

— University of Mosul — College of Petroleum & Mining Engineering

Analytical Chemistry

Lecture ...(4)....

Petroleum and Refining Engineering Department

Concentration Expressions and Analytical Interpretation in Petroleum Industry

II. Common Expressions of Concentration

Expression	Unit	What It Means	Where Used	Example from Industry
Percentage	% (v/v or	Parts per hundred	GC, titration	Gasoline with 5%
	w/w)	(volume or weight		benzene means 5 liters of
		based)		benzene in 100 liters of
				fuel
Parts per	ppm	One part in a	XRF, ICP-	Sulfur in diesel = 10 ppm
million	(mg/kg)	million parts	OES, GC	\rightarrow 10 mg in 1 kg of fuel
Parts per	ppb	One part in a	ICP-OES	Lead in fuel = 25 ppb \rightarrow
billion	(ug/kg)	billion parts		25 micrograms in 1 kg
Molarity	mol/L	Moles of	UV-Vis	Not commonly used in
		substance in one	spectroscopy	refinery, mostly in lab-
		liter		based chemical testing
Normality	eq/L	Reactive	Titration	Used in determining acid
		equivalents per	(acid/base)	number using KOH or
		liter		other bases
mg KOH/g	-	mg of KOH	Titration	Used engine oil = 6.73
		needed to		$mg KOH/g \rightarrow Needs$
		neutralize 1 gram		replacement
		of oil		

⊘ Sulfur content = 60 ppm

✓ Interpretation: Too high if limit is 15 ppm (must be reduced).

Example Question 4:

Gasoline contains **150 ppm** sulfur. Convert to % weight.

Solution:

Weight
$$\% = \frac{\text{ppm}}{10,000}$$

Weight
$$\% = \frac{150}{10,000} = 0.015\%$$

⊘ Sulfur content = 0.015%

A. Weight Percent (%)

Formula:

Weight Percent (w/w) =
$$\left(\frac{\text{Mass of Solute}}{\text{Mass of Solution}}\right) \times 100$$

Mass of Solute = the substance being measured (e.g., acid, salt, fatty acid)

Mass of Solution = the total mass of the oil, fuel, or sample

Summery:

Term	Meaning	Example from Petroleum	
% w/w	Grams per 100 g of product	5% salt in 100 g crude = 5 g	
% v/v	mL per 100 mL of liquid	10% ethanol in gasoline = 10 mL	
GC use	% of each compound in fuel	60% isooctane in gasoline	

∀ Formula (for liquids or solids):

$$ppm = \frac{Mass of Solute (mg)}{Mass of Solution (kg)}$$

- Solute = what you are measuring (e.g., sulfur, nickel, vanadium)
- **Solution** = the sample (e.g., crude oil, diesel, lubricant)

☐ Example 1: Sulfur in Crude Oil (XRF Technique)

Let's say:

- Sulfur content = **200 mg**
- Crude oil sample = 1 kg

$$ppm = \frac{200 \text{ mg}}{1 \text{ kg}} = 200 \text{ ppm}$$

Example Question:

GC shows:

- Hexane = 40%
- Benzene = 6%

Regulation says benzene must be < 1%.

Is the sample acceptable?