

— University of Mosul — College of Petroleum & Mining Engineering

Analytical Chemistry

Lecture ...(5)....

Petroleum and Refining Engineering Department

Concentration Expressions and Analytical Interpretation in Petroleum Industry

II. Common Expressions of Concentration

Expression	Unit	What It Means	Where Used	Example from Industry
Percentage	% (v/v or	Parts per hundred	GC, titration	Gasoline with 5%
	w/w)	(volume or weight		benzene means 5 liters of
		based)		benzene in 100 liters of
				fuel
Parts per	ppm	One part in a	XRF, ICP-	Sulfur in diesel = 10 ppm
million	(mg/kg)	million parts	OES, GC	\rightarrow 10 mg in 1 kg of fuel
Parts per	ppb	One part in a	ICP-OES	Lead in fuel = 25 ppb \rightarrow
billion	(ug/kg)	billion parts		25 micrograms in 1 kg
Molarity	mol/L	Moles of	UV-Vis	Not commonly used in
		substance in one	spectroscopy	refinery, mostly in lab-
		liter		based chemical testing
Normality	eq/L	Reactive	Titration	Used in determining acid
		equivalents per	(acid/base)	number using KOH or
		liter		other bases
mg KOH/g	-	mg of KOH	Titration	Used engine oil = 6.73
		needed to		$mg KOH/g \rightarrow Needs$
		neutralize 1 gram		replacement
		of oil		

Conversion Basics:

- 1 ppb = 0.001 ppm
- 1 ppb = 1 microgram (μg) per kilogram (kg)

Formula:

$$ppb = \frac{Mass \text{ of Solute (µg)}}{Mass \text{ of Solution (kg)}}$$

☐ Example 1: Nickel in Crude Oil (ICP-OES Technique)

- Lab report: Nickel = 900 ppb
- This means:

900 µg of Nickel per kg of crude = 0.9 mg/kg = 0.9 ppm

Formula:

Molarity (M) =
$$\frac{\text{Moles of solute}}{\text{Liters of solution}}$$

Example 1: Iron in Produced Water

Lab result: $Fe^{3+} = 0.02 \text{ mol/L}$

Means:

There are **0.02 moles** of iron ions in every **1 liter** of produced water.

Why it matters:

If $Fe^{3+} > 0.01 \text{ mol/L} \rightarrow \text{iron can form solid Fe(OH)}_3$, which may:

- · Block pipes
- Damage equipment

Formula (for Normality):

Normality (N) =
$$\frac{\text{Equivalents}}{\text{Liters of solution}}$$

Where It's Used in Oil & Gas:

In refineries, we use Normality in titration tests to check oil quality:

- 1. **Acid Number** tells us how acidic or oxidized the oil is
- 2. **Base Number** tells us how well the oil can protect engines from acids

υυ.

 \Box The stronger the base (higher N), or the more volume used \rightarrow The higher the **Acid Number** \rightarrow the more acidic (oxidized) the oil is.

Real Petroleum Example:

You test **used lube oil** from a gas compressor:

You use 1.2 mL of 0.1 N KOH to neutralize 1 gram of oil.

$${\rm Acid~Number} = \frac{1.2 \times 0.1 \times 56.1}{1} = 6.73~{\rm mg~KOH/g}$$

Example Question:

GC shows:

- Hexane = 40%
- Benzene = 6%

Regulation says benzene must be < 1%.

Is the sample acceptable?