usingn = 2,4, 6, ... and aso to ease computation, we can
replacen by 2k, wherek =1, 2, 3, ... and obtain

1 1 7 x (—)k
H==+zc0s"r— =3 = cosknt
S 71+2C052 Nk:1(4k2_1)0057r

which is aFourier cosine series.

PRACTICE PROBLEMENKEK

Find the Fourier series expansion of the function in Fig. 16.16.
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1 4 =21
Answer: f(t):E—P;ﬁcosm,nz%—l.

=2 0 21 A7 t

Figure 6.16  For Practice Prob. 16.4.

f(t) Calculate the Fourier series for the functionin Fig. 16.17.
Solution:
Thefunctionin Fig. 16.17 is half-wave odd symmetric, sothat ag = 0 =

>  a,. Itisdescribed over half the period as
2\ -1 0 1 23 /4t
\/ f@) =t, -1<t<1

T =4 wo=2r/T = /2. Hence,

4 T/2
b, = — f (@) Sinnwot dt
T Jo
Instead of integrating f (¢) from 0 to 2, it is more convenient to integrate
from —1to 1. Applying Eq. (16.15d),

Figure [6.17  For Example 16.5.

1

b 4f1tsinnm g sinnmt/2  tcosnmt/)2
S 2 | n2n2/4 nw/2 1
4 . nmw . niw 2 nmw niw
=——|sn— —-sn{——) |- —| cos— +cos{——
n27t2|: 2 ( 2)i| nn[ 2+ ( 2)i|
. 8 Smnn 4 Cosnr[
22 2 nm 2
since sin(—x) = — sinx as an odd function, while cos(—x) = cosx as
an even function. Using theidentitiesfor sinnr/2 and cosnz/2in Table
16.1,
8 (n—-1)/2
5— (=1 , n=o0dd=135,...
b, — n<m
! 4 (n+2)/2
— (=1 , n=even=246,...
ni
Thus,

o . nmw
)= b,sSn—t
£ ; sin=
where b, is given above.

PRACTICE PROBLEMENEIE

Determinethe Fourier series of thefunctioninFig. 16.12(a). TakeA = 1

and T = 2r.
2 [ -2 1.

Answer: f(1) ==Y (——cosnt+=sinnt |, n=2k—1
nkzl nem n
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CHAPTER 16 The Fourier Series

16.4 CIRCUIT APPLICATIONS

We find that in practice, many circuits are driven by nonsinusoidal peri-
odic functions. To find the steady-state response of acircuit to anonsinu-
soidal periodic excitation requires the application of a Fourier series, ac
phasor analysis, and the superposition principle. The procedure usually
involves three steps.

Steps for Applying Fourier Series:
1. Express the excitation as a Fourier series.
2. Find the response of each term in the Fourier series.

3. Add theindividual responses using the superposition principle.

The first step is to determine the Fourier series expansion of the
excitation. For the periodic voltage source shown in Fig. 16.18(a), for
example, the Fourier seriesis expressed as

o
v(t) = Vo+ YV, cos(nawot + 6,)
n=1
(The same could be done for aperiodic current source.) Equation (16.40)
shows that v(z) consists of two parts. the dc component V, and the ac
component VV, = V, /6, with several harmonics. This Fourier series
representation may be regarded as a set of series-connected sinusoidal
sources, with each source having its own amplitude and frequency, as
shown in Fig. 16.18(b).

(16.40)

i®
—_—
% @
it
i V; cos(wgt + 01) e
Linear
V, cos(2wpt + 6
Li 2 os(2uo 2 network
V() (F Inear '
Periocgi(): <‘> network .
Source V, cos(Nawgt + 6,) ( % )
@ (b)
Figure [6.18 (a) Linear network excited by a periodic voltage source, (b) Fourier series

representation (time-domain).

The second step is finding the response to each term in the Fourier
series. The response to the dc component can be determined in the fre-
guency domain by settingn = 0 or @ = 0 asin Fig. 16.19(a), or in
the time domain by replacing al inductors with short circuits and all
capacitors with open circuits. The response to the ac component is ob-
tained by the phasor techniques covered in Chapter 9, as shown in Fig.
16.19(b). The network isrepresented by itsimpedance Z (nwg) or admit-
tance Y (nwo). Z(nwo) is the input impedance at the source when w is
everywhere replaced by nwo, and Y (nwg) isthe reciprocal of Z (nwo).

Z(wg)

Z(2aw)

Vh Z0n C'—D Z(Nwo)

]

Figure 16,19 Steady-state responses:
(a) dc component, (b) ac component
(frequency domain).
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728 PART 3 Advanced Circuit Analyses

Finally, following the principle of superposition, we add al the
individual responses. For the case shown in Fig. 16.19,

(1) = io(r) +ia(r) +i2(1) + - -

> 16.41
— 1o+ I1,] costneot + ) te4y
n=1

where each component |, with frequency nwo has been transformed to
the time domain to get i,,(¢), and v, isthe argument of |,,.

Let the function f () in Example 16.1 be the voltage source v, () in the
circuit of Fig. 16.20. Find the response v, (¢) of the circuit.

Solution:
From Example 16.1,

1

Figure 620 For Example 16.6. v, (1) = 5

231
+—E —Snnrnt, n=2k-1
nk:ln

where w, = nwg = nxr radls. Using phasors, we obtain the response V,,

in the circuit of Fig. 16.20 by voltage division:
JjonL _ jonw

"R+ jo,L ' 5+ j2um °
For the dc component (w, = 0 or n = 0)

o

1
Vi== =  V,=0

2
This is expected, since the inductor is a short circuit to dc. For the nth
harmonic,
2
Vy=—/—90° (16.6.1)
nmw

and the corresponding response is
v - 2n7 /90° 2
* " Y25+ 4n2n? /tan—L 2nm /5 nm
4/ —tan"! 2nm/5
IV, | 4 V2B +4n?n?

0'5 . -
In the time domain,

/ —90°
(16.6.2)

V(1) = g—%w cos(nm—tanl %) n=2k—-1
02 Thefirst threeterms (k = 1, 2, 3or n = 1, 3, 5) of the odd harmonicsin
0.13 the summation give us
) ) .ol v,(t) = 0.4981 cos(rrt — 51.49°) + 0.2051 cos(3rt — 75.14°)
0 7 27 37 4m 5w 6m Tm o + 0.1257 cos(5xt — 80.96°) + - -+ V
Figure 1621 For Example 16.6: Amplitude Figure 16.21 showstheamplitude spectrumfor output voltagev, (z),

spectrum of the output voltage. ~ while that of the input voltage v,(r) isin Fig. 16.4(a). Notice that the
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CHAPTER 16 The Fourier Series

two spectra are close. Why? We observe that the circuit in Fig. 16.20
is a highpass filter with the corner frequency w. = R/L = 2.5 radls,
which is less than the fundamental frequency wo = 7 rad/s. The dc
component is not passed and thefirst harmonic is slightly attenuated, but
higher harmonics are passed. In fact, from Egs. (16.6.1) and (16.6.2), V,,
isidentical to V; for large n, which is characteristic of a highpassfilter.

PRACTICE PROBLEMMNEIN

729

If the sawtooth waveformin Fig. 16.9 (see Practice Prob. 16.2) isthevolt-
age source v, (¢) in the circuit of Fig. 16.22, find the response v, (¢).

1 1-& sin2rnt —tant4
Answer: v,()=>-=>" (e n7)

PR P R g T

vy(t)

Figure 16.22

2Q

+
1F = V(1)

For Practice Prob. 16.6.

£ XAt L NI

|
Find theresponsei, (¢) inthecircuit in Fig. 16.23if theinput voltage v ()
has the Fourier series expansion

=1+ i 2" (cosnt — nsinnt)
v = e nt —n n
~ 1+n?

Solution:
Using Eg. (16.13), we can express the input voltage as

X 2(—1)"
v(t) =1+ § — 2 cos(nt + tan"1n)
= V1+n?

=1-—1.414cos(t + 45°) + 0.8944 cos(2t + 63.45°)
—0.6345cos(3¢ + 71.56°) — 0.4851 cos(4t + 78.7°) + - - -
We notice that wg = 1, w, = n rad/s. The impedance at the source is
jo8 84 jw,8

Z=4+ jw2|4=4 -
o2 YA 2 2+ jo,

Theinput current is

V24 jo,
T Z 8+ jw8
whereV isthe phasor form of the sourcevoltagev(t). By current division,
4 Y

o

T At jon2 At jo,h
Since w, = n, |, can be expressed as

V
4/1+n2/tantn

For the dc component (w,, = 0 or n = 0)

l, =

Vo1
V=l = l,=—-=:
4”4

i(t)

4Q 2Q

v @

MV
}is®

gZH 2Q

Figure 16.23

For Example 16.7.
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For the nth harmonic,

= 217 tan1n
V1+n?

so that

1 2(-1)" Vtan~ (=1)"
I() = t = —
4/1+n2/tan"*n 1+ n? o 2(1+n?)

In the time domain,

_1 o (=D
io(2) Z+22(1+ 2)cosmA

n=

PRACTICE PROBLEMMNNEIN

If the input voltage inthe circuit of Fig. 16.24 is

20
io(®) = _=
¢ v(t) = = Z( cosnt — Slﬂnt) Y
v(t) 1F == § 10
determine the response i, (¢).
1 & V1+n?g2 1 2n 1
Answer: —+ —————————cos|nt —tan " — +tan " nw | A.
Figure 16.24  For Practice Prob. 16.7. —~ n2w2/9+ an? 3
16.5 AVERAGE POWER AND RMS VALUES
Recall the concepts of average power and rms value of a periodic signal
that we discussed in Chapter 11. To find the average power absorbed by
acircuit due to a periodic excitation, we write the voltage and current in
amplitude-phase form [see Eq. (16.10)] as
V(1) = Ve + Z V,, cos(nwot — 6,) (16.42)
n=1
i(t) = lac+ Y I COS(meot — ) (16.43)
m=1
i Following the passive sign convention (Fig. 16.25), the average power is
O——] T
+ 1 .
) P=— / vi dt (16.44)
Linear T Jo
v() circuit L . .
Substituting Egs. (16.42) and (16.43) into Eq. (16.44) gives
o |

1 T = I, VdC g
P=Z| Valedt+Y ——= [ costmwot — ¢y)dt
, T Jo = T Jo
Figure 16.25  The voltage m=

polarity reference and current X Vol [T
reference direction. + Z — cos(nwot — 0,) dt (16.45)

+ ZZ Vi ’”/ cos(nwot — 6,) COS(mawot — ¢y, dt

m=1n=
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CHAPTER 16 The Fourier Series

The second and third integral s vanish, since we are integrating the cosine
over itsperiod. According to Eq. (16.4€), all termsin the fourth integral
are zero when m # n. By evaluating the first integral and applying Eq.
(16.4q) to the fourth integral for the case m = n, we obtain

1 o0
P =Valoe+ > Y Valy COS(O, — pu) (16.46)
2 n=1

This shows that in average-power calculation involving periodic voltage
and current, the total average power is the sum of the average powersin
each harmonically related voltage and current.

Givenaperiodicfunction f (), itsrmsva ue (or the effectivevalue)

isgiven by
1 T
Fms =1/ 7 / f2(t)dt (16.47)
0

Substituting f(¢) in Eq. (16.10) into Eq. (16.47) and noting that
(a + b)? = a? + 2ab + b?, we obtain

1 /7 >
Frfns = T /O [aé +2 E apA, cos(nwot + ¢,,)
n=1

+ Z Z An A, COS(nwot + ¢) COS(mawot + %)} dt

n=1m=1
1 T ) 00 1 T
= — asydt + 2 agA, — / cos(nwot + ¢,) dt
T fo 0 ; T Jo
o0 00 1 T
+ Z Z A,,AmT / cos(nwot + ¢n) COS(Mwot + ¢ dt
0
(16.48)

Distinct integers n and m have been introduced to handle the product of
the two series summations. Using the same reasoning as above, we get

1 o0
2 2 2
Frmsza0+§ZAn
n=1
or
l o0
Fms= |a3+ 5 Z A2 (16.49)
n=1

In terms of Fourier coefficientsa,, and b,,, EQ. (16.49) may be written as

1 o.¢]
Fims = J ag + E Z(a,% + bﬁ) (16.50)
n=1

If f(¢) isthe current through aresistor R, then the power dissipated in
theresistor is

P = RF?

s (16.51)
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Orif f(¢) isthe voltage across aresistor R, the power dissipated in the
resistor is
F2
p =17 (16.52)
R

One can avoid specifying the nature of the signal by choosing a 1-Q2 re-
sistance. The power dissipated by the 1-Q2 resistance is

1 o8
Pio = Frs=ag+ 5 ;(af +0p) (1659
Historical note: Named after the French mathe- This result is known as Parseval’s theorem. Notice that o is the power
matician Marc-Antoine Parseval Deschemes in the dc component, while 1/2((13 + bs) is the ac power in the nth
(1755-1836). harmonic. Thus, Parseval’s theorem states that the average power in a

periodic signal is the sum of the average power in its dc component and
the average powersin its harmonics.

M|6.8

Determine the average power supplied to the circuit in Fig. 16.26 if
+ i(t) =2+ 10cos(t + 10°) 4+ 6cos(3r + 35°) A.
it) V() § 100 - 2F Solution:
The input impedance of the network is
, 1 10(1/ j2w) 10
Figure 1626 For Example 16.8 20~ 104 1/j20 — 15 1200
Hence,

101
Vv1+ 4000? /tan~1 20w
For the dc component, w = 0,
| =2A e V=102 =20V

V=IZ=

This is expected, because the capacitor is an open circuit to dc and the
entire 2-A current flows through the resistor. For w = 1 rad/s,

v 10(10,/10°)
~ J/1+400/tan"120

=5/-7714

| :lO 100 —

For w = 3rad/s,

10(6,/45°)
| =6/45° — V=
L +/1+ 3600/ tan~1 60
=1/— 44.05°

Thus, in the time domain,

v(t) = 20+ 5cos(t — 77.14°) + 1cos(3t — 44.05°) V
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We obtain the average power supplied to the circuit by applying Eq.
(16.46), as

1 o0
P = Voclse + 5 ; V.1, cos(6, — ¢,)

To get the proper signs of 6, and ¢,,, we have to compare v and i in this
example with Egs. (16.42) and (16.43). Thus,

P =20(2) + %(5)(10) cog[77.14° — (—10°)]

+ %(1)(6) cog[44.05° — (—35°%)]

=40+ 1.247+0.05=415 W
Alternatively, we can find the average power absorbed by the resistor as
1 5% 1 12

VZ o1& v, 207
p—=_%_ = ol 4.
+2Z 2’1072 10

R —~ R 10
=40+ 1.25+0.05=415W

which is the same as the power supplied, since the capacitor absorbs no
average power.

PRACTICE PROBLEMMEEI

The voltage and current at the terminals of a circuit are
v(t) = 80+ 120c0s120x ¢ + 60 cos(360rt — 30°)
i(t) = 5c0s(1207rt — 10°) + 2c0os(360rt — 60°)
Find the average power absorbed by the circuit.
Answer: 347.4W.

M|6.9

Find an estimate for the rms value of the voltage in Example 16.7.
Solution:
From Example 16.7, v(¢) is expressed as
v(t) = 1— 1.414cos(r + 45°) + 0.8944 cos(2t + 63.45°)
—0.6345cos(3r + 71.56°)
—0.4851cos(4t + 78.7°) + --- V
Using Eqg. (16.49),

l o0
Vims = [ad + EZA,E
n=1

- \/ 12 4 % [(—1.414)2 4 (0.8944)2 + (—0.6345)2 + (—0.4851)% + - - -]

=+/2.7186 = 1.649V
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Thisisonly an estimate, as we have not taken enough terms of the series.
The actual function represented by the Fourier seriesis

we'
snhx’
withv(t) = v(t + T). The exact rmsvalue of thisis1.776 V.

PRACTICE PROBLEMMNKIE

Find the rms value of the periodic current

i(t) =8+ 30cos2r — 20sin2t + 15cos4r — 10sindr A
Answer: 29.61A.

v(t) = —_T<t<m

16.6 EXPONENTIAL FOURIER SERIES

A compact way of expressing the Fourier seriesin Eq. (16.3) isto put it
in exponential form. This requires that we represent the sine and cosine
functionsin the exponential form using Euler’sidentity:

1 . .
COSnwot = E[ef”‘“O’ Y (16.54a)
. 1 . .
Sinnwgt = —[e/"* — /"] (16.54b)
2j
Substituting Eq. (16.54) into Eq. (16.3) and collecting terms, we obtain
1 . .
FO) =a0+ S [(@n — jb)e™™ + (ay + jby)e "™ (1655
2 n=1

If we define anew coefficient ¢, so that
(an - an) * (an + ]bn)

co = ao, e = 5 cp=c (16.56)
then f(z) becomes
o0 ) )
f@) =co+ Z(c,,e’"‘”‘)’ + c_pe " (16.57)
n=1
or
S .
f@)y =) cpe" (16.58)
n=—00

Thisisthe complex or exponential Fourier series representation of f(z).
Note that this exponential form is more compact than the sine-cosine
form in Eq. (16.3). Although the exponentia Fourier series coefficients
¢, can also be obtained from a,, and b, using Eq. (16.56), they can also
be obtained directly from £ (¢) as

1 (7 .
= — / f(t)e /"™ dt (16.59)
T Jo
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where wg = 27/ T, asusua. The plots of the magnitude and phase of
¢, VErsus nwo are caled the complex amplitude spectrum and complex
phase spectrumof f(¢), respectively. The two spectraform the complex
frequency spectrum of f(¢).

The exponential Fourier series of a periodic function f (t) describes the spectrum
of f(t) in terms of the amplitude and phase angle of ac components at positive
and negative harmonic frequencies.

The coefficients of the three forms of Fourier series (sine-cosine
form, amplitude-phase form, and exponential form) are related by

An/n = ay — jby = 2c, (16.60)

or

/a2 + b2
o =leal oy = YU /ety fa, sy

if only @, > 0. Note that the phase 6, of ¢, isequa to ¢,.
In terms of the Fourier complex coefficients ¢,,, the rms value of a
periodic signal f(¢) can befound as

) 1 T ) 1 T o0 oot
Frns = ?-/O fe@yde = ?/O f@ Z cp e | dt

S 1 (T )
— 2 : Jjnawot
= Cn |: /(; f(®)e j| (16.62)

n=—00
00 00
§ * § 2
= CnC, = |Cn|
n=—00 n=—00

or

oo
Fs= | Y lcal? (16.63)
n=—oo

Equation (16.62) can be written as
o0
Fae=lcol?+2) leal? (16.64)
n=1
Again, the power dissipated by a 1-<2 resistanceis

Pig=Fhe= Y lel? (16.65)
which is arestatement of Parseval’s theorem. The power spectrum of the
signa f(r) istheplot of |c,|? versus nwo. If f(z) isthe voltage across a
resistor R, the average power absorbed by the resistor is F2../R; if f(t)

isthe current through R, the power is F2.(R.
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As an illustration, consider the periodic pulse train of Fig. 16.27.

fo Our goal isto obtain its amplitude and phase spectra. The period of the
10 pulsetrainis T = 10, so that wg = 27/ T = /5. Using EQ. (16.59),
1 T/2 ) 1 1 )
= — f@®e 7" dt = —/ 10e /""" d¢
H H > T J_rp2 10 J_4
-11 -9 -101 9 11t 1
F‘ |627 — 1 e*jna)ot — (efjnwo _ ejnwo)
igure 16. The periodic pulse train. —j —j
g € periodic pulse train ]}’la)o .71 Jnwo (16.66)
2 e/"wo — gmJnwo Sinnwg b4
= — N = 2 , a)o = —
nwo 2j nwo 5
_ 25innn/5
nmw/S
and
sin 5
f) =2 Z m/ eIt/ (16.67)

n=—00

Notice from Eqg. (16.66) that ¢, isthe product of 2 and afunction of the

form sinx /x. Thisfunction is known as the sinc function; we write it as

The sinc function is called the sampling function in
communication theory, where it is very useful. . Sinx

sinc(x) = — (16.68)
X

Some properties of the sinc function are important here. For zero argu-
ment, the value of the sinc function is unity,

sinc(0) =1 (16.69)

Thisis obtained applying L' Hopital’s rule to Eq. (16.68). For an integral
multiple of 7, the value of the sinc function is zero,

sinc(nm) =0, n=123,... (16.70)

Also, the sinc function shows even symmetry. With al thisin mind, we
can obtain the amplitude and phase spectra of f(¢). From Eq. (16.66),
the magnitudeis

sin 5
e =2 n/ (16.71)
nmw/5
while the phaseis
0°, sin % >0
6, = (16.72)

180°, sn% <0

Figure 16.28 showstheplot of |c, | versusn for n varying from —10to 10,
where n = w/wq is the normalized frequency. Figure 16.29 shows the
plot of 6, versusn. Both the amplitude spectrum and phase spectrum are
called line spectra, because the value of |¢, | and 6, occur only at discrete

Examining the input and output spectra allows values of frequer_lci es. The spacing between the linesis wy. The power
visualization of the effect ofa circuit on a periodic spectrum, whichistheplot of |, |? versusnawy, can also beplotted. Notice

signal.

that the sinc function forms the envel ope of the amplitude spectrum.
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Figure 16.28  The amplitude of a periodic
pulse train.

6

180°

l | | |

-10 8 -6 -4 -2 0 2 4 6 8 10n

Figure 1629 The phase spectrum of a periodic pulse train.

137

mﬂw.m

Find the exponential Fourier series expansion of the periodic function
f(t)=¢",0 <1t <27 with f(r +21) = f(1).

Solution:

Since T = 2, wg = 2/ T = 1. Hence,

1 [T , 1 [ .
Cn = T/o f@e " dt = E./o ee " dt
27
— i 1 e(l—jn)z — 1 [eZJTe—jZTH'l _ 1]
27 1— jn 0 2r(1— jn)

But by Euler’'sidentity,
e /" —cos2nn — jsn2rn=1—j0=1
Thus,

B 1 2 4. 85
= —27t(1— jn)[e 1] =

The complex Fourier seriesis

Cn

1—jn
[o¢]

8 .
f(t) = Z ]__jne]m

n=—0oQ
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We may want to plot the complex frequency spectrum of £ (¢). If welet
¢n = |cal /By, then

85
V1i+n?

By inserting in negative and positive values of n, we obtain the amplitude
and the phase plots of ¢, versusnwy = n, asin Fig. 16.30.

|Cn| = 0, = tan_ll’l

[Cnl A
/s 85 0, A
FARN
90° | -
RN P
-~
d M. 38 d
- ~_269 ’
17 S~ 206 /
- ~_167 /
( 1 5 -4 3 2 4
5 4 3 2 -1 0 1 2 3 4 5 nu 01 2 3 4 5w
/
@ /
/7
//
//
- —90°

Q)

Figure [630  The complex frequency spectrum of the function in Example 16.10: (a) amplitude spectrum, (b) phase spectrum.

PRACTICE PROBLEMEKIE

Obtain the complex Fourier series of the function in Fig. 16.1.

1 > Jj o
Answer: 1) ==— eIt
-3 % L
n#0
n = odd

MM.II

Find the complex Fourier series of the sawtooth wave in Fig. 16.9. Plot
the amplitude and the phase spectra.

Solution:

FromFig. 16.9, f(t) =¢t,0<t <1, T = 1sothat wg = 27 /T = 27.
Hence,

1 T . 1 1 .
en == / F@e ™ dr = = f eI A 1611)
T 0 1 0
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But
e(l[
fte‘”dt = —S@x-H+C
a

Applying thisto Eq. (16.11.1) gives

eijnm 1
=———(—jonnr -1
Cn (-]2}’[7'[)2( ,] T )O
: (16.11.2)
e (—jonm — 1) +1
B —4n?5?
Again,
e /¥ —cos2an — jSn2rin=1—j0=1
so that Eq. (16.11.2) becomes
o .
cn = J ) (16.11.3)

T —dn272 " nr
This does not include the case whenn = 0. Whenn = 0,

1 (7 1t 12
== t)dt = - tdt = —
co T/o f@ 1/0 5

0

=0.5 (16.11.4)
1

Hence,
o J
1) =0.5 L it 11,
f@) +n:Z:Oo - (16.11.5)
n#o0
and
1
, n#0
leal = { 2Inlm , 6,=90°, n#0 (16116
0.5, n=20

By plotting |c,,| and 6, for different n, we obtain the amplitude spectrum
and the phase spectrum shown in Fig. 16.31.

Icnl A
0.5
bn
90°
0.16 0.16
0.03 0.04 0.05 0-?8 ‘ °-|°8 0.05 0.04 0.03
1 1 1 1 1 1
—Swg—4wg—-3wg—2wg -wg 0 wy 2wy 3wy 4wy Swy w —Swg—4wg—-3wg—2wg wg 0 w5 2wy 3wy 4wy Swy @

@ (b)

Figure 1631 For Example 16.11: (a) amplitude spectrum, (b) phase spectrum.
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PRACTICE PROBLEMBEENINE

Obtain the complex Fourier seriesexpansion of f(¢) in Fig. 16.17. Show
the amplitude and phase spectra.

[0¢] . _1 n . )
Answer: f(t)=— Y uef’””.SeeFlg.16.32forthespec’[ra
L= niw
nn_;égo
[Cnl
0”
032 | 032
90° |
016 0.16 -3 -1 1 3
011 011 Z ~
05 | | 08 4 2 | o 2 4 n
432 -1 0 1 2 3 4n —0°F
€) (b)

Figure [6.32  For Practice Prob. 16.11: (a) amplitude spectrum, (b) phase spectrum.

16.7 FOURIER ANALYSIS WITH PSPICE

Fourier analysis is usualy performed with PSpice in conjunction with
transient analysis. Therefore, we must do atransient analysisin order to
perform a Fourier analysis.

To perform the Fourier analysis of a waveform, we need a circuit
whoseinput isthe waveform and whose output isthe Fourier decomposi-
tion. A suitablecircuit isacurrent (or voltage) sourcein serieswitha1l-Q
resistor as shown in Fig. 16.33. The waveform isinputted as v, (z) using

1 1 VPULSE for a pulse or VSIN for a sinusoid, and the attributes of the
waveform are set over itsperiod 7. The output V(1) from node 1 is the
_ + *  dclevel (ap) and the first nine harmonics (A,,) with their corresponding
Is 1Q§V° "SCD 19?’0 phases v,,; that is,
9
0 0 V(1) = a0+ »_ A, Sin(nwot + V) (16.73)
n=1
@ (b)
where
Figure [6.33  Fourier analysis with PSpice - b
using: (a) a current source, (b) a voltage — 2 2 — _ — -17n
source. Ap = Van+ by, Vn = ¢n 5 ¢, =tan a (16.74)

Noticein Eq. (16.74) that the PSpice output isin the sine and angle form
rather than the cosine and angle form in Eq. (16.10). The PSpice output
also includes the normalized Fourier coefficients. Each coefficient a,
is normalized by dividing it by the magnitude of the fundamental a; so
that the normalized component isa, /a;. The corresponding phase v, is
normalized by subtracting from it the phase v, of the fundamental, so
that the normalized phaseis v, — 1.
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There are two types of Fourier analyses offered by PSpice for Win-
dows: Discrete Fourier Transform (DFT) performed by the PSpice pro-
gram and Fast Fourier Transform (FFT) performed by the Probe program.
While DFT is an approximation of the exponential Fourier series, FTT
isan agorithm for rapid efficient numerical computation of DFT. A full
discussion of DFT and FTT is beyond the scope of this book.

16.7.1 Discrete Fourier Transform

A discrete Fourier transform (DFT) is performed by the PSpice program,
which tabulates the harmonics in an output file. To enable a Fourier
analysis, we select Analysis/Setup/Transient and bring up the Transient
dialog box, showninFig. 16.34. ThePrint Sep should beasmall fraction
of theperiod T, whilethe Final Timecould be 67. The Center Frequency
is the fundamental frequency fo = 1/T. The particular variable whose
DFT isdesired, V(1) in Fig. 16.34, is entered in the Output Vars com-
mand box. In addition to filling in the Transient dialog box, DCLICK
Enable Fourier. With the Fourier analysis enabled and the schematic
saved, run PSpice by selecting AnalysigSimulate as usual. The pro-
gram executes a harmonic decomposition into Fourier components of the
result of thetransient analysis. Theresultsare sent to an output filewhich
you can retrieve by selecting Analysis’Examine Output. Theoutput file
includes the dc value and the first nine harmonics by default, although
you can specify more in the Number of harmonics box (see Fig. 16.34).

16.7.2 Fast Fourier Transform

A fast Fourier transform (FFT) is performed by the Probe program and
displays as a Probe plot the complete spectrum of atransient expression.
Asexplained above, wefirst construct the schematic in Fig. 16.33(b) and
enter the attributes of the waveform. We also need to enter the Print Sep
and the Final Timein the Transient dialog box. Oncethisisdone, we can
obtain the FFT of the waveform in two ways.

One way is to insert a voltage marker at node 1 in the schematic
of the circuit in Fig. 16.33(b). After saving the schematic and selecting
AnalysigSimulate, the waveform V(1) will be displayed in the Probe
window. Double clicking the FFT icon in the Probe menu will auto-
matically replace the waveform with its FFT. From the FFT-generated
graph, we can aobtain the harmonics. In case the FFT-generated graph
is crowded, we can use the User Defined data range (see Fig. 16.35) to
specify asmaller range.

Another way of obtaining the FFT of V(1) isto not insert avoltage
marker at node 1intheschematic. After selecting Analysis/Simulate, the
Probe window will come up with no graph on it. We select Trace/Add
and type V(1) in the Trace Command box and DCLICKL OK. We
now select Plot/X-Axis Settings to bring up the X Axis Setting dialog
box shown in Fig. 16.35 and then select Fourier/OK. This will cause
the FFT of the selected trace (or traces) to be displayed. This second
approach is useful for obtaining the FFT of any trace associated with the
circuit.

A major advantage of the FFT method is that it provides graphical
output. But its major disadvantage is that some of the harmonics may be
too small to see.

-
Fird S bepy fom
Firal Terar 3
bo-Pri Cielay [
§lep Coiing [t
™ [etsied Bas P
[T Ship reial seaedil tobadon
Fimmt dirsbyain
[F Erosbis Frares
Center Flegquency. |1

bk o peamonice |
ot W [T

(o] Coma|

Figure 16.34  Transient dialog box.
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Figure [6.35 X axis settings dialog box.

In both DFT and FFT, we should let the simulation run for alarge
number of cycles and use a small value of Sep Ceiling (in the Transient
dialog box) to ensure accurate results. The Final Time in the Transient
dialog box should be at least five times the period of the signal to allow
the simulation to reach steady state.

mﬂm.m

r P

V1=0
v2=1
TD=0
TF=1u @ V3
TR=1u

PWEL
PER=2

1§Rl

%

Figure 16.36  schematic for
Example 16.12.

Use PSpiceto determinethe Fourier coefficientsof thesignal inFig. 16.1.
Solution:

Figure 16.36 shows the schematic for obtaining the Fourier coefficients.
Withthesignal in Fig. 16.1in mind, we enter the attributes of the voltage
source VPULSE as shown in Fig. 16.36. We will solve this example
using both the DFT and FFT approaches.

METHOD [} DFT Approach: (The voltage marker in Fig. 16.36 is

not needed for this method.) From Fig. 16.1, itisevidentthat 7 = 2 s,

1 1 05H
fo= 7 =5=05Hz
So, in the transient dialog box, we select the Final Time as 6T =12 s,
the Print Sep as 0.01 s, the Sep Ceiling as 10 ms, the Center Frequency
as 0.5 Hz, and the output variable as V(1). (In fact, Fig. 16.34 is for
this particular example.) When PSpiceisrun, the output file containsthe

following result.

FOURI ER COEFFI Cl ENTS OF TRANSI ENT RESPONSE V(1)

DC COMPONENT = 4. 989950E-01

HARMONI C  FREQUENCY

NO

1
2
3

(HZ)

5. 000E- 01
1. O00E+00
1. 500E+00

FOURI ER  NORMALI ZED PHASE NORMALI ZED

COVPONENT ~ COVPONENT ( DEG) PHASE ( DEG)

6. 366E-01 1. 000E+00 -1. 809E-01 0. O00E+00
2.012E-03 3. 160E-03 -9.226E+01 -9. 208E+01
2.122E-01 3. 333E-01 -5.427E-01 -3.619E-01

(continued)
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(continued)
4 2. 000E+00 2.016E-03 3.167E-03 -9.451E+01 -9.433E+01
5 2.500E+00 1.273E-01 1.999E-01 -9.048E-01 -7.239E-01
6 3. 000E+00 2.024E-03 3.180E-03 -9.676E+01 -9.658E+01
7 3. 500E+00 9.088E-02 1.427E-01 -1.267E+00 - 1. 086E+00
8 4. 000E+00 2.035E-03 3.197E-03 -9.898E+01 -9. 880E+01
9 4. 500E+00 7.065E-02 1.110E-01 -1. 630E+00 - 1. 449E+00

Comparing theresult with that in EQ. (16.1.7) (see Example 16.1) or with
the spectrain Fig. 16.4 shows a close agreement. From Eq. (16.1.7), the
dc component is 0.5 while PSpice gives 0.498995. Also, the signal has
only odd harmonics with phase ¢, = —90°, whereas PSpice seems to
indicate that the signal has even harmonics although the magnitudes of
the even harmonics are small.

METHOD § FFT Approach: With voltage marker in Fig. 16.36 in

place, werun PSpiceand obtainthewaveformV (1) showninFig. 16.37(a)
on the Probewindow. By doubleclicking the FFT iconinthe Probe menu
and changing the X-axis setting to 0 to 10 Hz, we obtain the FFT of V(1)
as shown in Fig. 16.37(b). The FFT-generated graph contains the dc and
harmonic components within the selected frequency range. Notice that
the magnitudes and frequencies of the harmonics agree with the DFT-

generated tabulated values.
1.0 V
ovli---- :
0s 2's 4 s 6 s 8 s 10 s 12 s
o V(1) Ti me
(3
1.0 W immm e eeooooooon

2 Hz 4 Hz 6 Hz 8 Hz 10 Hz
Frequency

©)

Figure 16.37 (a) Origina waveform of Fig. 16.1, (b) FFT of the waveform.

PRACTICE PROBLEMENKIEN

Obtain the Fourier coefficients of the function in Fig. 16.7 using PSpice.
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Answer:
FOURI ER CCEFFI Cl ENTS OF TRANSI ENT RESPONSE V(1)

DC COVPONENT = 4. 950000E- 01

HARMONI C FREQUENCY  FOURIER  NORMALI ZED PHASE NORMALI ZED
NO (H2) COVPONENT  COVPONENT (DEG) PHASE ( DEGQ
1 1. 000E+00 3.184E-01 1.000E+00 -1.782E+02 0. 000E+00
2 2. 000E+00 1.593E-01 5.002E-01 -1.764E+02 1.800E+00
3 3. 000E+00 1.063E-01 3.338E-01 -1.746E+02 3. 600E+00
4 4. 000E+00 7.979E-02 2.506E-03 -1.728E+02 5.400E+00
5 5. 000E+00 6.392E-01 2.008E-01 -1.710E+02 7.200E+00
6 6. 000E+00 5.337E-02 1.676E-03 -1.692E+02 9. 000E+00
7 7. 000E+00 4.584E-02 1.440E-01 -1. 674E+02 1. 080E+01
8 8. 000E+00 4.021E-02 1.263E-01 -1.656E+02 1.260E+01
9 9. 000E+00 3.584E-02 1.126E-01 -1.638E+02 1.440E+01

EYEEN
1Q If vy inthecircuit of Fig. 16.38 isasinusoidal voltage source of amplitude
li(t) 12V and frequency 100 Hz, find current i (z).
Solution:
Vs §l§2 ng

The schematic is shown in Fig. 16.39. We may use the DFT approach
to obtain the Fourier coefficents of i(r). Since the period of the input
waveformis T = 1/100 = 10 ms, in the Transient dialog box we select
Print Step: 0.1 ms, Final Time: 100 ms, Center Frequency: 100 Hz,
Number of harmonics: 4, and Output Vars: 1(L1). When the circuit is
simulated, the output file includes the following.

Figure 1638 For Example 16.13.

FOURI ER CCEFFI Cl ENTS OF TRANSI ENT RESPONSE | (VD)

DC COVPONENT = 8. 583269E- 03

HARMONI C  FREQUENCY

NO

A WNPF
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(HZ)

1. 000E+02
2. 000E+02
3. 000E+02
4. 000E+02

FOURI ER
COVPONENT

8. 730E- 03
1. 017E-04
6. 811E- 05
4. 403E- 05

With the Fourier coefficients, the Fourier series describing the cur-

NORMALI ZED
COVPONENT

1. 000E+00
1. 165E-02
7. 802E- 03
5. 044E-03

PHASE
(DEQ)

- 8. 984E+01
- 8. 306E+01
- 8. 235E+01
- 8. 943E+01

NORMAL | ZED
PHASE ( DEG)

0. O00E+00
6. 783E+00
7. 490E+00
4. 054E+00

rent i (¢) can be obtained using Eq. (16.73); that is,

i(t) = 8.5833+ 8.73sin(2r - 100r — 89.84°)

+ 0.1017sin(2z - 200r — 83.06°)
+ 0.068sin(2w - 300 — 82.35°) 4 - -- MA
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We can also use the FFT approach to cross-check our result. The R1
current marker isinserted at pin 1 of the inductor as shown in Fig. 16.39. _ 1
Running PSpice will automatically produce the plot of 1(L1) in the Probe \F/é'l\z’gﬁzég
window, as shown in Fig. 16.40(a). By doubleclickingthe FFT iconand  VOFF=0
setting the range of the X-axis from 0 to 200 Hz, we generate the FFT
of I(LL) shown in Fig. 16.40(b). It i clear from the FFT-generated plot 970
that only the dc component and the first harmonic are visible. Higher
harmonics are negligibly small.

V1 R2<1

Figure 16.39  schematic of the circuit in
Fig. 16.38.

40 ns 60 ns
Ti me

80 nms 100 ns

80 Hz 120 Hz 160 Hz 200 Hz
Frequency

(b)

Al
0

Hz 40 Hz
ol (L1)

Figure 1640 For Example 16.13: (a) plot of (1), (b) the FFT of i ().

PRACTICE PROBLEMNKIEE

A sinusoidal current source of amplitude 4 A and frequency 2 kHz is ap-
plied to the circuit in Fig. 16.41. Use PSpiceto find v().

Answer: v(t) = —150.72+ 145.5sin(4x - 103 +90°) + - - -
Fourier components are shown below.

le
T

For Practice Prob. 16.14.

+
ig(t) v(t) £10Q

Figure 16,41

uV. The

FOURI ER COEFFI Cl ENTS OF TRANSI ENT RESPONSE V(R1: 1)

DC COVPONENT = - 1.507169E- 04
HARMONI C FREQUENCY FOURIER NORMALIZED  PHASE  NORMALI ZED
NO (HZ) COVPONENT ~ COVPONENT ( DEG) PHASE ( DEG)
1 2. 000E+03 1.455E-04 1.000E+00  9.006E+01 0. 000E+00
2 4.000E+03 1.851E-06 1.273E-02 9.597E+01 5. 910E+00
3 6. 000E+03 1.406E-06 9.662E-03 9.323E+01 3. 167E+00
4 8. 000E+03 1.010E-06 6.946E-02 8.077E+01 -9.292E+00
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TABLE 164  Frequency ranges of

typical signals.

Signal Frequency Range
Audible sounds 20 Hz to 15 kHz
AM radio 540-1600 kHz
Short-wave radio 3-36 MHz
Video signals dcto 4.2 MHz
(U.S. standards)
VHF television, 54-216 MHz
FM radio
UHF television 470-806 MHz
Cdllular telephone  824-891.5 MHz
Microwaves 2.4-300 GHz
Visible light 10°-10° GHz
X-rays 10°-10° GHz

PART 3 Advanced Circuit Analyses

16.8 APPLICATIONS

We demonstrated in Section 16.4 that the Fourier series expansion per-
mits the application of the phasor techniques used in ac analysis to cir-
cuits containing nonsinusoidal periodic excitations. The Fourier series
has many other practical applications, particularly in communications
and signal processing. Typica applications include spectrum analysis,
filtering, rectification, and harmonic distortion. We will consider two of
these: spectrum analyzers and filters.

16.8.1 Spectrum Analyzers

TheFourier seriesprovidesthe spectrum of asignal. Aswehave seen, the
spectrum consists of the amplitudes and phases of the harmonics versus
frequency. By providing the spectrum of asignal f (¢), the Fourier series
helps us identify the pertinent features of the signal. It demonstrates
which frequencies are playing animportant rolein the shape of the output
and which ones are not. For example, audible sounds have significant
components in the frequency range of 20 Hz to 15 kHz, while visible
light signals range from 10° GHz to 10° GHz. Table 16.4 presents some
other signals and the frequency ranges of their components. A periodic
functionissaidto beband-limited if itsamplitude spectrum containsonly
afinite number of coefficients A,, or ¢,. In this case, the Fourier series
becomes

N N
f(t) = Z c el = qg + Z A, cOS(nawot + ¢,)  (16.75)
n=—N n=1

Thisshowsthat weneed only 2N + 1terms(namely, ag, A1, Ao, ..., Ay,
¢1, G2, ..., dy) to completely specify f(¢) if wgisknown. Thisleadsto
the sampling theorem: a band-limited periodic function whose Fourier
seriescontains N harmonicsisuniquely specified by itsvaluesat 2N + 1
instants in one period.

A spectrumanalyzer isaninstrument that displaysthe amplitude of
the components of asignal versusfrequency. In other words, it showsthe
various frequency components (spectral lines) that indicate the amount
of energy at each frequency. It is unlike an oscilloscope, which displays
theentiresignal (all components) versustime. An oscilloscope showsthe
signa in the time domain, while the spectrum analyzer shows the signal
inthefrequency domain. Thereis perhapsno instrument more useful to a
circuit analyst than the spectrum analyzer. Ananalyzer can conduct noise
and spurious signal analysis, phase checks, electromagnetic interference
and filter examinations, vibration measurements, radar measurements,
and more. Spectrum analyzers are commercially available in various
sizes and shapes. Figure 16.42 displays atypical one.

16.8.2 Filters

Filters are an important component of electronics and communications
systems. Chapter 14 presented afull discussion on passive and active fil-
ters. Here, weinvestigate how to design filters to select the fundamental
component (or any desired harmonic) of the input signal and reject other
harmonics. This filtering process cannot be accomplished without the
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Figure [6.42 A typical spectrum analyzer.
(Courtesy of Hewlett-Packer.)

Fourier series expansion of the input signal. For the purpose of illustra-
tion, we will consider two cases, alowpassfilter and abandpassfilter. In
Example 16.6, we already looked at a highpass RL filter.

Theoutput of alowpassfilter dependsontheinput signal, thetrans-
fer function H(w) of the filter, and the corner or half-power frequency
w.. We recall that o, = 1/RC for an RC passive filter. As shown in
Fig. 16.43(a), the lowpass filter passes the dc and low-frequency com-
ponents, while blocking the high-frequency components. By making w.
sufficiently large (w. > wo, €.9., making C small), alarge number of the

0 wy 2wy 3wy wy 2wg 3wy @

@

dc

| N[>

L owpass
I_ filter
— —_

wc ¥ g

L >

(0)

Figu re 16.43 (8 Input and output spectraof alowpassfilter, (b) thelowpassfilter passes
only the dc component when w, < wp.
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harmonics can be passed. On the other hand, by making w. sufficiently
small (w. <« wo), we can block out all the ac components and pass only
dc, as shown typically in Fig. 16.43(b). (See Fig. 16.2(a) for the Fourier
series expansion of the square wave.)

Similarly, theoutput of abandpassfilter dependsontheinput signal,
the transfer function of the filter H (w), its bandwidth B, and its center
frequency w.. Asillustrated in Fig. 16.44(a), the filter passes &l the

In this section, we have used o, for the center

frequency of the bandpass fiter instead of wy as harmonicsof theinput signal within aband of frequencies(w1 < @ < a)_g)
in Chapter 14, to avoid confusing wy with the centered around w.. We have assumed that wo, 2wo, and 3wg are within
fundamental frequency of the input signal. that band. If the filter is made highly selective (B <« wp) and @, = wy,

where wg isthefundamental frequency of theinput signal, thefilter passes
only the fundamental component (n = 1) of the input and blocks out all
higher harmonics. As shown in Fig. 16.44(b), with a square wave as
input, we obtain asine wave of the samefrequency asthe output. (Again,
refer to Fig. 16.2(a).)

[H] 4

——

/) : I B

0 wy 2wy 3wy

M=

0 wp 2wy 3wy @

o
)

S

o
S

N
g

@

Bandpass
filter
—— ———
T

We = wWo
B<<(1)0 -~ T —

(b)

Figure 16.44 (&) Input and output spectra of a bandpass filter, (b) the bandpass filter
passes only the fundamental component when B <« wp.

If the sawtooth waveform in Fig. 16.45(a) is applied to an ideal lowpass
filter with the transfer function shown in Fig. 16.45(b), determine the
output.

Solution:

The input signal in Fig. 16.45(a) is the same as the signal in Fig. 16.9.
From Practice Prob. 16.2, we know that the Fourier series expansion is

1 1 1 1
t) = = — —SNwot — — SiN2wot — — SiN3wgt — - - -
x(®) 2 7w @0 2 @0 3 0
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where the period is T = 1 s and the fundamental frequency iswg = 2
rad/s. Since the corner frequency of thefilter is w, = 10 rad/s, only the
dc component and harmonics with nwg < 10 will be passed. For n = 2,
nwo = 4w = 12.566 rad/s, which is higher than 10 rad/s, meaning that
second and higher harmonics will be rejected. Thus, only the dc and
fundamental componentswill be passed. Hence the output of thefilter is

1 1.
y(t) = = — —9Sin2rt
2 7

x(t) |H|A

A

-1 0 1 2 3t 0 10 o
@ (b)

Figure 1645 For Example 16.14.

PRACTICE PROBLEMENKEK

Rework Example 16.14 if the lowpassfilter isreplaced by theideal band- [H]
pass filter shown in Fig. 16.46. 1

1 . 1 . 1 .
Answer: y(t):—gsm&oot—Esn%ot—gsn&oot. >

0 15 35 w

Figure 16.46  For Practice Prob. 16.14.

16.9 SUMMARY

1. A periodic function is one that repeatsitself every T seconds; that
is, f@£tnT)= f(t),n=1,23,....
2. Any nonsinusoidal periodic function f(¢) that we encounter in

electrical engineering can be expressed in terms of sinusoids using
Fourier series:

o0
ft) = ao + Z(“" cosnwot + by, SiNnwot)
——

de n=1

ac

where wp = 27t/ T isthe fundamental frequency. The Fourier series
resolves the function into the dc component ag and an ac compo-
nent containing infinitely many harmonically related sinusoids. The

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



750 PART 3 Advanced Circuit Analyses

Fourier coefficients are determined as

1 (7 2 (T
aog = —/ fde,  a,= —[ £(t) cosnawot dt
T Jo T Jo

2 T
b, = —f f (@) sinnwot dt
T Jo

If f(¢) isanevenfunction, b, = 0, and when f(¢) isodd, ap = 0
anda, = 0. If f(¢) ishaf-wave symmetric, ag = a,, = b, = Ofor
even values of n.

3. Andternative to the trigonometric (or sine-cosine) Fourier seriesis
the amplitude-phase form

f@)=ao+ Y _ A, cosnwot + ¢,)

n=1

b
A, = /a2 + b2, ¢n:_tanila_n
n

4. Fourier series representation allows us to apply the phasor method
in analyzing circuits when the source function is a nonsinusoidal
periodic function. We use phasor technique to determine the
response of each harmonic in the series, transform the responses to
the time domain, and add them up.

5. The average-power of periodic voltage and current is

where

1 o0
P = Vaelse + 5 Z; V1, cOS(6, — ¢,)

In other words, the total average power isthe sum of the average
powers in each harmonically related voltage and current.

6. A periodic function can aso be represented in terms of an expo-
nential (or complex) Fourier series as

f@= i cpel"!

n=—00

where

17 ;
n = = ne "l dt
¢ Tfo f0e

and wo = 27t/ T. The exponential form describes the spectrum of
f () interms of the amplitude and phase of ac components at posi-
tive and negative harmonic frequencies. Thus, there are three basic
forms of Fourier series representation: the trigonometric form, the
amplitude-phase form, and the exponential form.

7. Thefreguency (or line) spectrum isthe plot of A, and ¢, or |c,|
and 6, versus frequency.

8. Thermsvalue of a periodic function is given by

1 oo
Fims = a§+§ZA§
n=1
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The power dissipated by a1-Q2 resistance is

1 [o¢]
Pio = Fips = a5+ 5 ) (i + b)) =
n=1

Thisrelationship is known as Parseval’s theorem.

2
> el

n=—00

The Fourier Series 751

Using PSpice, a Fourier analysis of acircuit can be performed in

conjunction with the transient analysis.

Fourier series find application in spectrum analyzers and filters.
The spectrum analyzer is an instrument that displays the discrete
Fourier spectra of an input signal, so that an analyst can determine
the frequencies and relative energies of the signal’s components.

Because the Fourier spectra are discrete spectra, filters can be

designed for great effectiveness in blocking frequency components

of asignal that are outside a desired range.

REVIEW QUESTIONS

16.1  Which of the following cannot be a Fourier series? 166 If f(r) =10+ 8cost + 4cos3t + 2cos5t + - - -,
2 3 A 45 the angular frequency of the 6th harmonic is
@r-5+3-7+3% @ 12 (b) 11 © 9
(b) 5sint 4+ 3sin2r — 2sin3t + sin4t (d) 6 (e 1
(© s!nz - ZC_OS3Z +4sn4: 4 cosds 16.7  Thefunctionin Fig. 16.14 is half-wave symmetric.
(d) sint +3sin2.7r — cosxt + 2tannt
omiZt i3t (a) True (b) False
—jmt
€ 1+e + 2 + 3 16.8 Theplot of |c,| versus nwy is caled:
162 If f@t)=1t,0<t<m, f@t+nm)= f(),the (a) complex frequency spectrum
vaue of wg is (b) complex amplitude spectrum
@1 (b) 2 © = (d) 2r (c) complex phase spectrum
16.3  Which of the following are even functions? 16.9  When the periodic voltage 2 + 6 sinwot isapplied to
2 b) 12 2 a1-Q resistor, the integer closest to the power (in
@ t2+t , (b) +*cosr © e watts) dissipated in the resistor is:
(d) “+1 (e) sinht @ 5 (b) 8 (©) 20
16.4  Which of the following are odd functions? (d) 22 (e) 40
(8 sint + cost (b) zsint ] i ]
© tln: (d) 2 cost 16.10  Theinstrument for. displaying the spectrum of a
(&) sinh signal isknown as:
(a) oscilloscope (b) spectrogram
165 If f(t) =10+ 8cost +4cos3r + 2cos5t + - -+, (c) spectrum analyzer  (d) Fourier spectrometer
the magnitude of the dc component is:
(@ 10 (b) 8 (© 4 Answers: 16.1a,d, 16.2b, 16.3b,cd, 164d,e, 16,53, 16.6d, 16.7a,
(d) 2 (e 0 16.80, 16.9d ,16.10c.
PROBLEMS
Section 16.2 Trigonometric Fourier Series
16.1  Evauate each of the following functions and seeiif it (d) h(t) = cos’t

isperiodic. If periodic, find its period.

(@) f(¢t) =cosnt + 2cos3nt + 3cosbrt
(b) y(r) = sint + 4cos2rt

(c) g(r) = sin3r cos4t

(e) z(t) = 4.2sin(0.4xt + 10°)
+0.8sin(0.67¢ + 50°)

(f) pt)y=10

(@ gt) =€
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752 PART 3 Advanced Circuit Analyses

16.2  Determine the period of these periodic functions: 169 Thewaveformin Fig. 16.49(a) hasthe following
(@ fi(t) =4sin5s + 3sin6r Fourier series:
(b) f2(r) =12+ 5c0s2r + 2 cos(4t + 45°) 1 4 1
© f3(t) = 4_sin2 6007 ¢ vi(t) = > g2 <cosm + 3 cos3rt
(@ far) = .

16.3  Givethe Fourier coefficients ao, a,, and b, of the + g oot + - ) v
waveform in Fig. 16.47. Plot the amplitude and
phase spectra. Obtain the Fourier series of v,(¢) in Fig. 16.49(b).

vy(t)

a(t)
10 1
5 2 - 1 2 3 4t
1 1 1 1 1 (a)

-4-3-2-1 012 3 45 6t

o

Figure 1647 For Prob. 16.3. 1
16.4  Find the Fourier series expansion of the backward \, . . . Lo
sawtooth waveform of Fig. 16.48. Obtain the O\ -1 0 1 2N 3 /4t
amplitude and phase spectra. \/
-1
f(t)
(b)
10

Figure 1649 For Probs. 16.9 and 16.52.

4 2 0 2 4 6t Section 16.3 Symmetry Consider ations

Figure 1648 For Probs. 16.4 and 16.50. 16.10 Determineif these functions are even, odd, or
neither.
*16.5 A voltage source has a periodic waveform defined @ 141 () 2—1 (¢) cosnmtsinnms

over its period as

(d) sinrwr (&) e
v(it)=t2r —1)V, O<t<2r

16.11 Determine the fundamental frequency and specify

Find the Fourier seriesfor this voltage. the type of symmetry present in the functionsin Fig.
16.6 A periodic function is defined over its period as 16.50.
Bty = {10sint, O<t<m f1(0) 4
20s8n(it —m), w<t<?2n 2

Find the Fourier seriesof h(z).

16.7  Find the quadrature (cosine and sine) form of the
Fourier series

f@) =2+ i n31—(|)— 1 cos(Znt + %)
n=1

16.8  Expressthe Fourier series

<. 4 1 .
f) =10+ 37 Cos10nt + — sin10nt

n= 2L
(a) inacosine ané angleform, 1 ’_|

(b) in asine and angle form.

*An asterisk indicates a challenging problem. (b)
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©

Figure 16.50  For Probs. 16.11 and 16.48.

16.12 Obtain the Fourier series expansion of the function

inFig. 16.51.
f(t)
\l 1 1 I/
BN\ =2 A1 o 1\2/3 t
1
Figure 16,51 For Prob. 16.12.

16.13 Find the Fourier seriesfor the signal in Fig. 16.52.
Evaluate f(r) at t = 2 using thefirst three nonzero
harmonics.

f(t)
4 R
1 1 1 1 1 1 L 1 >
-4 2 0 2 4 6 8t
Figure 16.52  For Probs. 16.13 and 16.51.
16.14 Determine the trigonometric Fourier series of the

signal in Fig. 16.53.

f(t)

VAN WA

5-4-3-2-1012 3 4 5t

Figure 16.53

For Prob. 16.14.

The Fourier Series 753

16.15 Calculate the Fourier coefficients for the function in
Fig. 16.54.

(1)

NN N

5-4-3-2-1012 3 45t

Figure 16.54

For Prob. 16.15.

16.16 Find the Fourier series of the function shown in Fig.

@ 16.55.

/.
Az

For Prob. 16.16.

Figure 16.55

16.17 Inthe periodic function of Fig. 16.56,

(a) find the trigonometric Fourier series coefficients
az and by,

(b) calculate the magnitude and phase of the
component of f(¢) that has w, = 10 rad/s,

(c) usethefirst four nonzero termsto estimate

f(@/2),

(d) show that
7_1 1.1 1.1 1.
41 3'5 7'9 11

(1)

2L

|,

_2r[| —n\/_lo nw 3n am| t
2_

Figure 16.56  For Prob. 16.17.
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16.18 Determine the Fourier series representation of the
function in Fig. 16.57.

(1)

AL
SRR

/|
NIK

Figure 16.57  For Prob. 16.18.

16.19 Find the Fourier series representation of the signal

shownin Fig. 16.58.

f(t)

-4 3 2 -1

Figure [6.58  For Prob. 16.19.

16.20 For the waveform shown in Fig. 16.59 below,
(a) specify the type of symmetry it has,
(b) caculate az and b3,

(c) find the rms value using the first five nonzero
harmonics.

16.21 Obtain the trigonometric Fourier seriesfor the

voltage waveform shown in Fig. 16.60.

AN N
3 _1V_2LO 1V2 3V4t

Figure 16.60  For Prob. 16.21.

Advanced Circuit Analyses

16.22 Determine the Fourier series expansion of the
sawtooth function in Fig. 16.61.

f(®)

/]

_zw 0 - 2\ ;
-
Figure 16.6]  For Prob. 16.22.

Section 16.4 Circuit Applications

16.23 Findi(r) inthe circuit of Fig. 16.62 given that

1
i,(t) = 1+Z—cosSmA

n=1

2Q

MWV
?lQ

i (t)

i @ §2H

Figure 16.62  For Prob. 16.23.

16.24 Obtain v, (¢) in the network of Fig. 16.63 if

v(t) = i g cos(nt + %) Vv

n=1
20 1H
+
v() 05F T Vo(t)
Figure 16.63  For Prob. 16.24.

Figure 16.59  For Prob. 16.20.
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16.25 If v, inthecircuit of Fig. 16.64 isthe same as
function f>(¢) in Fig. 16.50(b), determine the dc
component and the first three nonzero harmonics of

v, (1).

10 1H

Figure 16.64  For Prob. 16.25.

16.26 Determinei,(¢) inthecircuit of Fig. 16.65 if

o0

. -1  nm 3 .
v, () = Z — sin—- cosnt + — sinn

n=1
n=odd

1Q
MWV

l io(t)

VSCD §1Q ng

Figure 16.65  For Prob. 16.26.

16.27 The periodic voltage waveformin Fig. 16.66(a) is
applied to the circuit in Fig. 16.66(b). Find the

voltage v, () across the capacitor.

vg(t) A

10

— 10 mF

(0)

Figure 16.66  For Prob. 16.27.

The Fourier Series 755

16.28 If the periodic voltagein Fig. 16.67(a) is applied to

@ thecircuit in Fig. 16.67(b), find i, (¢).

V() A

75

25

@
20Q 400
*io(t)
Vg = 50 mF 100 mH
(b)

Figure [6.67  For Prob. 16.28.

*16.29 Thesignal in Fig. 16.68(a) is applied to the circuit in

@ Fig. 16.68(b). Find v, (r).

vs(t)
0 1 2 3 4 5t
@
2\IX
10
~
+ +
Vs Ve== 025F  3Q §v0
(b
Figure [6.68  For Prob. 16.29.
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16.30 The full-wave rectified sinusoidal voltagein Fig.
16.69(a) is applied to the lowpass filter in Fig.
16.69(b). Obtain the output voltage v, () of the

filter.
Vin(t)
1
- 0 T 27 t
@
2H
+
Vin(t) 01F =/ 10Q § Vo

(b)
Figure 16.69  For Prob. 16.30.

Section 16.5 Aver age Power and RM S Values
16.31 The voltage across the terminals of acircuit is

v(t) = 30+ 20cos(60r ¢ + 45°)
+ 10cos(60rrt — 45°) V
If the current entering the terminal at higher
potentia is
i(t) = 64 4cos(60xt + 10%)
— 2c0s(120rt — 60°) A

find:

(a) thermsvalue of the voltage,

(b) the rms value of the current,

(c) the average power absorbed by the circuit.
16.32 A seriesRLC circuithasR =102, L = 2 mH,

and C = 40 uF. Determine the effective current and
average power absorbed when the applied voltage is

v(t) = 100 cos 1000 + 50 cos2000¢
+ 25c0s3000¢ V
16.33 Consider the periodic signal in Fig. 16.53. (a) Find
the actual rmsvalue of (). (b) Usethefirst five

nonzero harmonics of the Fourier seriesto obtain an
estimate for the rms value.

16.34 Cadlculate the average power dissipated by the 10-Q2
resistor in the circuit of Fig. 16.70 if

iy(t) = 3+ 2cos(50r — 60°)
+ 0.5c0s(100r — 120°) A

16.35

80 mH

it 5Q 100

Figure 16.70  For Prob. 16.34.

For the circuit in Fig. 16.71,

i(t) = 20 4 16 cos(10r + 45°)
+ 12 cos(20r — 60°) mA
(@ find v(r), and
(b) calculate the average power dissipated in the
resistor.

+
i) 100uF ==  2kQ = v(b)

Figure 16.7]  For Prob. 16.35.

Section 16.6 Exponential Fourier Series

16.36

16.37

16.38

16.39

16.40

Obtain the exponential Fourier seriesfor f(¢) =1,
-1 <t <1 with f(t + 2n) = f(1).

Determine the exponentia Fourier series for
f@) =1 —w <t <@, with f(t + 2nn) = f(¢).

Calculate the complex Fourier seriesfor f () =
e',—m <t <m,with f(t + 2mn) = f().

Find the complex Fourier seriesfor f (1) = e,
0<t <1 with f(t+n)= fQ).

Find the exponential Fourier series for the function
inFig. 16.72.

£(t) A

g

1 >
-4 =3 -1 0 1 2 3 4 5 6] t
-1
Figure 16.72  For Prob. 16.40.
16.41 Obtain the exponential Fourier series expansion of

the half-wave rectified sinusoidal current of Fig.
16.73.
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i)
AWAGA
27 -7 0 T 21 371';
Figure 16.73 For Prob. 16.41.

16.42 The Fourier series trigonometric representation of a

periodic functionis

f() =10+ ; (112711 cosnmt + nZLle sinnnt)
Find the exponential Fourier series representation of
f@.

The coefficients of the trigonometric Fourier series

representation of afunction are:

6
n3—2’

If w, = 50n, find the exponential Fourier series for

the function.

16.43

b, =0, n=0,12,...

a, =

16.44 Find the exponential Fourier series of afunction
which has the following trigonometric Fourier series
coefficients

T b — (=" =D -1
ap = 47 n — n ) a, = nnz
Teke T = 2.

16.45 The complex Fourier series of the function in Fig.
16.74(a) is _

1 > je—./(2n+l)t
==— _
F® 2 Z (2n+ DHm

n=-—o00

Find the complex Fourier series of the function & (z)
inFig. 16.74(b).

£(6) A

1

3t
@

-2
(b)

Figure [6.74  For Prob. 16.45.

The Fourier Series 757

16.46 Obtain the complex Fourier coefficients of the signal
in Fig. 16.56.

The spectra of the Fourier series of afunction are
shown in Fig. 16.75. (a) Obtain the trigonometric
Fourier series. (b) Calculate the rms value of the

16.47

function.
A, A
6
4
2
1 1
2
|
0 1 2 3 4 w,(radly
b 4
1 2 3 4
0 wy, (rad/s)
-20°
—25°
-35°
-50°
Figure 16.75  For Prob. 16.47.

16.48 Plot the amplitude spectrum for the signal f>(¢) in
Fig. 16.50(b). Consider the first five terms.

16.49 Given that

o0

fo=>

n=1
n=odd

20
—— cos2nt — i sin2nt
n2m? nmw

plot the first five terms of the amplitude and phase
spectra for the function.
Section 16.7

16.50 Determine the Fourier coefficients for the waveform
in Fig. 16.48 using PSpice.

Calculate the Fourier coefficients of the signal in
Fig. 16.52 using PSpice.

Use PSpice to obtain the Fourier coefficients of the
waveform in Fig. 16.49(a).

Rework Prob. 16.29 using PSpice.
Use PSpice to solve Prob. 16.28.

Fourier Analysiswith PSpice

16.51
16.52

16.53
16.54
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Section 16.8 Applications

16.55 Thesigna displayed by amedical device can be
approximated by the waveform shown in Fig. 16.76.
Find the Fourier series representation of the signal.

f(t) A
10
Il Il Il Il Il Il Il >
-6 |-4 -2 |0 2 4 | 6t
-10
Figure 16.76  For Prob. 16.55.

16.56 A spectrum anayzer indicates that asignal is made
up of three components only: 640 kHz at 2 V,
644kHz at 1V, 636 kHz at 1 V. If thesignal is
applied across a 10-<2 resistor, what is the average

power absorbed by the resistor?

16.57 A certain band-limited periodic current has only

three frequenciesin its Fourier series representation:

Advanced Circuit Analyses

dc, 50 Hz, and 100 Hz. The current may be
represented as

i(t) =4+ 6sin1007t + 8cos100rx¢
— 3sin2007t — 4cos200rt A

(8) Expressi(r) in amplitude-phase form.
(b) If i(¢) flowsthrough a 2-2 resistor, how many
watts of average power will be dissipated?

16.58 Thesigna inFig. 16.66(a) is applied to the
high-passfilter in Fig. 16.77. Determine the value of
R such that the output signal v, (¢) has an average
power of least 70 percent of the average power of
the input signal.

1H

+
RIV,

A 100

Figure 16.77  For Prob. 16.58.

COMPREHENSIVE PROBLEMS

16.59 The voltage across a device is given by
v(t) = —2+ 10cos4r + 8cos6r + 6cos8t
—58in4t — 3sin6r — sin8t V
Find:
(a) the period of v(1),
(b) the average value of v(?),
(o) the effective value of v(t).

16.60 A certain band-limited periodic voltage has only
three harmonics in its Fourier series representation.
The harmonics have the following rms values:
fundamental 40 V, third harmonic 20 V, fifth
harmonic 10 V.

(a) If the voltageis applied across a 5-2 resistor,
find the average power dissipated by the resistor.

(b) If adc component is added to the periodic
voltage and the measured power dissipated
increases by 5 percent, determine the value of
the dc component added.

16.61 Write aprogram to compute the Fourier coefficients
(up to the 10th harmonic) of the square wavein

Table16.3withA =10and T = 2.

Write a computer program to calculate the
exponential Fourier series of the half-wave rectified

16.62

sinusoidal current of Fig. 16.73. Consider terms up
to the 10th harmonic.

16.63 Consider the full-wave rectified sinusoidal current in
Table 16.3. Assume that the current is passed
through a 1-<2 resistor.

(8) Find the average power absorbed by the resistor.

(b) Obtainc, forn =1, 2,3, and 4.

(c) What fraction of the total power is carried by the
dc component?

(d) What fraction of the total power is carried by the
second harmonic (n = 2)?

16.64 A band-limited voltage signal is found to have the
complex Fourier coefficients presented in the table
below. Calculate the average power that the signal
would supply a4-Q2 resistor.

nwo eyl 6y,
0 10.0 o°
w 85 15
2w 42 30
3w 21 4%
) 05 60

5w 02 75

Go to the Student OLC

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents


http://www.mhhe.com/engcs/electrical/alexander/student/olc/ch16_ppt.htm

	6653_Thomas_FM_WEB_p_i-ii
	Thomas12e_ch17p001-031
	Help
	EWB Help Page
	We want your feedback
	e-Text Main Menu
	Textbook Table of Contents
	Problem Solving Workbook
	Textbook Website
	OLC Student Center Website
	McGraw-Hill Website

	Preface
	Part 1 DC Circuits
	Chapter 1 Basic Concepts
	Chapter 2 Basic Laws
	Chapter 3 Methods of Analysis
	Chapter 4 Circuit Theorems
	Chapter 5 Operational Amplifiers
	Chapter 6 Capacitors and Inductors
	Chapter 7 First-Order Circuits
	Chapter 8 Second-Order Circuits

	Part 2 AC Circuits
	Chapter 9 Sinusoids and Phasors
	Chapter 10 Sinusoidal Steady-State Analysis
	Chapter 11 AC Power Analysis
	Chapter 12 Three-Phase Circuits
	Chapter 13 Magnetically Coupled Circuits
	Chapter 14 Frequency Response

	Part 3 Advanced Circuit Analysis
	Chapter 15 The Laplace Transform
	Chapter 16 The Fourier Series
	16.1 Introduction
	16.2 Trigonometric Fourier Series
	16.3 Symmetry Considerations
	16.4 Circuit Applications
	16.5 Average Power and RMS Values
	16.6 Exponential Fourier Series
	16.7 Fourier Analysis with PSpice
	† 16.8 Applications
	16.9 Summary
	Review Questions
	Problems
	Comprehensive Problems

	Chapter 17 Fourier Transform
	Chapter 18 Two-Port Networks

	Appendix A Solution of Simultaneous Equations Using Cramer’s Rule
	Appendix B Complex Numbers
	Appendix C Mathematical Formulas
	Appendix D PSpice for Windows
	Appendix E Answers to Odd-Numbered Problems
	Bibliography
	Index

	sctoc: 
	TOC: 
	e-text: 
	forward: 
	back-first: 
	background: 
	back: 
	forward-last: 
	studentolc: 


