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~ LECTURE 12 '

“ml;ipe Flow Examples

The purpose of this section is to apply these ideas to the
solutions of various practical problems. The application of the
pertinent equations is straightforward, with rather simple
calculations that give answers to problems of engineering
importance. The main idea involved is to apply the energy
equation between appropriate locations within the flow system,
with the head loss written in terms of the friction factor and the
minor loss coefficients. We will consider two classes of pipe
systems: those containing a single pipe (whose length may be
interrupted by various components),

and those containing multiple pipes in parallel, series, or network
A- Single Pipes

The nature of the solution process for pipe flow problems can
depend strongly on which of the various parameters are
independent parameters (the “given”) and which is the dependent
parameter (the “determine”). The three most common types of
problems are shown in Table (1) in terms of the parameters
involved.

We assume the pipe system is defined in terms of the length of
pipe sections used and the number of elbows, bends, and valves
needed to convey the fluid between the desired locations. In all

instances we assume the fluid properties are given.
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Pipe flow problems
can be categorized
by what parameters
are given and what
is to be calculated.

In a Type | problem we specify the desired flowrate or average
velocity and determine the necessary pressure difference or head
loss. For example, if a flowrate of 2.0 gal/min is required
for a dishwasher that is connected to the water heater by a given
pipe system as shown by the figure in the margin, what pressure is
needed in the water heater?

In a Type Il problem we specify the applied driving pressure (or,
alternatively, the head loss) and determine the flowrate. For
example, how many gal/min of hot water are supplied to the
dishwasher if the pressure within the water heater is 60 psi and the
pipe system details (length, diameter, e pipe; number of elbows;
etc.) are specified?

In a Type Il problem, we specify the pressure drop and the
flowrate and determine the diameter of the pipe needed. For
example, what diameter of pipe is needed between the water heater
and dishwasher if the pressure in the water heater is 60 psi
(determined by the city water system) and the flowrate is to be not
less than 2.0 gal/min (determined by the manufacturer)?
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Pipe Flow Types

Variable Type I Type 11 Type 111
a. Fluid
Density Given Given Given
Viscosity Given Given Given
b. Pipe
Diameter Given Given Determine
Length Given Given Given
Roughness Given Given Given
¢. Flow
Flowrate or Given Determine Given
Average Velocity
d. Pressure
Pressure Drop or Determine Given Given
Head Loss

Several examples of these types of problems follow,

GIVEN Water at 60 °F flows from the basement to the second
floor through the 0.75-in. (0.0625-ft)-diameter copper pipe
(a drawn tubing) at a rate of Q = 12.0 gal/min = 0.0267 ft'/s
and exits through a faucet of diameter 0.50 in. as shown in Fig.
E8.8a.

FIND Determine the pressure at point (1) if
(a) all losses are neglected,
(b) the only losses included are major losses, or

(¢) all losses are included.

SOLUTION

Since the fluid velocity in the pipe is given by V|, = Q/A, =
Q/(mD?/4) = (0.0267 ft/s)/[7(0.0625 ft)/4] = 8.70 ft/s, and the
fluid properties are p = 194 slugs/ft’ and p = 234 X
1073 1b - s/ft* (see Table B.1), it follows that Re = pVD/u = (1.94
slugs/ft?)(8.70 ft/s)(0.0625 ft)/(2.34 X 10751b - s/fi?) = 45.000.
Thus, the flow is turbulent. The governing equation for either case
(a), (b), or (c) is the energy equation given by Eq. 8 |

2 2
&+a|ﬁ+zl=&+a22+zz+h,_
Y 28 Y 28
where z, =0, 7, = 20 ft, p, = 0 (free jet), y = pg = 62.4 Ib/ft’,
and the outlet velocity is V, = Q/A, = (0.0267 ft*/s)/[=(0.50/
12)*t’/4] = 19.6 ft/s. We assume that the kinetic energy coeffi-
cients «; and «, are unity. This is reasonable because turbulent ve-
locity profiles are nearly uniform across the pipe. Thus,
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ExampLE @

P =75 + (V3 = Vi) + vk

where the head loss is different for each of the three cases.

(a) If all losses are neglected (b, = 0), Eq. 1 gives
pi = (62.4 Ib/ft*)(20 ft)
1.94 slugs/ft® ft')2 ft')
+ ———[(196—) —(8.70—
2 3 3
= (1248 + 299) Ib/ft* = 1547 1b/ft*
or

p1 = 10.7 psi

(1)

(Ans)
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COMMENT Note that for this pressure drop, the amount due
to elevation change (the hydrostatic effect) is y(z, — z;) = 8.67 psi

and the amount due to the increase in kinetic energy is
p(V3 — Vi)/2 = 2.07 psi.

(b) If the only losses included are the major losses, the head
loss is

»
WLV
D 2g
From Table 1 the roughness for a 0.75-in.-diameter copper
pipe (drawn tubing) is £ = 0.000005 ft so that /D = 8 X 107°.
With this &/D and the calculated Reynolds number (Re =
45,000), the value of f is obtained from the Moody chart as
f = 0.0215. Note that the Colebrook equation (Eq. 8.35a) would
give the same value of f. Hence, with the total length of the pipe
as £ = (15 + 5 + 10 + 10 + 20) ft = 60 ft and the elevation

and kinetic energy portions the same as for part (a), Eq. 1 gives
1 , £ Vi
p=vatspVi-V)te 55

(1248 + 299) Ib/ft

60 ft ) (8.70 ft/s)?
0.0625 ft 2
= (1248 + 299 + 1515) Ib/ft® = 3062 Ib/ft>

+ (1.94 slugs/ft*)(0.0215) (

or

Py = 213 psi (Ans)

COMMENT Of this pressure drop, the amount due to pipe
friction is approximately (21.3 — 10.7) psi = 10.6 psi.

(¢) If major and minor losses are included, Eq. 1 becomes

1 e v V2
=yu+-p(Vi-V) +fy——+ K, —
P1 = Y22 2P(2 1) fTng EPLZ
or
V2
p, =213 psi + ZpKLF 2)

where the 21.3 psi contribution is due to elevation change, kinetic
energy change, and major losses [part (b)], and the last term rep-
resents the sum of all of the minor losses. The loss coefficients of
the components (K, = 1.5 for each elbow and K, = 10 for the
wide-open globe valve) are given in Table 4 (except for the loss
coefficient of the faucet, which is given in Fig. E8.8a as K, = 2).
Thus,

2

V2 (8.70 ft)
> PKL— = (1.94 slugs/fts)T

= 1321 Ib/ft?

[10 + 4(1.5) + 2]

or

2

> pK, V? = 9.17 psi 3)

Note that we did not include an entrance or exit loss because points
(1) and (2) are located within the fluid streams, not within an at-
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taching reservoir where the kinetic energy is zero. Thus, by com-
bining Eqgs. 2 and 3 we obtain the entire pressure drop as

P = (21.3 + 9.17) psi = 30.5 psi (Ans)

This pressure drop calculated by including all losses should be the
most realistic answer of the three cases considered.

COMMENTS More detailed calculations will show that the
pressure distribution along the pipe is as illustrated in Fig. E8.8b
for cases (a) and (c)—neglecting all losses or including all losses.
Note that not all of the pressure drop, p;, — p., is a “pressure loss.”
The pressure change due to the elevation and velocity changes is
completely reversible. The portion due to the major and minor
losses is irreversible.

This flow can be illustrated in terms of the energy line and hy-
draulic grade line concepts introduced in Section 3.7. As is shown
in Fig. E8.8¢, for case (a) there are no losses and the energy line
(EL) is horizontal, one velocity head (V?/2g) above the hydraulic
grade line (HGL), which is one pressure head (yz) above the pipe
itself. For cases (b) or (c) the energy line is not horizontal. Each bit
of friction in the pipe or loss in a component reduces the available

80
& Slope due to pipe friction
o Sharp drop due to component loss
£ 60
& S
2 Energy line including all
@ losses, case (c)
2 40
c
=
®
>
o 20
= Energy line with no losses, case (a)

0
0 10 20 30 40 50 60

Distance along pipe from point (1), ft
H Figure E8.8¢c
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energy, thereby lowering the energy line. Thus, for case (a) the to-
tal head remains constant throughout the flow with a value of

aom Vi, (54 b/f)  (8.70 ft/s)?
y 2 ' (6241b/fF)  2(322 ft/sD)
= 26.0 ft. ’ -
p) V3 V;
=&+_'+22=&+_3+23_
Yy 28 Y 2
For case (c) the energy line starts at
VZ
H = ol Zi
Yy 2
(30.5 X 144)Ib/f  (8.70 ft/s)}
= . —+0="716ft
(62.4 1b/ft) 2(32.2 ft/s?)
and falls to a final value of
P, V3 (19.6 ft/s)
Hy="+—+2=0+-——"°+20ft
Y 2g 2(32.2 ft/s”)
= 26.0 ft

7

The elevation of the energy line can be calculated at any point
along the pipe. For example, at point (7), 50 ft from point (1),

VZ
H7 = & + —7 + 27
Yy 2
(9.93 X 144) 1b/f*  (8.70 ft/s)? i
= t
(62.4 Ib/ft) 2(32.2 ft/s?)
=44.1ft

The head loss per foot of pipe is the same all along the pipe.
That is,

B, V2 0.0215(8.70 ft/s)?
¢ '2gD " 2(32.2 ft/s%)(0.0625 ft)

= 0.404 ft/ft

Thus, the energy line is a set of straight-line segments of the same
slope separated by steps whose height equals the head loss of the
minor component at that location. As is seen from Fig. E8.8c, the
globe valve produces the largest of all the minor losses.

Pipe flow problems in which it is desired to determine the flowrate for
a given set of conditions (Type Il problems) often require trial-and-
error or numerical root-finding techniques. This is because it is
necessary to know the value of the friction factor to carry out the
calculations, but the friction factor is a function of the unknown
velocity (flowrate) in terms of the Reynolds number. The solution
procedure is indicated in Example 2.

ExampLE 2)

GIVEN The fan shown in Fig. E8.10a is to provide airflow
through the spray booth and fume hood so that workers are pro-
tected from harmful vapors and aerosols while mixing chemicals
within the hood. For proper operation of the hood, the flowrate is
to be between 6 ft*/s and 12 ft'/s. With the initial setup the
flowrate is 9 ft*/s, the loss coefficient for the system is 5, and the
duct is short enough so that major losses are negligible. It is pro-
posed that when the factory is remodeled the 8-in.-diameter gal-
vanized iron duct will be 100 ft long and the total loss coefficient
will be 10.

FIND Determine if the flowrate will be within the required
6 ft¥/s to 12 ft'/s after the proposed remodeling. Assume that the
head added to the air by the fan remains constant.
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OLUTION

We can determine the head that the fan adds to the air by consid-
ering the initial situation (i.e., before remodeling). To do this we
write the energy equation between section (1) in the room and
section (2) at the exit of the duct as shown in Fig. E8.10a.

Vi V3
%+2—;+zl+hp=%+2—;+@+m (1)

Since we are dealing with air, we can assume any change in ele-
vation 1s negligible. We can also assume the pressure inside the
room and at the exit of the duct is equal to atmospheric pressure
and the air in the room has zero velocity. Therefore, Eq. | re-
duces to

— + hy (2)

The diameter of the duct is given as 8 in., so the velocity at the
exit can be calculated from the flowrate, where V = Q/A =
(9 ft/s)/|m(8/12)>/4] = 25.8 ft/s. For the original configura-
tion the duct is short enough to neglect major losses and only
minor losses contribute to the total head loss. This head loss
can be found from h; ..., = 2K, V*/(2g) = 5(25.8 fi/s)*/
[2(322 ft/s?)] = 51.6 ft. With this information the simplified
energy equation, Eq. 2, can now be solved to find the head
added to the air by the fan.

(25.8 fi/s)”

=————— + 5161t =619ft
Po2(32.2 ftfs)

The energy equation now must be solved with the new configura-
tion after remodeling. Using the same assumptions as before
gives the same reduced energy equation as shown in Eq. 2. With
the increase in duct length to 100 ft the duct is no longer short
enough to neglect major losses. Thus,

Vi o ev? V2
=24 + YKk, —
=0 e + SKipe

D2g

h
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where V, = Vand 2K, = 10. We can now rearrange and solve
for the velocity in ft/s.

v— 2gh, 2322 t/s7)(61.9 ft)
¢ 100 ft

1 + f~ + 3K, 1 + (—) +10
D - Nz

_ | 3990 -
11 + 1501

The value of fis dependent on Re, which 1s dependent on V, an
unknown.

pVD  (2.38 X 1077 slugs/ft’)(V)(3 ft)
Cow 3.74 X 1077 Ib- s/

Re

or
Re = 4240V (4)

where again V is in feet per second.

Also, since e&/D = (0.0005 ft)/(8/12 ft) = 0.00075 (see
Table 1 for the value of &), we know which particular curve of
the Moody chart is pertinent to this flow. Thus, we have three
relationships (Eqgs. 3, 4, and &/D = 0.00075 curve of Fig. 3 )
from which we can solve for the three unknowns, f, Re, and V.
This is done easily by an iterative scheme as follows.

It is usually simplest to assume a value of f, calculate V
from Eq. 3, calculate Re from Eq. 4, and look up the new value
of f in the Moody chart for this value of Re. If the
assumed f and the new f do not agree, the assumed answer is
not correct—we do not have the solution to the three equa-
tions. Although values of f, V, or Re could be assumed as start-
ing values, it is usually simplest to assume a value of f because
the correct value often lies on the relatively flat portion of the
Moody chart for which fis quite insensitive to Re.
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Thus, we assume f = 0.019, approximately the large Re limit
for the given relative roughness. From Eq. 3 we obtain

3990

V= ————
11 + 150(0.019)

= 17.0 ft/s

and from Eq. 4
Re = 4240(17.0) = 72,100

With this Re and /D, Fig. 3  gives f = 0.022, which is not
equal to the assumed solution of f = 0.019 (although it is
close!). We try again, this time with the newly obtained value of
f = 0.022, which gives V = 16.7 ft/s and Re = 70,800. With
these values, Fig. 3 gives f = 0.022, which agrees with the
assumed value. Thus, the solution is V = 16.7 ft/s, or

8 2
Q= VA= (167 ft/s}(g)(ﬁ ft) = 5.83 ft’/s (Ans)

COMMENT It is seen that operation of the system after the
proposed remodeling will not provide enough airflow to protect
workers from inhalation hazards while mixing chemicals within
the hood. By repeating the calculations for different duct lengths
and different total minor loss coefficients, the results shown in
Fig. E8.10b are obtained, which give flowrate as a function of

9.5
- Original system
8.5
8
275
=
o 7
6.5
Minimum
flowrate 5.5 Proposed remodeled system
needed
0 25 50 75 100 125 150
LTt

B Figure E8.10b

duct length for various values of the minor loss coefficient. It will be
necessary to redesign the remodeled system (e.g., larger fan, shorter
ducting, larger-diameter duct) so that the flowrate will be within
the acceptable range. In many companies, teams of occupational
safety and health experts and engineers work together during
the design phase of remodeling (or when a new operation is being
planned) to consider and prevent potential negative impacts on
workers' safety and health in an effort called “Prevention through
Design.” They also may be required to ensure that exhaust from
such a system exits the building away from human activity and
into an area where it will not be drawn back inside the facility.

In pipe flow problems for which the diameter is the unknown (Type II1),
an iterative or numerical root-finding technique is required. This is, again,
because the friction factor is a function of the diameter—through both the

pVD

Reynolds number and the relative roughness. Thus, neither Re = o

= 4pQ /muD nor /D are known unless D is known. Examples 3

illustrate this.
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XAMPLE (3)

GIVEN Air at standard temperature and pressure flows
through a horizontal, galvanized iron pipe (& = 0.0005 ft) at a
rate of 2.0 ft/s. The pressure drop is to be no more than 0.50 psi
per 100 ft of pipe.

SoLUTION

Type llIl without Minor Losses, Determine Diameter

FIND Determine the minimum pipe diameter.

We assume the flow to be incompressible with p =
0.00238 slugs/ft* and u = 3.74 X 1077 b - s/ft>. Note that if the
pipe were too long, the pressure drop from one end to the other,
P — P would not be small relative to the pressure at the begin-
ning, and compressible flow considerations would be required.
For example, a pipe length of 200 ft gives (p, — p;)/p; =
[(0.50 psi)/(100 ft)](200 ft)/14.7 psia = 0.068 = 6.8%. which is
probably small enough to justify the incompressible assumption.

With z; = z, and V|, = V, the energy equation (Eq. 8. )
becomes

¢ pV?
=p, + f—— 1
P1 =D fD 2 1)

where V = Q/A = 4Q/(wD?) = 4(2.0 it’/s)/mD?, or

~ 255
= 7D2
and
e 0.0005
—=— @
D D

Thus, we have four equations [Egs. 2, 3, 4, and either the
Moody chart, the Colebrook equation (8.35a) or the Haaland
equation (8.35h)] and four unknowns (f, D, &/D, and Re) from
which the solution can be obtained by trial-and-error methods.

If we use the Moody chart, it is probably easiest to assume a
value of f, use Egs. 2, 3, and 4 to calculate D, Re, and /D, and
then compare the assumed f with that from the Moody chart. If
they do not agree, try again. Thus, we assume f = 0.02, a typical
value, and obtain D = 0.404(0.02)'° = 0.185 ft, which gives
g/D = 0.0005/0.185 = 0.0027 and Re = 1.62 X 10*/0.185 =
8.76 X 10*. From the Moody chart we obtain f = 0.027 for these
values of &/D and Re. Since this is not the same as our assumed
value of f, we try again. With f = 0.027, we obtain D = 0.196 ft,
e/D = 0.0026, and Re = 827 X 10%, which in turn give
f = 0.027, in agreement with the assumed value. Thus, the diam-
eter of the pipe should be

D = 0.196 ft (Ans)

COMMENT If we use the Colebrook equation (Eq. 8.354)
with &/D = 0.0005/0.404 £ = 0.00124/f '/ and Re = 1.62 X
10*/0.404 7 = 4.01 X 10*/f', we obtain

1 5ol (s/D L, 251 )
— = —20l0e (2 4 220
\%i 2\37 T ReV}
or
1 335 X 107 | 6.26 X 107°
7f_ —2.0log fis 310

where D is in feet. Thus, with p; — p, = (0.5 1b/in.2)(144 in.%/f%)
and € = 100 ft, Eq. 1 becomes
pi — P> = (0.5)(144) Ib/ft*
(100 ft)
D

2.55 ft'\?
:f —_—

1
0.00238 slugs/ft’ —(
( slugs/ft’) 2\ 2

or
D = 0.404 17 2)

where D is in feet. Also Re = pVD/u = (0.00238 slugs/ft’)
[(2.55/D%) ft/s]D/(3.74 X 107" Ib - s/ft%), or
162 X 10°

Re = —0p 3

0.25

0.20

(2 #3s, 0.196 ft)
0.15

D, ft

0.10

0.05

Q, ft¥s
M Figure E8.12

By using a root-finding technique on a computer or calculator,
the solution to this equation is determined to be f = 0.027, and
hence D = 0.196 ft, in agreement with the Moody chart
method.

By repeating the calculations for various values of the
flowrate, Q, the results shown in Fig. E8.12 are obtained. Al-
though an increase in flowrate requires a larger diameter pipe (for
the given pressure drop), the increase in diameter is minimal. For
example, if the flowrate is doubled from 1 ft*/s to 2 ft*/s, the di-
ameter increases from 0.151 ft to 0.196 ft.




B- Multiple Pipe Systems

In many pipe systems there is more Trachea
than one pipe involved. The complex
system of tubes in our lungs
(beginning as shown by the figure
Bronchiole

here, with the relatively large-diameter

trachea and ending in tens of

thousands of minute bronchioles after
numerous branchings)

and the maze of pipes in a city’s water distribution system
are typical of such systems. The governing mechanisms
for the flow in multiple pipe systems are the same as for
the single pipe systems discussed in this lecture.
However, because of the numerous unknowns involved,
additional complexities may arise in solving for the flow in
multiple pipe systems. Some of these complexities are
discussed in this section.

The simplest multiple pipe systems can be classified into

series or parallel flows, as are shown in Fig. 12. below.
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Figure 12 (a) Series and (b) parallel pipe
systems.

In a fluid circuit there is a balance between the pressure
drop (Ap) the flowrate or velocity (Q or V), and the flow
resistance as given in terms of the friction factor and
minor loss coefficients (f and K, ). For a simple flow [Ap =
f(I/D)(p V2/2], it follows that Ap =Q? R, where R, a measure
of the resistance to the flow, is proportional to f.

The fluid equations are generally nonlinear (doubling the
pressure drop does not double the flowrate unless the

flow is laminar).
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One of the simplest multiple pipe systems is that containing
pipes in series, as is shown in Fig. 12a. Every fluid particle
that passes through the system passes through each of the
pipes. Thus, the flowrate (but not the velocity) is the same in
each pipe, and the head loss from point A to point B is the
sum of the head losses in each of the pipes. The governing
equations can be written as follows:

Q:=Q,=0Q;
And

hLA—B — hLl + hLZ + hL3

where the subscripts refer to each of the pipes. In general,
the friction factors will be different for each pipe because the
Reynolds numbers (R, = pV;D;/u) and the relative

roughnesses (“//p.) will be different.

If the flowrate is given, it is a straightforward calculation to
determine the head loss or pressure drop (Type | problem).
If the pressure drop is given and the flowrate is to be
calculated (Type Il problem), an iteration scheme is needed.
In this situation none of the friction factors f;, are known, so
the calculations may involve more trial-and-error attempts
than for corresponding single pipe systems. The same is
true for problems in which the pipe diameter (or diameters)
IS to be determined (Type Ill problems).
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Another common multiple pipe system contains pipes in
parallel, as is shown in Fig. 12 b. In this system a fluid
particle traveling from A to B may take any of the paths
available, with the total flowrate equal to the sum of the
flowrates in each pipe. However, by writing the energy
equation between points A and B it is found that the head
loss experienced by any fluid particle traveling between
these locations is the same, independent of the path taken.
Thus, the governing equations for parallel pipes are,

Q=0Q;+Q,+Q3

hL1 = hLz — th

And

Again, the method of solution of these equations depends
on what information is given and what is to be calculated.

Another type of multiple pipe system called a loop is shown
in Fig. 13. In this case the flowrate through pipe (1) equals
the sum of the flowrates through pipes (2) and (3), or Q; =
Q, +Qs3.

As can be seen by writing the energy equation between the
surfaces of each reservoir, the head loss for pipe (2) must
equal that for pipe (3), even though the pipe sizes and
flowrates may be different for each. That is,

V2 2
Pay Za ) o =PE 2By
Y 28 Y 28

for a fluid particle traveling through pipes (1) and (2),
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Figure 13 Multiple-pipe loop system
These can be combined to give h,, = h;, . Thisis a

statement of the fact that fluid particles that travel through
pipe (2) and particles that travel through pipe (3) all originate
from common conditions at the junction (or node, N) of the
pipes and all end up at the same final conditions.

The flow in a relatively simple looking multiple pipe system
may be more complex than it appears initially. The branching

system termed the three-reservoir problem shown in Fig.
14 is such a svstem

Figure 14 A three reservoir system.
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Three reservoirs at known elevations are connected together
with three pipes of known properties (length, diameter, and
roughness). The problem is to determine the flowrates into or
out of the reservoirs. If valve (1) were closed, the fluid would
flow from reservoir B to C, and the flowrate could be easily
calculated.

Similar calculations could be carried out if valves (2) or (3)
were closed with the others open.

With all valves open, however, it is not necessarily obvious
which direction the fluid flows. For the conditions indicated in
Fig. 14, it is clear that fluid flows from reservoir A because
the other two reservoir levels are lower. Whether the fluid
flows into or out of reservoir B depends on the elevation of
reservoirs B and C and the properties (length, diameter,
roughness) of the three pipes. In general, the flow direction is
not obvious, and the solution process must include the
determination of this direction. This is illustrated in Example

_EXAMPLE (4) Three-Reservoir, Multiple Pipe System

GIVEN Three reservoirs are connected by three pipes as are | 7 4 Elevation = 100 ft

shown in Fig. E8.14. For simplicity we assume that the diame-
ter of each pipe is 1 ft, the friction factor for each is 0.02, and
because of the large length-to-diameter ratio, minor losses are
negligible.

FIND Determine the flowrate into or out of each reservoir.

Elevation =
20 ft

SoLUTION

Elevation =
0 ft

It is not obvious which direction the fluid flows in pipe (2).
However, we assume that it flows out of reservoir B, write the | @ Figure E8.14
governing equations for this case, and check our assumption.
The continuity equation requires that Q, + 0, = @z, which,
since the diameters are the same for each pipe, becomes simply By using the fact that p, = pc = V4 = V¢ = zc = 0, this becomes

Vi+V,=V 1 Vi, 6V;
e ( =h D 2 + fi D. 2
The energy equation for the fluid that flows from A to C in pipes : }
(1) and (3) can be written as For the given conditions of this problem we obtain
2 2 2 2 0.02 1
pa Va, e Ve LV, GV 100 ft = —[(1000 f)V2 + (400 ft)V2]

Y 2 Yy 2 D 2 ’Dy2g 2(32.2 ft/s) (1 ft)




or

322 = Vi 4+ 04V3 (2)

where V, and V; are in ft/s. Similarly the energy equation for
fluid flowing from B and C is

By Va, _Pc Ve, , GV LY
Y 28 Yy 2z D, 2g Dy 2g
ar
LVE 6V
= ED 2 D

For the given conditions this can be written as
64.4 = 0.5V: + 04V (3)

Equations 1, 2, and 3 (in terms of the three unknowns V;, V5, and
V) are the governing equations for this flow, provided the fluid
flows from reservoir B. It turns out, however, that there is no solu-
tion for these equations with positive, real values of the velocities.
Although these equations do not appear to be complicated, there is
no simple way to solve them directly. Thus, a trial-and-error
solution is suggested. This can be accomplished as follows.
Assume a value of V| > 0, calculate V; from Eq. 2, and then Vs
from Eq. 3. It is found that the resulting V;, V5, V; trio does not sat-
isfy Eqg. 1 for any value of V; assumed. There is no solution to Egs.
1, 2, and 3 with real, positive values of V|, V,, and V;. Thus, our
original assumption of flow out of reservoir B must be incorrect.

To obtain the solution, assume the fluid flows into reser-
voirs B and C and out of A. For this case the continuity equation
becomes

=0+ 0
or
Vi=V,+ ¥ 4)

Application of the energy equation between points A and B and A
and C gives

., £, VT—+ & V3
W=zt 1fi D, 2g 2D12g
and
L v 6W
U~ I f'D,Zg AD_,g

which, with the given data, become

258 =Vi+05V3 (5)
and

322 =V + 04V} (6)

Equations 4, 5, and 6 can be solved as follows. By subtracting
Eq. 5 from 6 we obtain

vy = V160 + 1.25V3

Thus, Eq. 5 can be written as
258 = (V, + V3)° + 0.5V3
= (Vy + V160 + 1.25V3)? + 0.5V2
or
2V, V160 + 1.25V2 = 98 — 2.75V2 )
which, upon squaring both sides, can be written as
Vi—460 V] + 3748 =0

By using the quadratic formula, we can solve for V3 to obtain
either V3 = 452 or V3 = 8.30. Thus, either V, = 21.3 ft/s or
V, = 2.88 ft/s. The value V, = 21.3 ft/s is not a root of the orig-
inal equations. [t is an extra root introduced by squaring Eq. 7, which
with V5 = 21.3 becomes “1140 = —1140." Thus, V, = 2.88 ft/s
and from Eq. 5, V, = 15.9 ft/s. The corresponding flowrates are

0, =AYV, = %DT-V, = %(1 ft)? (15.9 ft/s)

= 12.5 ft’/s from A (Ans)
0, = AV, = %D%‘.ﬁ = %(l f1)? (2.88 f/s)
=226 ft*/s into B (Ans)
and
0; =0, — @, = (12.5 — 2.26) ft'/s
= 10.2 ft*/s into C (Ans)

Note the slight differences in the governing equations depending
on the direction of the flow in pipe (2}—compare Eqgs. 1. 2, and 3
with Eqgs. 4, 5, and 6.

COMMENT Ifthe friction factors were not given, a trial-and-
error procedure similar to that needed for Type II problems (see
Section 8.5.1) would be required.

The ultimate in multiple pipe systems is a network of pipes
such as that shown in Fig. 15. Networks like these often
occur in city water distribution systems and other systems

that may have multiple “inlets”

and “outlets.” The direction

of flow in the various pipes is by no means obvious—in fact,
it may vary in time, depending on how the system is used
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The solution for pipe network problems is often carried
out by use of node and loop equations similar in many
ways to that done in electrical circuits. For example, the
continuity equation requires that for each node (the
junction of two or more pipes) the net flowrate is zero.
What flows into a node must flow out at the same rate.
In addition, the net pressure difference completely
around a loop (starting at one location in a pipe and
returning to that location) must be zero. By combining
these ideas with the usual head loss and pipe flow
equations, the flow throughout the entire network can be
obtained. Of course, trial-and-error solutions are usually
required because the direction of flow and the friction
factors may not be known. Such a solution procedure
using matrix techniques is ideally suited for computer

N \*\ L
L ul

=
— = ———
l 5 ) <_l<_

Figure 15 A general pipe network.

Dr. Ibrahim Al-Hafidh / College of Petroleum and Mining Engineering 1/23/2025



Example 5 : The three water-filled tanks shown in figure are
connected by pipes as indicated. If minor losses are neglected,
determine the flow rate in each pipe.

Elevation = 60 m

Elevation = 20 m R

Elevation = 0

I =0.020 / =0.020
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AV, = Ay Va2 + ﬂ.} V3

i)y o E (ooz) Ve + Z (o 0%) V3

Vi = 0.4 Vo +0.€4 V3 ‘—”Q
For it }flwd ]ﬁzawma }mm A o B P/’ Pﬂ_

cnd
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Selve  €¢s(1),(2), and(3) for V),V and %

=rom e;s C1)ndd €3
6o = Is29 (0-é4) LV¢+V3)+ S Vg

5% = (NVed v,)2+ .1 Ny (g_)
Subtract Eg. (2) fram Eﬁ' (3)

z 2 ' s
(o-Uo= 51 Vit _z.ssvE 4 28

b B

2 5 2
7' 811' = 2—\/3 — V7_ _ ’\/,_ = 2.V3 "7‘8(‘{

-

© ves JaNE-TTH —— (8)
s

f~rom él/gd (4) and (b)

) _—QS‘Z =0

g"i\/g 2 2V

// MVg -/»2\/3‘)9.\/3_7 ’y - 103 64 =

2\’3),2\/3 - 73y = /10364 - 114 V3

)
o

bo
s?uam (703 64 -1 24qvit)

RS (2\/3 _7.84) = 0343.3 —230%) Vi 4 124.1V3

6’\/3 ~31.36 Vs = j24l Vs Y2309 v +107Y

o o ToB Y TV sz - 7-%Y +V3 15-8=

21

0

£ sides and rearm?ﬁf e?_u@ﬂ’om

3.3

2
/16:] ng _ 9977274 V3 4 10743.3 = 0 (dividey

4 2
Vo' — )9.83v3 + 925 = o
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