Bottom-Water Drive

The van Everdingen and Hurst model discussed in the previous lectures is based on the radial diffusivity equation written without a term describing vertical flow from the aquifer.

correctly noted that in many cases reservoirs are situated on top of an aquifer with a continuous horizontal interface between the reservoir fluid and the aquifer water and with a significant aquifer thickness. that in such situations significant bottom-water drive would occur.

The proposed solution technique (van Everdingen and Hurst model), however, is not adequate to describe the vertical water encroachment in bottom-water-drive system. Coats (1962) presented a mathematical model that takes into <u>account the vertical flow effects</u>

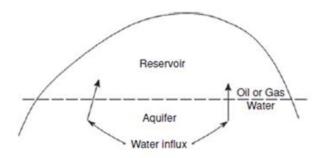


Figure 4 Sketch of bottom-water drive reservoir.

Coats and, later, Allard and Chen added a term to Eq. below to yield the following:

$$\frac{\partial^2 P_D}{\partial r_D^2} + \frac{1}{r_D} \frac{\partial P_D}{\partial r_D} = \frac{\partial P_D}{\partial t_D}$$

to be as following

$$\frac{\partial^2 p_D}{\partial r_D^2} + \frac{1}{r_D} \frac{\partial p_D}{\partial p} + \frac{\partial^2 p_D}{\partial z_D^2} = \frac{\partial p_D}{\partial t_D}$$

They suggested that it is possible to derive a general solution that is applicable to a variety of systems in terms of the dimension-less time tD, dimensionless radius rD, and a newly introduced dimensionless variable Z_D .

$$Z_D = \frac{h}{r_e \sqrt{F_k}}$$

Where:

 Z_D = dimensionless vertical distance.

h = aquifer thickness, ft.

where

 F_k is the ratio of vertical to horizontal permeability,

or:

$$F_k = \frac{K_v}{K_h}$$

where

 k_v = vertical permeability

 k_h = horizontal permeability

Using the definitions of dimensionless time, radius, and pressure and introducing a second dimensionless distance, z_D , last Eq. becomes as following:

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} + F_k \frac{\partial^2 p}{\partial z^2} = \frac{\phi \mu c_t}{0.0002637 k} \frac{\partial p}{\partial t}$$

The authors developed a solution to the bottom-water influx that is comparable in form with that of van Everdingen and Hurst.

$$W_e = B \Delta p W_{eD}$$

$$W_e = B \sum \Delta P W_{eD}$$

They defined the water influx constant B identical to that of Equation in van Everdingen and Hurst ,

$$B = 1.119 \, \phi \, c_t \, r_e^2 \, h$$

where

We = cumulative water influx, bbl

B = water influx constant, bbl/psi

 Δp = pressure drop at the boundary, psi

WeD = dimensionless water influx

Example: Calculate the cumulative water influx as a function of time for the reservoir data and boundary pressure data that follow: Given:

$$\begin{split} r_{e} &= 2000 \text{ ft} & r_{a} &= \infty \\ h &= 200 \text{ ft} & k &= 50 \text{ md} \\ F_{k} &= 0.04 & \phi &= 0.10 \\ \mu &= 0.395 \text{ cp} & c_{t} &= 8 \times 10^{-6} \text{ psi}^{-1} \end{split}$$

Time in days (t)	Average boundary pressure, psi		
0	3000		
30	2956		
60	2917		
90	2877		
120	2844		
150	2811		

Solution:

$$r_D^{'} = \frac{r_a}{r_e} = \infty$$

$$z'_D = \frac{h}{r_e F_k^{1/2}} = \frac{200}{2000(0.040)^{1/2}} = 0.5$$

$$B' = 1.119 \phi h c_t r_e^2 = 1.119(0.10)(200)(8 \times 10^{-6})(2000)^2 = 716 \ bbl / \ psi$$

$$t_D = 6.328 \times 10^{-3} \frac{kt}{\phi \mu c_t r_e^2} = 6.328 \times 10^{-3} \times \frac{(50t)}{(0.10)(0.395) [8(10)^{-6}](2000)^2} = 0.2503t$$

• Step Pressures can be calculated as follow:

$$\Delta P_0 = 0$$

$$\Delta P_1 = \frac{Pi - P_1}{2} = \frac{3000 - 2956}{2} = 22 \ psi$$

$$\Delta P_2 = \frac{Pi - P_2}{2} = \frac{3000 - 2917}{2} = 41.5 \ psi$$

$$\Delta P_3 = \frac{P_1 - P_3}{2} = \frac{2956 - 2877}{2} = 39.5 \ psi$$

$$\Delta P_4 = \frac{P_2 - P_4}{2} = \frac{2917 - 2844}{2} = 36.5 \ psi$$

$$\Delta P_5 = \frac{P_3 - P_5}{2} = \frac{2877 - 2811}{2} = 33 \ psi$$

• Cumulative water influx for each time step can be calculated using the superposition principle:

We cumulative =
$$B \sum \Delta P We_D$$

1. At 30 days (t=30):

2. At 60 days (t=60)

We cum =
$$716 \times (22 \times 8.389 + 41.5 \times 5.038) = 281,843 \text{ bbl}$$

3. At 90 days (t=90):

We _{cum} =
$$716 \times (22 \times 11.414 + 41.5 \times 8.389 + 39.5 \times 5.038) = 571,549 \text{ bbl}$$

4. At 120 days (t=120):

We cum =
$$716 \times (22 \times 14.263 + 41.5 \times 11.414 + 39.5 \times 8.389 + 36.5 \times 5.038)$$

= $932,747$ bbl

5. At 150 days (t=150):

We $_{cum}$ = 716× (22×16.994 +41.5×14.263 +39.5×11.414 +36.5×8.389 +33×5.038) = 1,352,587 bbl

Time in days (t)	Dimensionless time $(t_D = 0.2503t)$	W _{eD} (from Table)	Average boundary pressure, psi	Step pressure (\(\Delta\P\)	Water Influx, bbl (W _e)
0	0	0	3000	0	0
30	7.5	5.038	2956	22.0	79,359
60	15.0	8.389	2917	41.5	281,843
90	22.5	11.414	2877	39.5	571,549
120	30.0	14.263	2844	36.5	932,747
150	37.5	16.994	2811	33.0	1,352,587