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""’. Dimensional Analysis of Pipe Flow S
IS often necessary to determine the head loss, that occurs in a pipe flow so that the

energy equation (1), can be used in the analysis of pipe flow problems.

VZ ) VE
Pout + out + 7 — pﬂ a o T T (1)
y 2g out ‘y zg In L

As shown in Fig.(1), a typical pipe system usually consists of various lengths of straight
pipe interspersed with various types of components (valves, elbows, etc.). The overall
head loss for the pipe system consists of the head loss due to viscous effects in the
straight pipes, termed the major loss and denoted h .., and the head loss in the
various pipe components, termed the minor loss and denoted h, ..o, That s,
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The head loss designations of “major” and “minor” do not necessarily reflect the relative
Importance of each type of loss.

For a pipe system that contains many components and a relatively short length of pipe, the
minor loss may actually be larger than the major loss.

M Figure 1 Typical pipe system components.
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Major losses /

A dimensional analysis treatment of pipe flow provides the most convenient base from
which to consider turbulent, fully developed pipe flow. Ap =p, - p,

The pressure drop and head loss in a pipe are (1) (2)
dependent on the wall shear stress, T between the fluid
and pipe surface. A fundamental difference between
laminar and turbulent flow is that the shear stress for
turbulent flow is a function of the density of the fluid, p.
For laminar flow, the shear stress is independent of the

density, leaving the viscosity, u as the only important L

fluid prop_erct}_/. _ _ _
Thus, as indicated by the figure in the margin, the pressure drop, for steady,

Incompressible turbulent flow in a horizontal round pipe of diameter D can be written in
functional form as,

Ap = F(V,D,I,g,lj,p) ................... (3)
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Ap= F(V,D, I, & u,p)

V- is the average velocity, Ap =p, — P

- is the pipe length, (1) (2)
€ - Is a measure of the roughness of the pipe wall.

D — Pipe diameter.

It is clear that Ap should be a function of V, D, and | .

The dependence of on the fluid properties, viscosity g and
density p is expected because of the dependence of on these A
parameters. L € "

Although the pressure drop for laminar pipe flow is found to be independent of the
roughness of the pipe, it is necessary to include this parameter when considering turbulent
flow.

for turbulent flow there is a relatively thin viscous sublayer formed in the fluid near the pipe
wall. In many instances this layer is very thin;
6; < 1, where §; Is the sublayer thickness.
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If a typical wall roughness element
protrudes sufficiently far into (or even
through) this layer, the structure and
properties of the viscous sublayer (along
with Ap and z) will be different than if the
wall were smooth.

Thus, for turbulent flow the pressure drop
IS expected to be a function of the wall
roughness. For laminar flow there is no
thin viscous layer—viscous effects are
Important across the entire pipe. Thus,
relatively small roughness elements have
completely negligible effects on laminar
pipe flow.

Dr. Ibrahim Al-Hafidh / College of Petroleum and Mining Engineering

s - 7

o

:

: Velocity

q profile, it = wly)

-

-
0 q
L=

| |
T —
X

Viscous sublayer

/ . S
i ll.- ycﬂ_"."-ll t . 1I
| -_ |

| 2Vie .

£ ".\gk'( / 5" \ _ — .-I
\ |
T Ny d <. 4 T

Rough wall Smooth wall
M Figure 2 Flow in the viscous sublayer

near rough and smooth walls.
1/23/2025



or pipes with very large wall “roughness” (&/D > 0.1), such as that in
corrugated pipes, the flowrate may be a function of the “roughness.” We will
consider only typical constant diameter pipes with relative roughness in the
range (0 < /D =< 0.05). Analysis of flow in corrugated pipes does not fit into the
standard constant diameter pipe category, although experimental results for

?ngigt%?Snggr%\e/?e”rasbglyel\'/en In EqQ. 3 is apparently a complete one. That is, experiments
have shown that other parameters (such as surface tension, vapor pressure, etc.) do not
affect the pressure drop for the conditions stated (steady, incompressible flow; round,
horizontal pipe). Since there are seven variables (k=7) that can be written in terms of the
three reference dimensions MLT (r = 3) Eq. 3 can be written in dimensionless form in terms
of kK —r = 4 dimensionless groups. One such representation is,

Ap ~(pPVD € &
1 2 — (b ( . D - D -------------------- (4)
2PV

Re = % , Reynolds number

- &
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The functional representation can be simplified by imposing the reasonable assumption
that the pressure drop should be proportional to the pipe length. Such a step is not within
the realm of dimensional analysis. It is merely a logical assumption supported by
experiments. The only way that this can be true is if the dependence is factored out as

Ap ¢ >
" 5 = — d) (Re, T ] stissssssssssssansaas (5)
The quantity is “P” dov?, termed the friction factor, f. Thus, for a horizontal pipe
Ap D ¢ 2
f = 4
1 2 A — T T ssassssssssEssEEsEEn: (6)
> LoV P fD 7

Where, e
_ Re,— .................... (7)
F=o(re2)
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For laminar fully developed flow, the value of f = 64/Re, is simply independent of ¢/D.

For turbulent flow, the functional dependence of the friction factor on the Reynolds

number and the relative roughness, is a rather complex one that cannot, as yet, be

obtained from a theoretical analysis.

The results are obtained from an exhaustive set of experiments and usually resented in

terms of a curve-fitting formula or the equivalent graphical form.

The energy equation for steady incompressible flow is,

where is the head loss between sections (1) and (2). With the assumption of a constant
diameter (D, = D, so that V,=V,), so that horizontal pipe (z,=z,) with fully developed flow
this becomes 4p = p, — p, = yh; which can be combined with Eq. 6 to give ,

¢ sz )
Ap = f——— _ £V
D 2 14 Ps hL major — fB i .................... (9)
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Equation 9, called the Darcy—Weisbach equation, is valid for any fully developed,
steady, incompressible pipe flow—whether the pipe is horizontal or on a hill. On the other

hand, Eg. 6
Is valid only for harizantal ninec In neneral with the enernv eniiatinn nivec
¢ pV?
pr— P =Yz —z1) + yhy = ¥(zo — 21) +f57 ............. (10

Part of the pressure change is due to the elevation change and part is due to the head
loss associated with frictional effects, which are given in terms of the friction factor, f.

Figure 3 shows the functional dependence of f on Re and is called the Moody chart.
The Moody chart, is universally valid for all steady, fully developed, incompressible pipe
flows.

E

The figure provide the correct correlation for f = @ (Re, E)'
Typical roughness values for various pipe surfaces are given in Table (1)
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M Figure 3 Friction factor as a function of Reynolds number and relative roughness for round pipes—the Moody chart.



Table (1)

Equivalent Roughness for New Pipes [Adapted from
Moody |

Equivalent Roughness, &

Pipe Feet Millimeters
Riveted steel 0.003-0.03 0.9-9.0
Concrete 0.001-0.01 0.3-3.0
Wood stave 0.0006-0.003 0.18-0.9
Cast iron 0.00085 0.26
Galvanized iron 0.0005 0.15
Commercial steel

or wrought iron 0.00015 0.045
Drawn tubing 0.000005 0.0015
Plastic, glass 0.0 (smooth) 0.0 (smooth)
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It is important to observe that the values of relative roughness given pertain to new, clean
pipes. After considerable use, most pipes (because of a buildup of corrosion or scale)
may have a relative roughness that is considerably larger (perhaps by an order of
magnitude) than that given. As shown by the figure below, very old pipes may have
enough scale buildup to not only alter the value of but also to change the

The figure provide the correct correlation for f = @ (Re, %).

For laminar flow, f = 64/Re which is independent of relative
roughness. For turbulent flows with very large Reynolds numbers f

=0 (%) which, as shown by the figure below, is independent of the

Reynolds number. 0.08
f Completely
0.06 turbulent flow
For such flows, commonly termed completely turbulent flow (or 0.04
wholly turbulent flow), the laminar sublayer is so thin (its thickness 0.02

decreases with increasing Re) that the surface roughness

completely dominates the character of the roinaége wﬂ
e <4000
Dr. lbrahim Al-Hafidh / College of Petroleum and Mining Engineering Lam | n ar , Tran S Itl O n ’ Tu rb u | ent 1/23/2025
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The following equation from Colebrook is valid for the entire nonlaminar range of
the Moody chart

The Moody chart is a graphical representation of this equation, which is an empirical fit of
the pipe flow pressure drop data. Equation 11 is called the Colebrook formula.

The Haaland equation, which is easier to use, is given by

1.11
L = —1.8 log {(‘CI/_D> . 6—9} ........... (11.b)
\/f W
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Table (2)

Appmxlmﬂte Ph}rswal Properties of Some Common Gases at Standard Atmospheric Pressure (BG Units)

(Gas .Ibrahim Al Hafidh

Specific Dynamic Kinematic e
Density, Weight, Viscosity, Viscosity, Constant," Specific
Temperature p v m v R Heat Ratio,"
Gas (°F) (slugs/ft*) (Ib/ft) (Ib - s/ft%) (ft/s) (ft - Ib/slug - °R) k
Air (standard) 59 238E -3 7.65E — 2 374E -7 1.57TE — 4 1.716 E + 3 1.40
Carbon dioxide 68 355E-3 IL14E = 1 307TE -7 B865E -5 LL130E + 3 1.30
Helium 68 323E—- 4 1.O4E — 2 409E -7 1.27E-3 1.242E + 4 1.66
Hydrogen 68 1.63E — 4 525E -3 I8SE -7 I.I3E-3 2466 E + 4 1.41
Methane (natural gas) 68 1.29E - 3 415E -2 229E -7 1.78E — 4 3.099E + 3 1.31
Nitrogen 68 226E -3 7.28E — 2 368E -7 1.63E — 4 1.775E + 3 1.40
Oxygen 68 258E -3 831E -2 425E -7 1.65E — 4 1.554E + 3 1.40
"Values of the gas constant are independent of temperature.
PValues of the specific heat ratio depend only slightly on temperature.
Approximate Physical Properties of Some Common Gases at Standard Atmospheric Pressure (SI Units)
Specific Dynamic Kinematic Gas
Density, Weight, Viscosity, Viscosity, Constant,” Specific
Temperature p ¥ I v R Heat Ratio,"
Gas °C) (kg/m®) (N/m?) (N - s/m?) (m?/s) (J/kg - K) k
Air (standard) 15 123E+ 0 1.20E + 1 1.7T9E -5 146E - 5 2869E + 2 1.40
Carbon dioxide 20 I83E+ 0 1.8OE + 1 147E -5 BO3E -6 1.889E + 2 1.30
Helium 20 166 E — 1 1.63E + 0 1.94E - 5 1.LISE — 4 207TTE+ 3 1.66
Hydrogen 20 838E -2 822E -1 884E -6 1.OSE — 4 4124E + 3 1.41
Methane (natural gas) 20 6.67E — 1 6.54E + 0 I.LIDE - 5 1.65E — 5 5183E + 2 1.31
Nitrogen 20 LL1I6E + 0 IL1I4E + 1 1L.L76 E — 5 1.52E = 5 2968 E + 2 1.40
Oxygen 20 1.33E+0 1.30E + 1 204E -5 I153E-5 2.598E + 2 1.40

"Values of the gas constant are independent of temperature.

PValues of the specific heat ratio depend only slightly on temperature.




Approximate Physical Properties of Some Common Liquids (BG Units)

Table (3)

Specific Dynamic Kinematic Surface Vapor Bulk
Density, Weight, Viscosity, Viscosity, Tension,” Pressure, Modulus,®
Temperature P ¥ 1l r o Py E,
Liquid (°F) (slugs/ft") (Ib/ft*) (Ib - s/fth) (ft2/s) (Ib/ft) [Ib/in.? (abs)] (Ib/in.%)
Carbon tetrachloride 68 30 99.5 200E -5 647TE—-6 LB4E -3 19 E+ 0 I191E + 5
Ethyl alcohol 68 1.53 493 249E -5 l63E-5 1L56E—-3 85 E-1 1.54E + 5
Gasoline® 60 1.32 425 65 E-6 49 E-6 1.5 E-3 80 E+ 0 19 E+ 5
Glycerin 68 244 TR.6 J13E-2 1.28E - 2 434E -3 20 E-6 656E + 5
Mercury 68 26.3 847 32BE-5 I125E- 6 JI9E -2 23 E-5 414E+ 6
SAE 30 oil® 60 1.77 57.0 80 E-3 45 E-3 25 E-3 — 22 E+5
Seawater 60 1.99 64.0 251E-5 1.26E -5 5.03E -3 256E -1 339E+5
Water 60 1.94 62.4 234E-5 121E-5 5.03E -3 256E -1 312E+5
“In contact with air.
Mlsentropic bulk modulus caleulated from spead of sound.
“Typical values. Properties of petroleum products vary.
Approximate Physical Properties of Some Common Liquids (581 Units)
Specific Dynamic Kinematic Surface Vapor Bulk
Density, Weight, Viscosity, Viscosity, Tension,” Pressure, Modulus,”
Temperature Fi ¥ 1l r o Py Ey
Liquid (°C) (kg/m*) (kN/m*) (N - s/m%) (m?*/s) (N/m) [N/m® (abs)] (N/m?)

Carbon tetrachloride 20 1,590 15.6 958E - 4 603E -7 269E -2 1.3 E+ 4 131E+ 9
Ethyl alcohol 20 789 7.74 LLI9E - 3 IS1IE-6 22BE-12 59 E+3 1L.OGE + 9
Gasoline* 15.6 680 6.67 3.1 E-4 46 E-7 22 E-12 55 E+ 4 13 E+9
Glycerin 20 1,260 12.4 1L.SOE + 0 1LI9E - 3 633E-2 l4 E-2 452E+4+ 9
Mercury 20 13,600 133 1.5STE -3 LLISE-T7 466 E -1 16 E—1 285E + 10
SAE 30 oil" 15.6 912 895 38 E-1 42 E-4 36 E-2 — 15 E+9
Seawater 15.6 1,030 10.1 1.20E - 3 ILITE-6 7.34E -2 L7TE+ 3 234E+ 9
Water 15.6 999 9.80 LLIZE = 3 LLIZE=-6 T34 E-2 LTTE+ 3 2.I5SE+ 9

Dr.dbrahim Al Hafidh
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_EXAM PLE

GIVEN  Air under standard conditions flows through a 4.0-mm-
diameter drawn tubing with an average velocity of V = 50 m/s.
For such conditions the flow would normally be turbulent. How-
ever, if precautions are taken to eliminate disturbances to the flow
(the entrance to the tube is very smooth, the air is dust free, the tube
does not vibrate, etc.), it may be possible to maintain laminar flow.

SoLuTION

Comparison of Laminar or Turbulent Pressure Drop

FIND (a) Determine the pressure drop in a 0.1-m section of
the tube if the flow is laminar.

(b) Repeat the calculations if the flow is turbulent.

Under standard temperature and pressure conditions the density
and viscosity are p = 1.23kg/m’* and p = 1.79 X 107°
N - s/m’. Thus, the Reynolds number is

pVD  (1.23 kg/m’)(50 m/s)(0.004 m)
on 1.79 X 105N - s/m?

Re = 13,700

which would normally indicate turbulent flow.

(a) If the flow were laminar, then f = 64/Re = 64/13,700 =
0.00467, and the pressure drop in a 0.1-m-long horizontal section
of the pipe would be

£1
Ap=fp5pV

= (0.00467 wl 1.23 kg/m*)(50 m/s)?
= (0. )(0.004111)2(' g/m”)(50 m/s)
or
Ap = 0.179 kPa (Ans)

Dr. Ibrahim Al-Hafidh / College of Petroleum and Mining Engineering

(b) If the flow were turbulent, then f = &(Re, &/D), where
from Table 1, £ = 0.0015 mm so that &/D = 0.0015 mm/
4.0 mm = 0.000375. From the Moody chart with Re = 1.37 X
10*and /D = 0.000375 we obtain f = 0.028. Thus, the pressure
drop in this case would be approximately

ap =L pv2= (0.028) 0lm 1 (1.23 kg/m?)(50 m/s)®
P=Ipa? P2 0004m) 2 E
or
Ap = 1.076 kPa (Ans)

Dr.ibrahim
Fluid e
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COMMENT A considerable savings in effort to force the fluid
through the pipe could be realized (0.179 kPa rather than 1.076 kPa)
if the flow could be maintained as laminar flow at this Reynolds
number. In general this is very difficult to do, although laminar flow
in pipes has been maintained up to Re = 100,000 in rare instances.

An alternate method to determine the friction factor for
the turbulent flow would be to use the Colebrook formula,
Eq. 11.a Thus,

1 _ E;’_D 2.51 _ o 0.000375 2.51
Vi 20 ]"3(3,? * Rev}) R g( 3.7 137 X 104\f}°)
or
1 1.83 X 10‘4)
— = —20log|1.01 X 107* + ——— (1)
Vf g( \

By using a root-finding technique on a computer or calculator, the
solution to Eq. 1 is determined to be f = 0.0291, in agreement
(within the accuracy of reading the graph) with the Moody chart
method of f = 0.028.

Equation 11.b provides an alternate form to the Colebrook
formula that can be used to solve for the friction factor directly.

1 /DM 69 0.000375 \'" 6.9
— = —18log [ — +—|=—-18log +
Vj" 3.7 Re 3.7 1.37 x 10¢

= (.0289

This agrees with the Colebrook formula and Moody chart values ob-
tained above.

Numerous other empirical formulas can be found in the litera-
ture (Ref. 5) for portions of the Moody chart. For example, an often-

used equation, commonly referred to as the Blasius formula, for tur-
bulent flow in smooth pipes (/D = 0) with Re < 107 is

0316
o Rel/A

f

For our case this gives
f=0.316(13,700)""* = 0.0292

which 1s in agreement with the previous results. Note that the
value of fis relatively insensitive to g/D for this particular situa-
tion. Whether the tube was smooth glass (&/D = 0) or the drawn
tubing (&/D = 0.000375) would not make much difference in the
pressure drop. For this flow, an increase in relative roughness by
a factor of 30 to /D = 0.0113 (equivalent to a commercial steel
surface; see Table 8.1) would give f = 0.043. This would repre-
sent an increase in pressure drop and head loss by a factor of
0.043/0.0291 = 1.48 compared with that for the original drawn
tubing.

The pressure drop of 1.076 kPa in a length of 0.1 m of pipe
corresponds to a change in absolute pressure [assuming p =
101 kPa (abs) at x = 0] of approximately 1.076/101 = 0.0107, or
about 1%. Thus, the incompressible flow assumption on which the
above calculations (and all of the formulas in this chapter) are based
is reasonable. However, if the pipe were 2-m long the pressure drop
would be 21.5 kPa, approximately 20% of the original pressure. In
this case the density would not be approximately constant along the
pipe, and a compressible flow analysis would be needed. Such con-
siderations are discussed in Chapter 11.

Dr. Ibrahim Al-Hafidh / College of Petroleum and Mining Engineering
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I Minor losses

As discussed in the previous section, the head loss in long, straight sections of pipe, the
major losses, can be calculated by use of the friction factor obtained from either the Moody
chart or the Colebrook equation.

Most pipe systems, however, consist of considerably more than straight pipes. These
additional components (valves, bends, tees, and the like) add to the overall head loss of the
system. Such losses are generally termed minor losses, with the corresponding head loss
denoted h, o IN this section we indicate how to determine the various minor losses that

commonly occur in pipe systems.
The head loss associated with flow through a valve is a common minor loss. The purpose of

a valve is to provide a means to regulate the flowrate. This is accomplished by changing the
geometry of the system (i.e., closing or opening the valve alters the flow pattern through the
valve), which in turn alters the losses associated with the flow through the valve. The flow
resistance or head loss through the valve may be a significant portion of the resistance in
the system.

Dr. lbrahim Al-Hafidh / College of Petroleum and Mining Engineering 1/23/2025
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The flow pattern through a typical component such as a valve is shown in Fig. 4.

0st common method used to determine these
head losses or pressure drops is to specify the loss
coefficient, K, which is defined as

The actual value of is strongly dependent on the
geometry of the component considered. It may also be
dependent on the fluid prop

M Figure 4 Flow through a valve.

K; = ¢(geometry, Re)

Minor losses are sometimes given in terms of an equivalent length, |, In this terminology, the
head loss through a component is given in terms of the equivalent length of pipe that would
produce the same head loss as the V2 g 12 K,D

L minor L 2g f D 2g eeq f

where D and f are based on the pipe containing the component. 1/23/2025
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, é q The head loss of the pipe systemis the
same as that produced in a straight

pipe whose length is equal to the pipes
of the original system plus the sum of
the additional equivalent lengths of all

NS
g ————
LU ‘ &_’ ‘ of the components of the system. Most
—— ; Q : : ; (% pipe flow analyses, including those in
f

this book, use the loss coefficient
method rather than the equivalent
" “ length method to determine the minor

B Figure 5 Entrance flow conditions and loss coefficient
(a) Reentrant, K; = 0.8, (b) sharp-edged, K, = 0.5, (c) slightly rounded, K, = 0.2

(d) well-rounded, K; = 0.04 IOSSGS .

Many pipe systems contain various transition sections in which the pipe diameter
changes from one size to another. Such changes may occur abruptly or rather smoothly
through some type of area change section. Any change in flow area contributes losses
that are not accounted for in the fully developed head loss calculation (the friction factor).

The extreme cases involve flow into a pipe from a reservoir (an entrance) or out of a pipe
Inf)blkﬁ]%ﬁégﬁjféﬁp%é fpéﬁr(cif)‘m and Mining Engineering 1/23/2025



Energy Type
Kinetic Potential Pressure = = =
le /2 ?z p - ‘-g ?

‘ Separated flow
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P ~
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) B Figure 7 Entrance loss coefficient
B Figure § Flow pattern and pressure distribution for a sharp-edged entrance. as a function of rounding of the inlet edge
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A head loss (the exit loss) is also produced when a fluid flows from a pipe into a
tank as is shown in Fig. 8

In these cases the entire kinetic
energy of the exiting fluid (velocity
V,) is dissipated through viscous
effects as the stream of fluid mixes
with the fluid in the tank and
eventually comes to rest (V, = 0).
The exit loss from points (1) and
(2) Is therefore equivalent to one

velocity head, K,=1.

Dr. Ibrahim Al-Hafidh / College of Petroleum and Mining Engineering
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B Figure 8  Ecxit flow conditions and loss coefficient.
(a) Reentrant, K; = 1.0, (k) sharp-edged, K; = 1.0, (c¢) slightly rounded, K; = 1.0,
(d) well-rounded, K; = 1.0.
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B Figure 9 Loss coefficient for a sudden contraction [ | Figure 10 Loss coefficient for a sudden expansion

The sharp-edged entrance and exit flows discussed in the previous paragraphs are
limiting cases of this type of flow with either A;/A,= «, or A,/A, =0 respectively. The loss

2
coefficient for a sudden contraction, K = hL/(Z—Zg) IS a function of the area ratio, A,/A; as Is

shown in Fig. 9 . The value of K, changes gradually from one extreme of a sharp-edged
entrance (A,/A;=0 with K, =0.5) to the other extreme of no area change (A,/A;=1 with

KLDT.Qr)Jhim Al-Hafidh / College of Pefroleum and Mining Engineering 1/23/2025
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Fig. 11, the fluid leaves the smaller pipe and initially forms a jet-type structure as it
enters the larger p*~~

Control volume

I |
[/ e o
i |
[ = -

- /
—_— | e |
i r— — .
Vi . by IV —_—l V3
2 —_— —
| - g \ —
D

— =

(2) (3)

B Figure 11  Control volume used to calculate the loss coefficient for a sudden expansion.

In this process [between sections (2) and (3)] a portion of the kinetic energy of the fluid is
dissipated as a result of viscous effects. A square edged exit is the limiting case with

Dr. lbrahim Al-Hafidh / College of Petroleum and Mining Engineering 1/23/2025
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From continuity and momentum equations for the control volume shown in Fig. 11 and
the energy equation applied between (2) and (3). We assume that the flow is uniform at
sections (1), (2), and (3) and the pressure is constant across the left-hand side of the
control volume (p, = p, = P, = Py)- The resulting three governing equations (mass,
momenty~ "~ Anoven i aen

AV, = AV, These can be rearranged to give the loss
. ) coefficient,
PiA; — p3As = pA3V3(Vs — V) 2
And as K = hL/( )as K, (1_5)
V2 2 A2
Pi L2 Ps LR h

Yy 28 v 28
Where we have used the fact that A,=A,

As with so many minor loss situations, it is not the viscous effects directly (i.e., the wall
shear stress) that cause the loss. Rather, it is the dissipation of kinetic energy (another
type of viscous effect) as the fluid decelerates inefficiently.
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L Table (4) e

Dr. lorahim Al-Hafidh / College of Petroleum and Mining Engineering

Loss Coefficients for Pipe Components (hL =K; g—g> (Data from Refs. 5, 10, 27)
Component K;
a. Elbows
Regular 90°, flanged 0.3
Regular 90°, threaded 1.5
Long radius 90°, flanged 0.2 90° elbow
Long radius 90°, threaded 0.7
Long radius 45°, flanged 0.2
Regular 45°, threaded 0.4
b. 180° return bends 45° elbow
180° return bend, flanged 0.2
180° return bend, threaded 1.5
c. Tees
Line flow, flanged 0.2 180° return
Line flow, threaded 0.9 bend
Branch flow, flanged 1.0
Branch flow, threaded 2.0

]

B Figure 12
valve, (d) stop check valve. (Courtesy of Crane Co., Fluid Handling Division.)
d. Union, threaded 0.08
“e. Valves
Globe, fully open 10
Angle, fully open 2
Gate, fully open 0.15
Gate, § closed 0.26
Gate, 5 closed 2:1
Gate, % closed 17
Swing check, forward flow 2
Swing check, backward flow oo
Ball valve, fully open 0.05
Ball valve, § closed 5.5
Ball valve, % closed 210

Dr.dbrahim Al Hafidh
Fluid Mechanies

Internal structure of various valves: (a) globe valve, (b) gate valve, (c) swing check
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