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xamples of Use of the Bernoulli Equation

In this section we illustrate various additional applications of the Bernoulli
equation. Between any two points, (1) and (2), on a streamline in steady,
inviscid, incompressible flow the Bernoulli equation can be applied in the

form,

p1 T %PV% T Y, = py T %pV% + Y2y | oo (1)

Obviously, if five of the six variables are known, the remaining one can be
determined.
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oldest equations in fluid mechanics
deals with the flow of a liquid from a large
reservoir. The basic principles of this type of h
flow are shown in Fig. A. Where a jet of liquid of
diameter d flows from the nozzle with velocity
V.

(A nozzle is a device shaped to accelerate a
fluid.) Application of Eq. 1 between points (1)
and (2) on the streamline shown gives X+ 300+ v =¥ + 30Vt Ko

vh = %sz ......... (2)

We have used the facts that z; = h, z,=0, the reservoir is large (V1= 0) and open
to the atmosphere (p,=0 gage), and the fluid leaves as a “free jet" (p,=0).
Thus, we obtain

Figure (A)

V= 2’)/_/2:\/2?1 ......... (3)
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pressure throughout (ps=0) and as seen by applying Eq. 1 between points (1)
and (5), the speed increases according to

1 2 1 2
P1 +§pV1 + vz; = ps +§pV5+725

1,
P5+§PV5 — YH

1 2
p1+§pV1+yh

1 2
Yyh+vyvH =5 PVs

V=V2g(h+H) |.... (4)

where, as shown in Fig. A, H is the distance the fluid has fallen outside the
nozzle.
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7
we have p,=0.

Equation 3 could also be obtained by writing
the Bernoulli equation between points (3) and
(4) using the fact that z,=0, z;=I. Also, V;=0
since it is far from the nozzle,

and from hydrostatics, p; =y(h — D).

1 2 1 2
Ps3 +EPV3 T VZ3; = Py +EPV4 T VZ,

1 2
y(h—-D+yl = EPVAL — VYV Z

1 2
yh=EpV4_,

1/23/2025
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As learned in physics or dynamics and illustrated in the figure (B), any object
dropped from rest that falls through a distance h in a vacuum will obtain the

speed V = ,/2gh, the same as the water leaving the spout of the watering

can shown in the figure (C).

This is consistent with the fact that all of the
particle’s potential energy is converted to
kinetic energy, provided viscous (friction)
effects are negligible.

In tferms of heads, the elevation head at
point (1) is converted into the velocity
head at point (2).

The pressure is the same (atmospheric) at
points (1) and (2) in Figure (A).
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Ozzle of Figure (D), the velocity of the fluid af the

e, V,, will be slightly greater than that at the top, V,;, and slightly
less than that at the bottom, V;, due to the differences in elevation. In
general, d < h as shown in Figure (E) and we can safely use the centerline

velocity as a reasonable “average velocity”.

= -

Figure (D)

Figure (E)

Horizontal flow from a tank
Dr. Ibrahim Al-Hafidh / College of Petroleum and Mining Engineering

1/23/2025



If the exit is not a smooth, well-contoured
nozzle, but rather a flat plate as shown in
Figure (F), the diameter of the jet, d; will
be less than the diameter of the hole, d,.
This phenomenon, called a vena
confracta effect, is a result of the inabillity
of the fluid to turn the sharp 90° corner
iIndicated by the dotted lines in the

figure. g l
@) (1)4;‘
((‘(3)
Figure (D)
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Vena contracta effect for a sharp-edged orifice
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" Since the streemincau kit TG plane are curved (R < ),

S Across them is not constant.

It would take an infinite pressure gradient across the
streamlines to cause the fluid to furn a “sharp” corner
(R=0).

The highest pressure occurs along the centerline at (2)
and the lowest pressure, p;=p;=0, is at the edge of
the jef.

Thus, the assumption of uniform velocity with straight
streamlines and constant pressure is not valid at the
exit plane. It is valid, however, in the plane of the
vena confracta, section a-a. The uniform velocity
assumption is valid at fthis section provided d; < h Qs is
discussed for the flow from the nozzle shown in Figure
D.
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Figure (F)
Vena contracta effect for a
sharp-edged orifice
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The vena contracta effect is @
function of the geometry of the
outlet. Some typical configurations
are shown in Figure (G) along with
typical values of the experimentally
obtained contraction coefficient,
C.=Ai/A,, where A;and A, are the
areqas of the jet at the vena
contracta and the area of the hole,

respectively

Figure (G)
Typical flow patterns and contraction coefficients for various
round exit configurations.
(a) Knife edge, (b) Well rounded,
(c) Sharp edge, (d) Re-entrant.
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b- Confined Flows

In many cases the fluid is physically constrained within a device
so that ifs pressure cannot be prescribed a priori as was done
for the free jet examples above. Such cases include nozzles
and pipes of variable diameter for which the fluid velocity T
changes because the flow area is different from one section to
another.

For this situations It is necessary to use the concept of
conservation of mass (the continuity equation) along with the
Bernoulli equation. S (1)

Figure (H)

) i o . . 1/23/2025
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Consider a fluid flowing through a fixed volume (such as a syringe) that has
one inlet and one outlet as shown in Figure (l).

If the flow is steady so that there is no additional accumulation of fluid within
the volume, the rate af which the fluid flows info the volume must equal the
rate at which it flows out of the volume (otherwise, mass would not be
conserved).

— V] Ot j=—
: ? ___WI‘/Volume:VI otA; ;4_‘/2&4’! _____ 1
4 f I : V2 i I I
T o S
\ " ] (2) /T
B 1) Volume =V, 6t A,
Fluid parcel at t=0 f::l Same parcel at 1 = 6t
© John Wiley & Sons, Inc. Al rights reserved.
Figure (l) Figure (J)

. . .. . . 1/23/2025
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The mass flowrate from an outlet, m (slugs/s or kg/s), is given by m = pQ, where Q
(ft3/s or m3/s) is the volume flowrate and p density (slugs/ft3 or kg/m3). If the
outlet area is A and the fluid flows across this area (hormal to the area) with an
average velocity V, then the volume of the fluid crossing this area in a time
intferval 6t is VA 6t , equal to that in a volume of length Vét and cross-sectional
area A (see Figure J). Hence, the volume flowrate (volume per unit time) is
Q=VA. Thus, m = pVA.

A . I
= 1 ~— 1, 6t
- I | _~Volume =V, 6t A, 2 4»’
« NN < e
P > I
Vi . | | V2 > : |
- SR
= | =
- ] (2) /T
1) Volume =V, 6t A,
Fluid parcel at t=0 |L | Same parcel at ¢t = 6t
Figure 3.15b
© John Wiley & Sons, Inc. All rights reserved.
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O conserve mass, the inflow rate must equal the outflow rate. If the inlet is
designated as (1) and the outlet as (2), it follows that m,=m,. Thus, conservation

of mass requires,

p1A V) = p AV,

If the density remains constant, then p; = p, and the above
becomes the continuity equation for incompressible flow

AIVI — A2V2, or Ql — Q2 ......... (5)

For example, if as shown by the figure (H) the outlet flow area is
one-half the size of the inlet flow areaq, it follows that the ouftlet
velocity is twice that of the inlet velocity, since V,=A,V,/A, = 2V,

Dr. Ibrahim Al-Hafidh / College of Petroleum and Mining Engineering
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LEXAMPLE 3.7 il RigL K Tank—Gravity Driven

GIVEN A stream of refreshing beverage of diameterd =0.01m FIND Determine the flowrate, 0, from the bottle into the
flows steadily from the cooler of diameter D = 0.20 m as shown  cooler if the depth of beverage in the cooler is to remain constant
in Figs. E3.7a and b. ath = 0.20 m.

1.10
0i0, 1.05
{0.05, 1.000003)
1.00
a 0.2 0.4 0.6 0.8

a0

(ed

M Figure E3.7

—

SoLUTION

For steady, inviscid, incompressible flow, the Bernoulli equation
applied between points (1) and (2) is

Pyt ipVi+ vz = pa + Vit vz n
With the assumptions thatp, = p, = 0,7, = h,and z; = (0, Eg. 1
becomes
2)

Although the liquid level remains constant (# = constant), there is an
average velocity, V|, across section (1) because of the flow from the
tank. From Eq. 5§  for steady incompressible flow, conservation of
mass requires (J; = (J;, where 0 = AV. Thus, AV, = A,V or

Vi + gh =3V

%Dlv, = %a’l‘r’z

Hence,
d 2
Vi = (E) Va (3)
Equations 1 and 3 can be combined to give
2{9.81 1)(0.20
v, = —2 [2081 /Y00 _ oy .
V1-@py  V1- (001 m/020m)
Thus,
=4V, =AW= %{ﬂ.l]l m)*(1.98 m/s)
= 1.56 X 10~ m'/s (Ans)

COMMEMTS In this example we have not neglected the
kinetic energy of the water in the tank (V, # 0). If the tank
diameter is large compared to the jet diameter (D 2 d), Eqg. 3
indicates that V| <€ V; and the assumption that ¥ = 0 would be
reasonable. The error associated with this assumption can be
seen by calculating the ratio of the flowrate assuming V|, # 0,
denoted @, to that assuming V|, = 0, denoted @ This ratio,

Wwritten as
Q v, _ Vh/1-(d/D)] _ I
Oy Valp-= V2gh V1 = (d/D)

is plotted in Fig. E3.T7c. With 0 < J/D < 04 it follows that
1 < @/0y = 1.01, and the error in assuming V; = 0 is less than
1%%. For this example with /D = (.01 m/0.20 m = 0.05, it follows
that 40, = 1.000003. Thus, it is often reasonable to assume
V] = (.

Note that this problem was solved using points (1) and (2)
located at the free surface and the exit of the pipe, respectively.
Although this was convenient (becanse most of the variables are
known at those points), other points could be selected and the
same result would be obtained. For example, consider points (1)
and (3) as indicated in Fig. E3.7b. At (3), located sufficiently far
from the tank exit, V; = O and z, = z, = (. Also, p, = yh since the
pressure is hydrostatic sufficiently far from the exit. Use of this
information in the Bernoulli equation applied between (3) and (2)
gives the exact same result as obtained using it between (1) and
(2). The only difference is that the elevation head, z;, = h. has
been interchanged with the pressure head at (3), pafy = i

Dr. Ibrahim Al-Hafidh / College of Petroleum and Mining Engineering
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—EXAMPLE 3.8 BAYRIT T

GIVEN Air flows steadily from a tank, through a hose of di-
ameter D = 0.03 m, and exits to the atmosphere from a nozzle of
diameter d = 0.01 m as shown in Fig. E3.8. The pressure in the
tank remains constant at 3.0 kPa (gage) and the atmospheric con-
ditions are standard temperature and pressure.

FIND Determine
(a) the flowrate and
(b) the pressure in the hose.

SOLUTION

nk—Pressure Driven

d=0.01m

* 0
(3)

p =30 kPa [:: 0.03m

M Figure E3.8a

(a) If the flow is assumed steady, inviscid, and incompressible,
we can apply the Bernoulli equation along the streamline
from (1) to (2) to (3) as

ptapVityn =ptapVityn
=pst3pVit oy,
With the assumption that z; = z, = z; (horizontal hose),
V, = 0(large tank), and p; = 0 (free jet), this becomes

2
v= 2
P

p2=pi = 3pV3 (1
The density of the air in the tank is obtained from the

perfect gas law, using standard absolute pressure and
temperature, as

and

Dr. Ibrahim Al-Hafidh / College of Petroleum and Mining Engineering

P
" RT,

(3.0 + 101) kN/m* X 10° N/kN
"~ (286.9N - m/kg - K)(15 + 273)K
= 1.26 kg/m’

Thus, we find that

2(3.0 % 10° N/m?)
Vimy—— = 69.0m/s
: 1.26 kg/m’ m/s

0=AV; = %d’vs = %(n_m m)*(69.0 m/s)

= 0.00542 m’/s

or

(Ans)

COMMENT Note that the value of V; is determined strictly by
the value of p, (and the assumptions involved in the Bernoulli equa-
tion), independent of the “shape™ of the nozzle. The pressure head
within the tank, p/y = (3.0kPa)/(9.81 m/s%)(1.26 kg/m’) =
243 m, is converted to the velocity head at the exit, V3/2g =

(69.0 m/s)*/(2 % 9.81 m/s®) = 243 m. Although we used gage
pressure in the Bernoulli equation (p; = 0). we had to use absolute
pressure in the perfect gas law when calculating the density.

{b) The pressure within the hose can be obtained from Eqg. 1
and the continuity equation (Eq 5)

AV, = A3V,
Hence,
Vo= AV3 /A, = (‘_f)zvs
D
0.0l mY
= (m) (69.0 m/s) = 7.67 m/s
and from Eq. 1

pa = 3.0 X 10* N/m* — 1 (1.26 kg/m*)(7.67 m/s)*

= (3000 — 37.1)N/m* = 2963 N/m’ (Ans)
COMMENTS In the absence of viscous effects, the pressure
throughout the hose is constant and equal to p,. Physically, the
decreases in pressure from p, to p, to py accelerate the air and
increase its kinetic energy from zero in the tank to an interme-
diate value in the hose and finally to its maximum value at the
nozzle exit. Since the air velocity in the nozzle exit is nine

3000
(0.01 m, 2963 N/m®)
2000
E
=
&
1000
0
0 0.01 0.02 0.03

B Figure E3.8b

0.05

0.04

0.03

Q, mifs

0.02

0.01

(0.01 m, 0.00542 m%/s)

o 0.01 0.02 0.03
d, m

B Figure E3.8¢

times that in the hose, most of the pressure drop occurs across
the nozzle (p, = 3000 N/m? p, = 2963 N/m’, and p, = 0).

Since the pressure change from (1) to (3) is not too great
[i.e., in terms of absolute pressure (p; — ps)/p; = 3.0/101 =
0.03], it follows from the perfect gas law that the density change
is also not significant. Hence, the incompressibility assumption is
reasonable for this problem. If the tank pressure were consider-
ably larger or if viscous effects were important, application of the
Bernoulli equation to this situation would be incorrect.

By repeating the calculations for various nozzle diameters, d,
the results shown in Figs. E3.8b.c are obtained. The flowrate in-
creases as the nozzle is opened (i.e., larger J). Note that if the noz-
zle diameter is the same as that of the hose (4 = 0.03 m), the pres-
sure throughout the hose is atmospheric (zero gage).
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N general, an increase in velocity is accompanied by a decrease in pressure.
For example, the velocity of the air flowing over the top surface of an airplane
wing is, on the average, faster than that flowing under the bottom surface.
Thus, the net pressure force is greater on the bottom than on the top—the

wing generates a lift.
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