NUMERICAL ANALYSIS

College of Petroleum and Mining Engineering

Dr. Ibrahim Adil Ibrahim Al-Hafidh
Mining Engineering Department
College of Petroleum and Mining Engineering
University of Mosul
Lecture 5

NUMERECAL DIFFERENTIATION AND INTEGRATION

Introduction

We were finding the polynomial curve $\boldsymbol{y}=f(x)$, passing through the ($n+1$) ordered pairs $\left(x_{i}, y_{i}\right), i=0,1$, $2, \ldots n$. Now we are trying to find the derivative value of such curves at given $\boldsymbol{x}=\boldsymbol{x}_{\boldsymbol{e}}$. Where $\boldsymbol{x}_{\boldsymbol{0}}<\boldsymbol{x}_{\boldsymbol{e}}<\boldsymbol{x}_{\boldsymbol{n}}$ (or even outside the range but closer to starting or end values). To get derivative, we first find the curve $\boldsymbol{y}=f(x)$ through the points and then differentiate and get its value at the required point.

If the values of x are equally spaced, we get the interpolating polynomial due to Newton-Gregory. If the derivative is required at point near the starting value in the table we use Newton's forward interpolation formula. If the require the derivative at the end of the table we use Newton's backward interpolation formula. If the value of derivative is required near the middle of the table value we use on of the central difference interpolation formulae.

Newton's forward difference formula to get the derivative

We are given $(n+1)$ ordered pairs $\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{\boldsymbol{i}}\right) i=0,1,2, \ldots \ldots . ., n$. we want to find the derivative of $y=f(x)$ passing through the $n+1$ points, at a point near to the starting value $\boldsymbol{x}=\boldsymbol{x}_{\boldsymbol{o}}$.
Newton's forward difference interpolation formula

$$
\begin{equation*}
y\left(x_{0}+u h\right)=y_{u}=y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\cdots, \tag{1}
\end{equation*}
$$

Where $\boldsymbol{y}(\boldsymbol{x})$ is a polynomial of degree \boldsymbol{n} in x and $\boldsymbol{u}=\frac{\boldsymbol{x}-x_{0}}{\boldsymbol{h}}$
Differentiating $\boldsymbol{y}(\boldsymbol{x})$ with respect to \boldsymbol{x}

$$
\begin{gather*}
\frac{d_{y}}{d_{x}}=\frac{d_{y}}{d_{u}} \cdot \frac{d_{u}}{d_{x}}=\frac{1}{h} \cdot \frac{d_{y}}{d_{u}} \\
\frac{d_{y}}{d_{x}}=\frac{1}{h}+\left[\Delta y_{0}+\frac{2 u-1}{2} \Delta^{2} y_{0}+\frac{3 u^{2}-6 u+2}{6} \Delta^{3} y_{0}+\frac{\left(4 u^{3}-18 u^{2}+22 u-6\right.}{24} \Delta^{4} y_{0}+\cdots\right] \tag{2}
\end{gather*}
$$

College of Petroleum and Mining Engineering

Equation (2) gives the value of $\frac{d_{y}}{d_{x}}$ at general \boldsymbol{x} which may be anywhere in the interval. In special case like $x=x_{0}$ i.e., $u=0$, equation (2) reduces to

$$
\begin{equation*}
\left(\frac{d y}{d x}\right)_{x=x_{0}}=\left(\frac{d y}{d x}\right)_{u=0}=\frac{1}{h}\left[\Delta y_{0}-\frac{1}{2} \Delta^{2} y_{0}+\frac{1}{3} \Delta^{3} y_{0}-\frac{1}{4} \Delta^{4} y_{0}+\ldots \ldots \ldots \ldots\right] \tag{3}
\end{equation*}
$$

Differentiating (2) again with respect to x,

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d u}\left(\frac{d y}{d x}\right) \cdot \frac{d u}{d x}=\frac{d}{d u}\left(\frac{d y}{d x}\right) \cdot \frac{1}{h}
$$

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\frac{1}{h^{2}}\left[\Delta^{2} y_{0}+(u-1) \Delta^{3} y_{0}+\frac{\left(6 u^{2}-18 u+11\right)}{12} \Delta^{4} y_{0}+\cdots\right] \tag{4}
\end{equation*}
$$

Equation (4) give the second derivative value at $x=x$.
Setting $x=x_{0}$ i.e. $u=0$ in (4)

$$
\begin{equation*}
\left(\frac{d^{2} y}{d x^{2}}\right)_{x=x_{0}}=\frac{1}{h^{2}}\left[\Delta^{2} y_{0}-\Delta^{3} y_{0}+\frac{11}{12} \Delta^{4} y_{0}-\frac{5}{6} \Delta^{5} y_{0}+\ldots \ldots \ldots . .\right] \tag{5}
\end{equation*}
$$

Newton's backward difference formula to compute the derivative

Now consider Newton's backward difference interpolation formula

$$
\begin{equation*}
y(x)=y\left(x_{n}+v h\right)=y n+v \nabla y_{n}+\frac{v(v+1)}{2!} \nabla^{2} y_{n}+\frac{v(v+1)(v+2)}{3!} \nabla^{3} y_{n}+\ldots \ldots \ldots \ldots \tag{6}
\end{equation*}
$$

Where

$$
v=\frac{x-x_{n}}{h}
$$

Differentiate (8) with respect to x

$$
\begin{gather*}
\frac{d_{y}}{d_{x}}=\frac{d_{y}}{d_{v}} \cdot \frac{d_{v}}{d_{x}}=\frac{1}{h} \cdot \frac{d_{y}}{d_{v}} \\
\left(\frac{d y}{d x}\right)=\frac{1}{h}\left[\nabla y_{n}+\frac{2 v+1}{2} \nabla^{2} y_{n}+\frac{3 v^{2}+6 v+2}{6} \nabla^{3} y_{n}+\frac{4 v^{3}+18 v^{2}+22 v+6}{24} \nabla^{4} y_{n}+\ldots \ldots \ldots\right] \tag{7}
\end{gather*}
$$

$$
\begin{equation*}
\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{1}{h^{2}}\left[\nabla^{2} y_{n}+(v+1) \nabla^{3} y_{n}+\frac{6 v^{2}+18 v+11}{12} \nabla^{4} y_{n}+\ldots \ldots \ldots\right] \tag{8}
\end{equation*}
$$

College of Petroleum and Mining Engineering

Equations (7 and 8) give the first and second derivative at any general x.
Setting $x=x_{n}$ or $v=0$ in (7 and 8) we get

$$
\left(\frac{d y}{d x}\right)_{x=x_{0}}=\frac{1}{h}\left[\nabla y_{0}+\frac{1}{2} \nabla^{2} y_{0}+\frac{1}{3} \nabla^{3} y_{0}+\frac{1}{4} \nabla^{4} y_{0}+\ldots \ldots \ldots .\right]
$$

$$
\left(\frac{d^{2} y}{d x^{2}}\right)_{x=x_{0}}=\frac{1}{h^{2}}\left[\nabla^{2} y_{0}+\nabla^{3} y_{0}+\frac{11}{12} \nabla^{4} y_{0}+\frac{5}{6} \nabla^{5} y_{0}+\frac{137}{180} \nabla^{6} y_{0}\right]
$$

Example

Find the first and two derivatives of $(x)^{1 / 3}$ at $x=50$ and $x=56$ given in the table below:

x	50	51	52	53	54	55	56
$y=\mathrm{x}^{1 / 3}$	3.684	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

Solution:
Sine we require $\left(\frac{d y}{d x}\right)$ at $\mathrm{x}=50$ we use Newton's forward formula and to get $\left(\frac{d y}{d x}\right)$ at $x=56$ we use Newton's backward formula.

College of Petroleum and Mining Engineering

x	y	1st diff.	2nd diff.	3rd diff.	4th diff.
50	3.6840				
		0.0244			
51	3.7084		-0.0003		
		0.0241		$\cdots 0$	
52	3.7325		-0.0003		
		0.0238		0	
53	3.7563		-0.0003		
		0.0235		0	
54	3.7798		-0.0003		
		0.0232		-0	
55	3.8030		-0.0603		
		0.0229			
56	3.8259				

College of Petroleum and Mining Engineering

By Newton's forward difference formula

$$
\begin{aligned}
& \left.\left(\frac{d y}{d x}\right)_{x=x_{0}}=\frac{1}{h}\left[\Delta y_{0}-\frac{1}{2} \Delta^{2} y_{0}+\frac{1}{3} \Delta^{3} y_{0}-\frac{1}{4} \Delta^{4} y_{0}+\ldots \ldots \ldots\right]\right] \\
& \left(\frac{d y}{d x}\right)_{x=50}=\frac{1}{1}\left[0.0244-\frac{1}{2}(-0.0003)+\frac{1}{3}(0)\right]=0.02455 \\
& \left(\frac{d^{2} y}{d x^{2}}\right)_{x=50}=\frac{1}{h^{2}}\left[\Delta^{2} y_{0}-\Delta^{3} y_{0}+\frac{11}{12} \Delta^{4} y_{0}-\frac{5}{6} \Delta^{5} y_{0}+\ldots \ldots \ldots .\right] \\
& \left(\frac{d^{2} y}{d x^{2}}\right)_{x=50}=1[-0.0003]=-0.0003
\end{aligned}
$$

By Newton's backward difference formula

$$
\begin{aligned}
& \left(\frac{d y}{d x}\right)_{x=x_{0}}=\frac{1}{h}\left[\nabla y_{0}+\frac{1}{2} \nabla^{2} y_{0}+\frac{1}{3} \nabla^{3} y_{0}+\frac{1}{4} \nabla^{4} y_{0}+\ldots \ldots \ldots\right] \\
& \left(\frac{d y}{d x}\right)_{x=56}=\frac{1}{1}\left[0.0229+\frac{1}{2}(-0.0003)+0\right]=0.02275 \\
& \left(\frac{d^{2} y}{d x^{2}}\right)_{x=x_{0}}=\frac{1}{h^{2}}\left[\nabla^{2} y_{0}+\nabla^{3} y_{0}+\frac{11}{12} \nabla^{4} y_{0}+\frac{5}{6} \nabla^{5} y_{0}+\frac{137}{180} \nabla^{6} y_{0}\right] \\
& \left(\frac{d^{2} y}{d x^{2}}\right)_{x=56}=\frac{1}{1}[-0.0003]=-0.0003
\end{aligned}
$$

Example

From the given table of values of \boldsymbol{x} and \boldsymbol{y} obtain:
(i) $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.2$
(ii) $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=2.2$

x	1	1.2	1.4	1.6	1.8	2.0	2.2
y	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

College of Petroleum and Mining Engineering

x	y	1 st diff.	2nd diff.	3rd diff.	4th diff.	5th diff.	6th diff.
1	2.7183						
		0.6018					
1.2	3.3201		0.1333				
		0.9351		0.0294			
1.4	4.0552		0.1627		0.0067		
		0.8978		0.0361		0.0013	
1.6	4.9530		0.1988		0.0080		0.0001
		1.0966		0.0441		$\underline{0} 0.0614$	
1.8	6.0496		0.2429		0.0694^{-}		
		1.3395		0.0535^{-}			
2.0	7.3891		0.2964				
		1.6359					
2.2	9.0250						

College of Petroleum and Mining Engineering

$$
\text { (i) } \begin{aligned}
\left(\frac{d y}{d x}\right)_{x=1.2}= & \frac{1}{h}\left[\Delta y_{0}-\frac{1}{2} \Delta^{2} y_{0}+\frac{1}{3} \Delta^{3} y_{0}-\frac{1}{4} \Delta^{4} y_{0}+\frac{1}{5} \Delta^{5} y_{0}\right] \\
\left(\frac{d y}{d x}\right)_{x=1.2}= & \frac{1}{0.2}\left[0.7351-\frac{1}{2} \times 0.1627+\frac{1}{3} \times 0.0361\right. \\
& \left.-\frac{1}{4} \times 0.008+\frac{1}{5} \times 0.0014\right]=3.3203
\end{aligned}
$$

$$
\begin{aligned}
&\left(\frac{d^{2} y}{d x^{2}}\right)_{x=x_{0}}=\frac{1}{h^{2}}\left[\Delta^{2} y_{0}-\Delta^{3} y_{0}+\frac{11}{12} \Delta^{4} y_{0}-\frac{5}{6} \Delta^{5} y_{0}+\ldots \ldots \ldots . .\right] \\
& \begin{aligned}
\left(\frac{d^{2} y}{d x^{2}}\right)_{x=1.2} & =\frac{1}{(0.2)^{2}}\left[0.1627-0.0361+\frac{11}{12} \times 0.008-\frac{5}{6} \times 0.0014\right] \\
& =3.319
\end{aligned}
\end{aligned}
$$

(ii) $\left(\frac{d y}{d x}\right)_{x=x_{0}}=\frac{1}{h}\left[\nabla y_{0}+\frac{1}{2} \nabla^{2} y_{0}+\frac{1}{3} \nabla^{3} y_{0}+\frac{1}{4} \nabla^{4} y_{0}+\frac{1}{5} \nabla^{5} y_{0}+\frac{1}{6} \nabla^{6} y_{0}\right]$

$$
=\frac{1}{0.2}\left[1.6359+\frac{1}{2} \times 0.2964+\frac{1}{3} \times 0.0535+\frac{1}{4} \times 0.0094\right.
$$

$$
\left.+\frac{1}{5} \times 0.0014+\frac{1}{6} \times 0.0001\right]=9.0229
$$

College of Petroleum and Mining Engineering

$$
\begin{aligned}
\left(\frac{d^{2} y}{d x^{2}}\right)_{x=2.2}= & \frac{1}{h^{2}}\left[\nabla^{2} y_{0}+\nabla^{3} y_{0}+\frac{11}{12} \nabla^{4} y_{0}+\frac{5}{6} \nabla^{5} y_{0}+\frac{137}{180} \nabla^{6} y_{0}\right] \\
= & \frac{1}{(0.2)^{2}}\left[0.2964+0.0535+\frac{11}{12} \times 0.0094+\frac{5}{6} \times 0.0014\right. \\
& \left.+\frac{137}{180} \times 0.0001\right]=8.994
\end{aligned}
$$

Example

The distance moved by a particle along curve are recorded at intervals of 0.5 sec

$\boldsymbol{t}(\mathrm{sec})$	4.5	5.0	5.5	6.0	6.5	7.0	7.5
$\boldsymbol{x}(\boldsymbol{m})$	9.69	12.9	16.71	21.18	26.37	32.34	39.15

Find the velocity and acceleration at $t=6 \mathrm{sec}$

College of Petroleum and Mining Engineering

t	x	1st diff.	2nd diff.	3rd diff.	4th diff.	5th diff.	6th diff.
4.4	9.69						
		3.21					
5.0	12.9		0.6		-		
		3.81		0.06^{-}			
5.5	16.71		0.66^{-}		0		
		$4.47-$		0.06		0	
6.0	21.18		0.72		0		0
		5.19		0.06		0	
6.5	26.37		-0.78		0		
		5.97		-0.06			
7.0	32.34		0.84		-		
		6.81					
7.5	39.15						

College of Petroleum and Mining Engineering

Newton's forward difference formula

$$
\begin{aligned}
V=\left(\frac{d y}{d x}\right)_{x=6} & =\frac{1}{h}\left[\Delta y_{0}-\frac{1}{2} \Delta^{2} y_{0}+\frac{1}{3} \Delta^{3} y_{0}\right] \\
& =\frac{1}{0.5}\left[5.19-\frac{1}{2} \times 0.78+\frac{1}{3} \times 0.06\right]=9.64 \\
A=\left(\frac{d^{2} y}{d x^{2}}\right)_{x=6} & =\frac{1}{h^{2}}\left[\Delta^{2} y_{0}-\Delta^{3} y_{0}\right] \\
& =\frac{1}{(0.5)^{2}}[0.78-0.06]=2.88
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{d y}{d x}\right)_{x=x_{0}}=\frac{1}{h}\left[\nabla y_{0}+\frac{1}{2} \nabla^{2} y_{0}+\frac{1}{3} \nabla^{3} y_{0}+\frac{1}{4} \nabla^{4} y_{0}+\ldots \ldots \ldots .\right] \\
& \\
& =\frac{1}{0.5}\left[4.47+\frac{1}{2} \times 0.66+\frac{1}{3} \times 0.06\right]=9.64 \\
& \begin{aligned}
A=\left(\frac{d^{2} y}{d x^{2}}\right)_{x=6} & =\frac{1}{h^{2}}\left[\Delta^{2} y_{0}+\Delta^{3} y_{0}\right] \\
& =\frac{1}{(0.5)^{2}}[0.66+0.06]=2.88
\end{aligned}
\end{aligned}
$$

