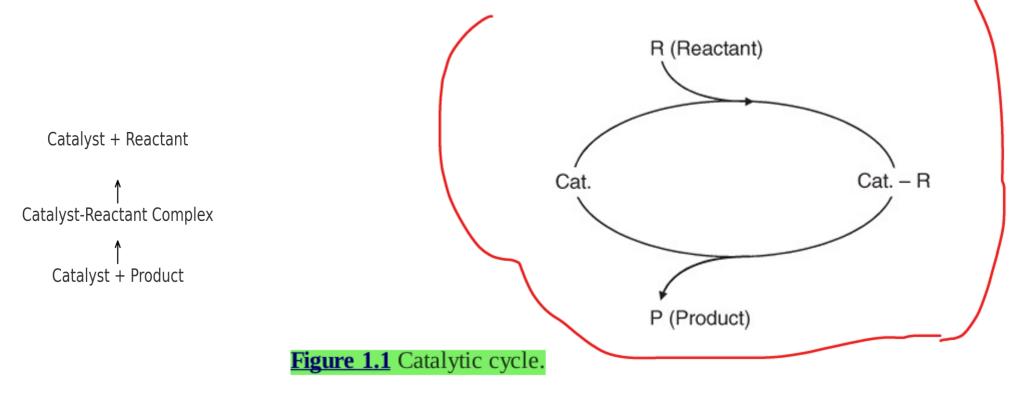


— University of Mosul — College of Petroleum & Mining Engineering


Industrial Chemistry

Lecture ...(1)....

Petroleum and Refining Engineering Department

Catalytic Cycle

 Catalysts facilitate reactions through a cycle, returning to their original state after form

Catalysis Kinetics: Rate Laws and Activation Energy

- • Reaction Rate: $r = -d[A]/dt = k \cdot f(cA)$
- • Arrhenius Equation: $k = k_0 \cdot exp(-Ea / RT)$

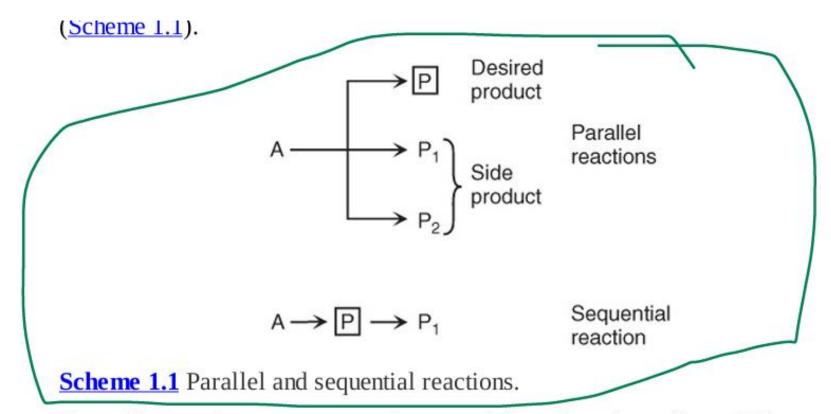
- Where:
- k = rate constant
- Ea = activation energy
- R = gas constant
- T = temperature (Kelvin)

TOF (Turnover Frequency) – Reactions per second per site

Examples:

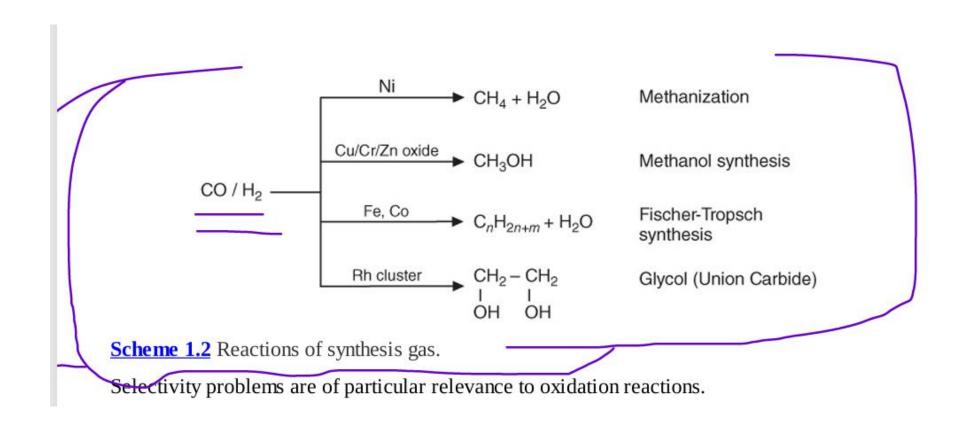
TOF values for the hydrogenation of cyclohexene at 25 °C and 1 bar (supported catalysts, structure-insensitive reaction) are provided in <u>Table 1.2</u>).

Table 1.2 TOF values for the hydrogenation of cyclohexene [9]


Metal	TOF (s ⁻¹)		
	Gas phase	Liquid phase	
Ni	2.0	0.45	
Rh	6.1	1.3	
Pd	3.2	1.5	
Pt	2.8	0.6	

Turnover Frequency (TOF) Comparison

TOF indicates how many reactions each active site performs per


Metal	TOF (Gas Phase)	ГОF (Liquid Phase)
Ni	2.0	0.45
Rh	6.1	1.3
Pd	3.2	1.5
Pt	2.8	0.6

Selectivity

Since this quantity compares starting materials and products, the stoichiometric c

Selectivity

Example

The methanol synthesis in a laboratory reactor is carried out at 80 bar and 250 °C with the addition of inert gas nitrogen. Under these conditions, the conversion of CO is 30%.

The feed of the reactor consists of 1 mol/h CO, 2 mol h^{-1} H₂, and 3 mol h^{-1} N₂. In the condenser, it results in 9.2 g h^{-1} liquid methanol.

- a. Calculate the composition of the gas phase at the reactor outlet (mol%).
- b. Calculate the volume flow rates at the reactor outlet.
- c. Which amount of liquid methanol/h should be obtained theoretically?

Solution

(a) At the end of the conversion, there should be obtained

Species	$n_{\rm i}$	$n_{\rm i}$ (mol) gas	%	(b) flow rate (l h^{-1})
CO	1 - X	0.7	13.7	15.7
H_2	2(1 - X)	1.4	27.5	31.4
CH ₃ OH	X	_	_	_
N_2	3	3	58.8	67.2

(c) $0.3 \text{ mol methanol} = 9.6 \text{ g CH}_3\text{OH/h}.$

Table 1.4 Comparison of homogeneous and heterogeneous catalysts

		J J		
		Homogeneous	Heterogeneous	
	Effectivity			
1	Active centers	All metal atoms	Only surface atoms	
	Concentration	Low	High	
/	Selectivity	High	Lower	
	Diffusion problems	Practically absent	Present (mass-transfer- controlled reaction)	
	Reaction conditions	Mild (50–200 °C)	Severe (often >250 °C)	
	Applicability	Limited	Wide	
\ /	Activity loss	Irreversible reaction with products (cluster formation); poisoning	Sintering of the metal crystallites; poisoning	
	Catalyst properties			
	Structure/stoichiometry	Defined	Undefined	
	Modification possibilities	High	Low	
	Thermal stability	Low	High	
	Catalyst separation	Sometimes laborious (chemical decomposition, distillation, extraction)	Fixed-bed: unnecessary suspension: filtration	
	Catalyst recycling	Possible	Unnecessary (fixed-bed) or easy (suspension)	
	Cost of catalyst losses	High	Low	

The major disadvantage of homogeneous transition metal catalysts is the difficulty of