

— University of Mosul — College of Petroleum & Mining Engineering

Fluid Flow I

Lecture (2)

Dimension and Units

Petroleum and Refining Engineering Department

Ass.P. Raqeeb Hummadi Rajab Ass.L. Ghufran Faris Alrahhawi

Email: ghufranalrahhawi@uomosul.edu.iq

— University of Mosul — College of Petroleum & Mining Engineering

LECTURE CONTENTS

Dimension and Units

Dimensions and Units

A standard unit for length might be a (meter or foot), for time might be (hour or second), and for mass a (slug or kilogram). Such standards are called units, and several systems of units are in common use as described in the following section. The qualitative description is conveniently given in terms of certain **primary** quantities, such as length (**L**), time (**T**), mass (**M**) and temperature (θ). These primary quantities can then be used to provide a qualitative description of any other **secondary** quantity: for example; Area L², Velocity = LT⁻¹, Density = ML⁻³ and so on, where the symbol is used to indicate the dimensions of secondary quantity in terms of the primary quantities. Thus, to describe qualitatively a velocity, V, we would write V = LT⁻¹ and say that the dimensions of velocity equal length divided by time. The **primary quantities are also referred to as dimensions**.

For a wide variety of problems involving fluid mechanics, only the three basic dimensions (L, T and M) are required. Alternatively, (L, T, and F) could be used, where F is the basic dimensions of force. Since Newtons law states that force is equal to mass times acceleration, it follows that $F = MLT^{-2}$.

For the SI system there are four basic dimensions through which fluid properties are expressed.

Basic Dimensions are:

Mass (M)

Length (L)

Time (T)

Force (F)

There are two systems of dimensions

1. M-L-T systems

2. F - L - T systems

↔

Quantity	Dimension	Units
Mass	M	Kilogram (kg)
Length	L	Meter (m)
Time	t	Second (s)
Temperature	T	Kelvin (K º_)

Derived units:

 $Force = mass \times acceleration = F = M \times a = Kg \times m/s^2 = MLT^{-2} \mbox{ (Newtons second law)}$

1. M-L-T systems

۳		*	

Quantity	Dimension	SI units	English Units
Area A	L^2	m^2	ft ²
Volume ∀	L^3	m ³ or L(liter)	ft ³
Velocity V	L/T	m/s	ft/sec
Acceleration a	L/T^2	m/s^2	ft/sec ²
Angular velocity Ω	T-1	s ⁻¹	sec ⁻¹
Force F	ML/T ²	Kg. m/s ² or N	slug.ft/sec ² or Ib
Density ρ	M/L^3	Kg/m ³	slug/ft ³
Specific weight γ	M/L^2T^2	N/m^3	<u>Ib</u> /ft ³

Frequency f	T-1	s ⁻¹	sec ⁻¹
Pressure p	M/LT ²	N/m ² or Pa	Ib/ft ²
Stress τ	M/LT ²	N/m ² or Pa	Ib/ft ²
Surface tension σ	M/T^2	N/m	<u>Ib</u> /ft
Work W	ML^2/T^2	N.m or J	ft.Ib
Energy E	ML^2/T^2	N.m or J	ft.Ib
Heat rate	ML^2/T^3	J/S	Btu/sec
Torque T	ML^2/T^2	N.m	ft.Ib
Power W	ML^2/T^3	J/s or W	ft.Ib/sec
Mass flux in	M/T	Kg/s	slug/sec
Flow rate Q	L^3/T	m^3/s	ft ³ /sec
Specific heat c	$L^2/T^2\theta$	J/kg.K	Btu/slug.Rº
Dynamic viscosity μ	M/LT	N.s/m ²	Ib.sec/ft ²
Kinematic viscosity v	L^2/T	m^2/s	ft ² /sec