NUMERICAL ANALYSIS College of Petroleum and Mining Engineering

Dr. Ibrahim Adil Ibrahim Al-Hafidh

Mining Engineering Department College of Petroleum and Mining Engineering University of Mosul

> Lecture 1 & 2 FINITE DIFFERENCE

1 Engineering Analysis Dr. Ibrahim Al-Hafidh

FINITE DIFFERENCE

Interpolation

Let y = f(x) be a function of x

The corresponding values of y for a set a, a + h, a + 2h, a + 3h, ..., a + nh are given as:

$$y_0 = f(a)$$
, $y_1 = f(a+h)$, $y_2 = f(a+2h)$, ..., $y_n = f(a+nh)$

a + nh اذن هي عملية ايجاد قيمة y عند اي قيمة ل x محصورة بين a و

Extrapolation

$$a+nh$$
 هي عملية ايجاد قيمة y عند اي قيمة ل x خارج الفترة المحصورة بين a و

Finite Differences 1- First difference

Let y=f(x) be a given function of x and let $y_0, y_1, y_2, y_3, \dots, y_n$ be the value of y corresponding to x_0 , $x_1, x_2, x_3, \dots, x_n$, the values of x. the independent variables x is called the *argument* and the corresponding dependent value y is called, the *entry*. In general, the difference between any two consecutive values of x need not be same or equal.

We can write the arguments and entries as below.

if we subtract from each value of y (except y_0) the preceding value of y, we get

 $y_1 - y_0, y_2 - y_1, y_3 - y_2, \dots, y_n - y_{n-1}$

These results are called the first difference of y. The first difference of y are denoted by Δy .

That is, $\Delta y_0 = y_1 - y_0$ $\Delta y_1 = y_2 - y_1$ $\Delta y_2 = y_3 - y_2$ $\Delta y_{n-1} = y_n - y_{n-1}$

The symbol Δ doenotes an operation, called *forward difference operator*.

Higher differences: The *second* and higher difference are defined as below:

$$\Delta^2 y_0 = \Delta(\Delta y_0) = \Delta(y_1 - y_0) = \Delta y_1 - \Delta y_0$$
$$\Delta^2 y_1 = \Delta(\Delta y_1) = \Delta(y_2 - y_1) = \Delta y_2 - \Delta y_1$$

$$\Delta^2 y_{n-1} = \Delta(\Delta y_{n-1}) = \Delta(y_n - y_{n-1}) = \Delta y_n - \Delta y_{n-1}$$

.

Here, Δ^2 is an operator called, second order forwarded difference operator. *Email: iibrahim@uomosul.edu.iq*

In the same way, the third order forward difference operator Δ^3 is as follows:

That is,	$\Delta^3 y_0 = \Delta^2 y_1 - \Delta^2 y_0$
	$\Delta^3 y_1 = \Delta^2 y_2 - \Delta^2 y_1$
	etc.
In general	$\Delta^n y_i = \Delta^{n-1} y_{i+1} - \Delta^{n-1} y_i$

Though the *arguments* x_0 , x_1 , x_2 need not, in general be equally spaced, for purposes of practical work, we take them equally spaced.

Usually, the *arguments* are taken as:

$$x_0, x_0+h, x_0+2h, x_0+3h$$
.....

So that

$$x_1 - x_0 = x_2 - x_1 = x_3 - x_2 = \dots = h$$

Here, h is called the *interval of differencing*.

Operators, We have already defined the forward difference operator Δ . We will now see some more operators and the relations connecting them.

Backward difference operator (∇) :

Backward difference operator (∇) is defined as:

By definition

$$\nabla f(x) = f(x) - f(x - h)$$
$$\nabla y_1 = y_1 - y_0$$
$$\nabla y_2 = y_2 - y_1 \quad \text{etc}$$

Finite Differences

Consider the function y = f(x)Suppose $y_0 = f(a)$, $y_1 = f(a+h)$ $y_1 - y_0$ is called the first difference of y_0 $y_1 - y_0 = \Delta y_0$ $\Delta \rightarrow$ denote the difference operator and the first difference of y_0

 $\Delta^2 \rightarrow$ the second difference operato

Values of <i>x</i>	Values of y	First difference	Second difference	Third difference	Fourth difference
a (x ₀)	<i>y</i> ₀				
		Δy_0			
a+h (x ₁)	<i>y</i> ₁		$\Delta^2 y_0$		
		Δy_1		$\Delta^3 y_0$	
a+2h (x ₂)	<i>y</i> ₂		$\Delta^2 y_1$		$\Delta^4 y_0$
		Δy_2		$\Delta^3 y_1$	
a+3h (x ₃)	<i>y</i> ₃		$\Delta^2 y_2$		
		Δy_3			
a+4h (x ₄)	<i>y</i> ₄				

Newtons Forward Interpolation Formula

$$f(a+h) = E \cdot f(a) = (1 + \Delta) \cdot f(a)$$

$$f(a+2h) = E \cdot f(a+h) = E \cdot E \cdot f(a) = E^2 f(a) = (1 + \Delta)^2 f(a)$$

$$f(a+3h) = (1+\Delta)^3 f(a)$$

$$f(a+nh) = (1+\Delta)^n f(a)$$

On expanding $(1 + \Delta)^n$ by Binomial theorem, we get

$$f(a+nh) = f(a) + n \Delta f(a) + \frac{n(n-1)}{2!} \Delta^2 f(a) + \dots \dots$$

Example

Using Newtons forward interpolation formula, and the give table of values:

x	1.1	1.3	1.5	1.7	1.9
f(x)	0.21	0.69	1.25	1.89	2.61

Obtain the value of f(x) when x = 1.4

x	f(x)	Δ	Δ^2	Δ^3	Δ^4
a 1.1	F(a) 0.21	∆F(a)			
		0.48	Δ ² F(a)		
1.3	0.69		0.08	∆³F(a)	
		0.56		0	∆⁴F(a)
1.5	1.25		0.08		0
		0.64		0	
1.7	1.89		0.08		
		0.72			
1.9	2.61				

$$a = 1.1$$
 , $f(a) = 0.21$
 $\Delta f(a) = 0.48$, $\Delta^2 f(a) = 0.08$, $\Delta^3 f(a) = 0$
 $h = 0.2$
 $a + nh = x \rightarrow 1.1 + n \times 0.2 = 1.4 \rightarrow n = 1.5$
 $f(a + nh) = f(a) + n \Delta f(a) + \frac{n(n-1)}{2!} \Delta^2 f(a) + \dots \dots$

$$f(1.4) = 0.21 + 1.5 \times 0.48 + \frac{1.5(1.5-1)}{2 \times 1} \times 0.08 = 0.96$$

Example

The following are data from table:

<i>Temperature</i> °С	140	150	160	170	180
Pressure kg/cm ²	3.685	4.854	6.302	8.076	10.225

Using Newtons forward interpolation formula, find the pressure at the temperature of 142 °C

Temp.	Press.	Δ	Δ^2	Δ^3	Δ^4
140	3.685				
		1.169			
150	4.854		0.279		
		1.448		0.047	
160	6.302		0.326		0.002
		1.774		0.049	
170	8.076		0.375		
		2.149			
180	10.225				

$$a + nh = 142 \rightarrow 140 + n \times 10 = 142 \rightarrow n = 0.2$$

$$f(a + nh) = f(a) + n \Delta f(a) + \frac{n(n-1)}{2!} \Delta^2 f(a) + \frac{n(n-1)(n-2)}{3!} \Delta^3 f(a)$$

$$+ \frac{n(n-1)(n-2)(n-3)}{4!} \Delta^4 f(a)$$

$$f(142) = 3.685 + 0.2 \times 1.169 + \frac{0.2(0.2 - 1)}{2 \times 1} \times 0.279$$

$$+ \frac{0.2(0.2 - 1)(0.2 - 2)}{3 \times 2 \times 1} \times 0.047 + \frac{0.2(0.2 - 1)(0.2 - 2)(0.2 - 3)}{4 \times 3 \times 2 \times 1} \times 0.002$$

Email: iibrahim@uomosul.edu.iq

= 3.899

Example

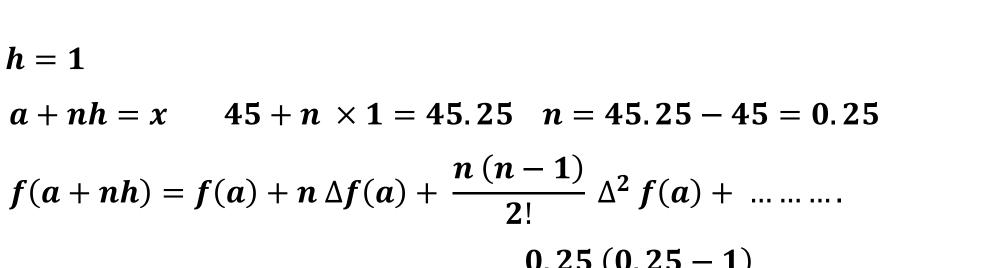
From the following table, find the value of *tan* 45.25

x	45	46	47	48	49	50
tan x	1	1.03553	1.07237	1.11061	1.15037	1.19175

Using Newtons forward interpolation formula

x	f(x)	Δ	Δ^2	Δ^3	Δ^4	Δ ⁵
45	1					
		0.03553				
46	1.03553		0.00131			
		0.03684		0.00009		
47	1.07237		0.0014		0.00003	
		0.03824		0.00012		-0.00005
48	1.11061		0.00152		-0.00002	
		0.03976		0.0001		
49	1.15037		0.00162			
		0.04138				
50	1.19175					

h = 1



 $f(45.25) = 1 + 0.25 \times 0.03553 + \frac{0.25(0.25-1)}{2 \times 1} \times 0.00131$

$$+ \frac{0.25(0.25-1)(0.25-2)}{3 \times 2 \times 1} \times 0.00009$$

+
$$\frac{0.25(0.25-1)(0.25-2)(0.25-3)}{4 \times 3 \times 2 \times 1} \times 0.00003$$

$$+ \frac{0.25(0.25-1)(0.25-2)(0.25-3)(0.25-4)}{5 \times 4 \times 3 \times 2 \times 1} \times (-0.00005)$$

= 1.00876

Newtons Formula for Backward differences

$$\nabla f(a) = f(a) - f(a - h)$$
$$f(a - h) = (1 - \nabla)f(a)$$
$$f(a - 2h) = (1 - \nabla)^2 f(a)$$
$$f(a - nh) = (1 - \nabla)^n f(a)$$

$$f(a-nh) = f(a) - n\nabla f(a) + \frac{n(n-1)}{2!} \nabla^2 f(a) - \frac{n(n-1)(n-2)}{3!} \nabla^3 f(a) + \dots$$

Example

Use the Newtons formula for backward difference to estimate f(7.5) from the following data

x	1	2	3	4	5	6	7	8
f(x)	1	8	27	64	125	216	343	512

		•			0 0			
x	f(x)	V	∇^2	∇^3	V ⁴	V ⁵	V ⁶	V ⁷
1	1							
		7						
2	8		12					
		19		6				
3	27		18		0			
		37		6		0		
4	64		24		0		0	
		61		6		0		0
5	125		30		0		0	
		91		6		0		
6	216		36		0			
		127		6				
7	343		42					
		169						
8	512							

$$a = 8 , \quad h = 1$$

$$a - nh = 7.5 \rightarrow 8 - n \times 1 = 7.5 \rightarrow n = 0.5$$

$$f(a - nh) = f(a) - n\nabla f(a) + \frac{n(n-1)}{2!} \nabla^2 f(a) - \frac{n(n-1)(n-2)}{3!} \nabla^3 f(a) + \dots \dots$$

$$f(7.5) = 512 - 0.5 \times 169 + \frac{0.5 \times (0.5 - 1)}{2 \times 1} \times 42 - \frac{0.5 \times (0.5 - 1) \times (0.5 - 2)}{3 \times 2 \times 1} \times 6$$

= 421.875

Example

From the following compute the value *sin* 38, Use the Newtons formula for backward difference

x	0	10	20	30	40
sin x	0	0.17365	0.34202	0.5	0.64279

x	sin x	V	∇^2	∇^3	V ⁴
0	0				
		0.17365			
10	0.17365		-0.00528		
		0.16837		-0.00511	
20	0.34202		-0.01039		0.00031
		0.15798		-0.0048	
30	0.5		-0.01519		
		0.14279			
40	0.64279				

$$-\frac{0.2 \times (0.2 - 1) \times (0.2 - 2)}{3 \times 2 \times 1} \times (-0.0048) + \frac{0.2 \times (0.2 - 1)(0.2 - 2)(0.2 - 3)}{4 \times 3 \times 2 \times 1} \times 0.00031 = 0.61566$$

