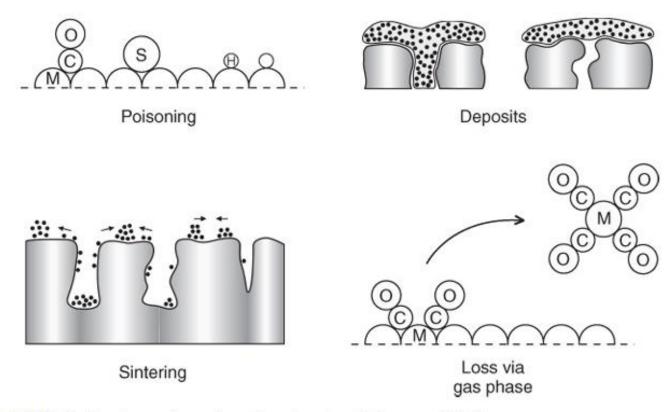


— University of Mosul — College of Petroleum & Mining Engineering



Industrial Chemistry

Lecture ...(5)....

Petroleum and Refining Engineering Department

Catalyst Deactivation

Figure 5.32 Mechanisms of catalyst deactivation (M = metal) [6].

Table 5.32 Catalyst poisons and inhibitors in chemical processes [19]

Process	Catalyst	Catalyst poison, inhibitor	Mode of action
NH ₃ synthesis	Fe	S, Se, Te, P, As compounds, halogens	Poison: strong chemisorption or formation of compounds
		O ₂ , H ₂ O, NO	Weak poison: oxidation of Fe surface; reduction possible but causes sintering
		CO ₂	Inhibitor: reaction with alkaline promoters
		CO	Poison and inhibitor: strong chemisorption, reduction to methane; accelerates sintering
		Unsaturated hydrocarbons	Inhibitor: strong chemisorption, slow reduction
Hydrogenation	Ni, Pt, Pd, Cu	S, Se, Te, P, As compounds, halogens	Poison: strong chemisorption
		Hg and Pb compounds	Poison: alloy formation
		O ₂	Poison: surface oxide film
		CO	Ni forms volatile carbonyls
Catalytic cracking	Aluminosilicates	Amines, H ₂ O, Ni, Fe, V (porphyrins)	Inhibitor: blocking of active sites
		Coke	Poison: blocking of active sites
NH ₃ oxidation	Pt/Rh	P, As, Sb	Poison: alloy formation, catalyst net

Table 5.29 Influence of support materials on the hydrogenation of CO with rhodium catalysts

Catalyst	Active catalyst	Chemisorption of CO	Products
Rh/SiO ₂	Rh(0)	Dissociative	CH_x
Rh/ZrO ₂	Rh(0)	Dissociative/	42% ethanol
Rh/ZrO ₂	Rh(I)	Associative	12% methanol 32% CH ₄
Rh/ZnO Rh/La ₂ O ₃	Rh(I)	Associative	94% methanol

The next example shows how catalyst bifunctionality can arise from the support material. Platinum metal dehydrogenates napthenes to give aromatic compounds, but it is not able to isomerize or cyclize n-alkanes. This function is adopted by the Al_2O_3 support with its acidic properties. The cooperation of the two catalyst components is shown schematically for the reforming of n-hexane in Scheme 5.5.

Scheme 5.5 Reforming of *n*-hexane on a Pt/Al_2O_3 supported catalyst.

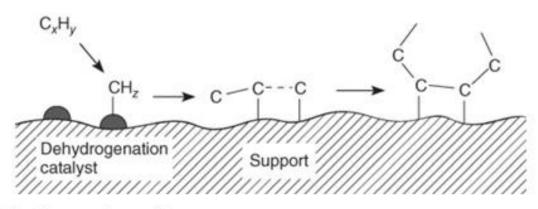


Figure 5.33 Dehydrogenative coking.

Dehydrogenative coking mainly occurs in catalytic reforming, HDS, and in cases of metal contamination of the starting materials. In catalytic reforming processes, bimetallic catalysts are successfully used. Addition of Re to Pt greatly increases the stability of the catalyst, as depicted schematically in Figure 5.34.

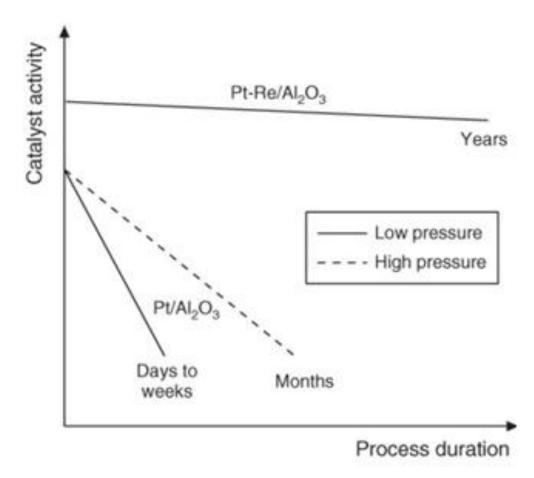


Figure 5.34 Catalyst deactivation in reforming processes [8].

$$\Delta G = -46 + (300 \times 0.068) = -25.6 \text{ kJ mol}^{-1}$$

The probability of reaction is thus extremely high. The diagram also shows that the idea that the H_2 molecule dissociates and is then chemisorbed on the Ni surface is purely hypothetical, and that in fact physisorption precedes chemisorption. The total process can be described schematically as shown in Figure 5.12.

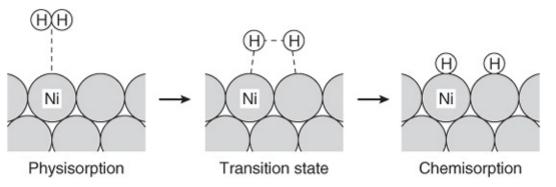


Figure 5.12 Dissociative adsorption of hydrogen on nickel surfaces.

For both types of chemisorption, there are numerous examples that exhibit parallels to organometallic chemistry and therefore homogeneous catalysis.

In the chemisorption of alkenes, other surface complexes can occur, for example, π complexes with a donor—acceptor bond and dissociatively bound complexes:

$$\begin{array}{cccc} \text{CH}_2 \begin{array}{c} \longrightarrow & \text{H} & \text{HC} \\ \longrightarrow & \text{H} & \text{HC} \\ \text{M} - \text{M} - \text{M} & \text{M} - \text{M} \\ \end{array}$$
 Metal π complex
$$\begin{array}{cccc} \text{Dissociatively chemisorbed ethylene} \end{array}$$

Dissociative chemisorption occurs preferably with alkenes in which the allylic methyl group is highly activated (e.g., propene). Hydrogen abstraction gives an allyl radical, which can be

Table 5.6 Relative reaction rates on transition metal catalysts

Row	Reaction		Metals and relative reaction rates					
1	Hydrogenation of ethylene (metal catalysts)		Cr		Fe	Со	Ni	Cu
			0.95		15	100	36	1.2
2	Hydrodesulfurization of dibenzo-thiophene (metal sulfide catalysts)	Nb	Mo	Tc	Ru	Rh	Pd	
		0.5	2	13	100	26	3	
3	Hydrogenolysis of CH ₃ NH ₂ to methane (metal catalysts)			Re	Os	Ir	Pt	Au
				0.008	0.9	100	11	0.5

Table 5.30 Examples of promoters in the chemical industry [19]

Catalyst (use)	Promoters	Function
Al ₂ O ₃ (support and catalyst)	SiO ₂ , ZrO ₂ , P	Increase thermal stability
	K ₂ O	Poisons coke formation on active centers
	HCl	Increases acidity
	MgO	Slows sintering of active components
SiO ₂ /Al ₂ O ₃ (cracking catalyst and matrix)	Pt	Increased CO oxidation
Pt/Al ₂ O ₃ (reforming)	Re	Lowers hydrogenolysis activity and sintering
MoO ₃ /Al ₂ O ₃ (hydrotreating, HDS, HDN)	Ni, Co	Increased hydrogenolysis of C-S and C-N bonds
	P, B	Increased MoO ₃ dispersion
Ni/ceramic support (steam reforming)	K	Improved coke removal
Cu/ZnO/Al ₂ O ₃ (low- temperature conversion)	ZnO	Decreased Cu sintering
Fe ₃ O ₄ (NH ₃ synthesis)	K ₂ O	Electron donor, favors N ₂ dissociation
	Al_2O_3	Structure promoter
Ag (EO synthesis)	Alkali metals	Increase selectivity, hinder crystal growth, stabilize certain oxidation states

Regeneration and Recycling of Heterogeneous Catalysts

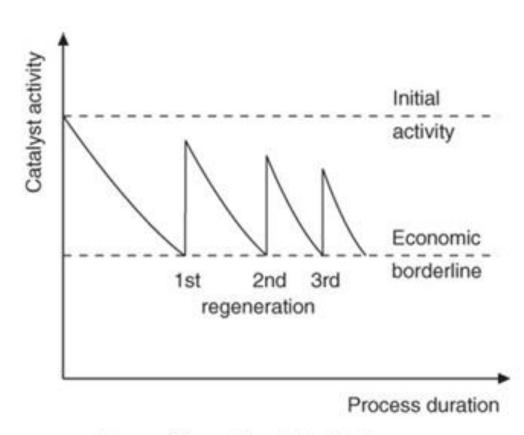


Figure 5.35 Catalyst regeneration and loss of activity during a process.