

— University of Mosul — College of Petroleum & Mining Engineering

Analytical Chemistry

Lecture ...(2)....

Petroleum and Refining Engineering Department

Lec -2- Analytical Chemistry Applications in Petroleum Engineering:

Quantitative and Qualitative Techniques with Practical Calculations

Part 1: Quantitative Analytical Chemistry

1. API Gravity

As mentioned in the first lecture, **API gravity** is a measure of how heavy or light crude oil is. The formula used for calculating API gravity is:

Formula:

API Gravity =
$$\frac{141.5}{SG} - 131.5$$

Example Question 1:

Crude oil specific gravity = 0.82.

Eind the ADI ansolite.

Step 1: Plug into formula:

$$API = \frac{141.5}{0.82} - 131.5$$

Step 2: Calculate:

$$\frac{141.5}{0.82} = 172.56$$

$$172.56 - 131.5 = 41.06$$

- **⊘** API Gravity = 41.1°

Example Question 2:

Crude oil SG = 0.93. Find API gravity.

Solution:

$$API = \frac{141.5}{0.93} - 131.5$$
$$= 152.15 - 131.5$$
$$= 20.65$$

Table 2: Key Analytical Methods in Refinery Operations

Analytical Technique	Measured Parameter	Petroleum Application
Gas Chromatography (GC)	Hydrocarbon composition	Reformate analysis
UV-Vis Spectroscopy	Aromatic content	Gasoline quality
X-Ray Fluorescence (XRF)	Sulfur content	Diesel sulfur testing
Titration	Acid/Base number	Lube oil stability
ICP-OES	Trace metals (e.g., V, Ni, Fe)	Crude oil corrosion control

⊘ Sulfur content = 60 ppm

✓ Interpretation: Too high if limit is 15 ppm (must be reduced).

Example Question 4:

Gasoline contains **150 ppm** sulfur. Convert to % weight.

Solution:

Weight
$$\% = \frac{\text{ppm}}{10,000}$$

Weight
$$\% = \frac{150}{10,000} = 0.015\%$$

⊘ Sulfur content = 0.015%

Common ASTM Tests for Petroleum Products:

These are **important tests** used to measure the quality of petroleum products:

1. D86 – Distillation Curve (Boiling Points):

This test checks the **boiling points** of different parts of the petroleum product.
 It helps determine the best way to separate the **gasoline**, **diesel**, and other products during refining.

Numerical Example:

 If gasoline boils at temperatures between 40°C to 200°C, this helps the refinery know at what temperature to separate it from other products.

2. D445 – Kinematic Viscosity:

 This measures how thick or thin the product is. If it's too thick, it won't flow well, and if it's too thin, it won't lubricate the engine properly.

Numerical Example:

 A diesel fuel might have a viscosity of 2.5 cSt (centistokes). This tells us how thick or thin it is. For reference, thicker oils have a viscosity higher than 3.0 cSt, and thinner oils have a viscosity lower than 1.0 cSt.

3. D4294 – Sulfur by XRF (X-Ray Fluorescence):

 This test measures how much **sulfur** is in the product. Too much sulfur in fuel is bad for the environment.