

— University of Mosul — College of Petroleum & Mining Engineering

Petroleum Pollution

Lecture ...(1)....

Petroleum and Refining Engineering Department

Table 2.1 Air Emissions From Exploration, Development, and Production of Petroleum (E&P Forum, 1993; Bashat, 2003)

Main Sources	Environmentally Significant Components	Type of Operation
Vent gases	NO _x , SO _x , H ₂ S, CO _x , VOC, hydrocarbons such	Drilling
Flare gases	as CH ₄ , carbon, particulates, PAHs, benzene, toluene, ethylbenzene, and ortho-, meta-, and	Production
Blowdown from bulk chemicals	para-xylene (BTEX)	
Engine exhausts	NO _x , SO _x , CO _x , VOC, PAHs, formaldehyde, carbon particulates	Seismic
		Construction and commissioning
		Drilling
		Production
		Maintenance
		Abandonment
Fugitive gases	VOC, BTEX	Construction and commissioning
		Drilling
		Production
		Maintenance

Table 5.1 Maximum Effluent Level From the Petroleum Industry (World Bank Group, 1998)

Parameter	Maximum Value
Nitrogen oxides (mg/m³) (excludes NO _x emissions from catalytic units)	460
Sulfur oxides (mg/m ³)	150 for SRUs and 500 for other units.
PM (mg/m ³)	50
Nickel and vanadium (combined) (mg/m ³)	2
Hydrogen sulfide (mg/m³)	152

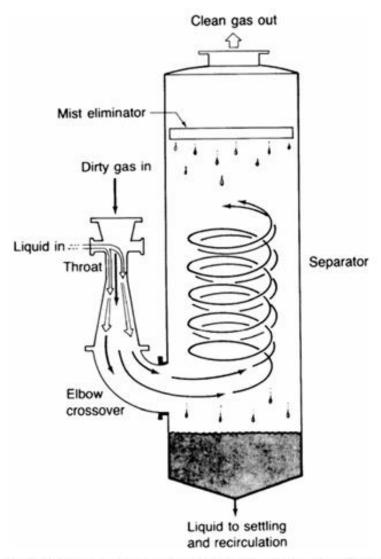


Figure 5.13 Venturi scrubber with cyclone separator and mist eliminator (A&WMA, 2007).

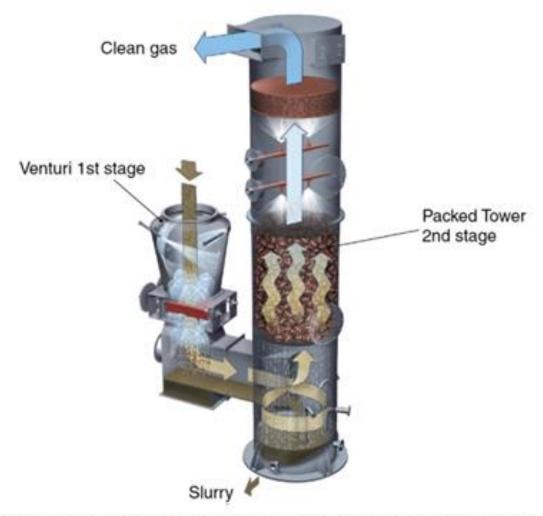


Figure 5.14 Two-stage wet scrubber design including a venturi scrubber with a packed-bed section (MikroPul, 2015).

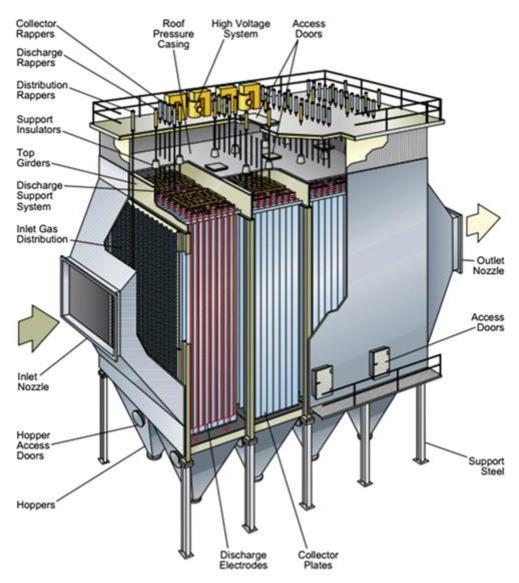


Figure 5.15 Schematic of an electrostatic precipitator (Courtesy of The Babcock & Wilcox Company).

Example 5.1

In an ESP, assume that the gas-flow rate, the particle diameter, the electric field, the particle charge, the viscosity, the temperature, and the pressure are 35 m³/s, 0.5 μ m, 60,000 V/m, 1.6×10^{-18} C, 1.81×10^{-5} kg/ms, 293 K, and 10,1300 Pa, respectively. Also suppose that each plate has the dimensions 5 m by 3 m and the collection efficiency of the ESP must be 99%. What is the required number of plates?

Solution: The mean-free path of the gas molecules can be calculated using Eq. (5.17):

$$\lambda = 6.61 \times 10^{-8} \left(\frac{293}{293} \right) \left(\frac{101,300}{101,300} \right) = 6.61 \times 10^{-8} \text{ (m)}$$

The Cunningham correction factor can be obtained from Eq. (5.16):

$$C_m = 1 + 2.54 \left(\frac{6.61 \times 10^{-8}}{5 \times 10^{-7}} \right) + 0.8 \left(\frac{6.61 \times 10^{-8}}{5 \times 10^{-7}} \right) \exp\left(\frac{-0.55 \times 5 \times 10^{-7}}{6.61 \times 10^{-8}} \right)$$

$$= 1.333$$

The migration velocity is calculated using Eq. (5.15):

$$w_e = \frac{1.6 \times 10^{-18} \times 60,000 \times 1.333}{3\pi \times 1.81 \times 10^{-5} \times 5 \times 10^{-7}} = 1.5 \times 10^{-3} \text{ (m/s)}$$

According to Eq. (5.14), for an efficiency of 99%, the area of the collecting electrodes is 107,453.97 m², which was obtained as follows:

$$0.99 = 1 - \exp\left(\frac{-0.0015A}{35}\right)$$

Since a single plate gives a collecting area of $2 \times 5 \times 3 = 30 \text{ m}^2$ (counting both sides) and based on this fact each of the two terminal plates offers only a single collecting side, it is necessary to add 1 to the number of plates; thus the required number of plates can be obtained as follows:

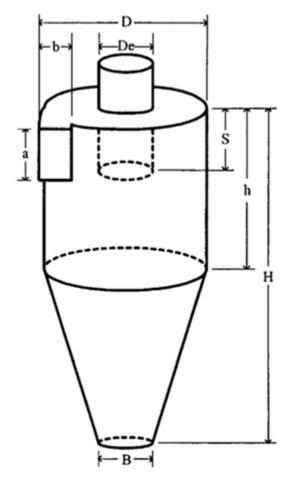


Figure 5.16 Typical tangential inlet cyclone (Kuo and Tsai, 2001).

Table 5.2 Some of the Available Equations for Theoretical Collection Efficiency and Cutoff Diameter of the Cyclone (Dirgo and Leith, 1985; Kuo and Tsai, 2001)

Theory	Equation for the Theoretical Collection Efficiency	Equation for the Cutoff Diameter	Parameters
Lapple	$d_{p_{s_0}} = \sqrt{rac{9\mu b}{2\pi ho_p u_t CN_t}}$		$d_{p_{50}}$, The cutoff diameter (m); d_p , particle diameter (m); μ , gas viscosity (Pa s); b , cyclone inlet width (m); ρ_p , particle density (kg/m³); ν_t , gas inlet velocity (m/s); C , slip-correction factor of the particle corresponding to $d_{p_{50}}$; $N_t = t \nu / \pi$; D , number of turns; and t , residence time that equals to the volume of the cyclone divided by the volumetric flow rate (Q).
Theodore and DePaola	$\eta = rac{1}{1 + \left(d_{p_{50}}/d_{p} ight)^{2}}$	$d_{p_{50}}=\sqrt{rac{9\mu b}{2\pi ho_p v_i CN_t}}$	
Stairmand		$d_{p_{50}} = \sqrt{\frac{9\mu Q}{\pi \rho_p \nu_{tmax} C(H-S)}}$	v_{tmax} , maximum tangential velocity; H , total height of cyclone; and S , length of vortex finder or outlet duct length.
Barth	$\eta = \frac{1}{1 + \left(\frac{\pi h^* v_t^2 \rho_p d_p^2}{9\mu Q}\right)^{-3.2}}$	$d_{p_{S0}} = \sqrt{\frac{9\mu Q}{\pi \rho_p v_{tmax} C(H-S)}}$	v_t , tangential gas velocity at the edge of the central core; and h^* , height of the central core.
Leith and Licht	$\eta = 1 - \exp\left[-2(C_g\psi)^{\frac{1}{2\nu+2}}\right]$		C_g , dimension factor of a cyclone; $\psi = C\rho_p d_p^2 v_i / 18\mu D$, impaction parameter; and n , vortex exponent.
Dietz	$\eta = 1 - \left[K_0 - \sqrt{\left(K_1^2 + K_2\right)} \right] \times \exp\left[\frac{-\pi \rho_p d_p^2 \nu_i (2S - a)}{18\mu ab} \right]$		The subscripted K terms are functions of particle and gas properties as well as cyclone dimensions.
Li and Wang	$\eta = 1 - \exp\left[\frac{-2\pi\lambda(S+L)}{a}\right]$		λ , a characteristic value; and $L=2.3D_e\sqrt[3]{\frac{D^2}{ab}}$, The natural length of cyclone.
Iozia and Leith	$\eta = rac{1}{1+\left(d_{p_{s_0}}/d_p ight)^eta}$	$d_{p_{50}} = \sqrt{\frac{9\mu Q}{\pi \rho_p v_{max} \chi_c}}$	$\begin{aligned} v_{tmax} &= 6.1 v_i \left(\frac{ab}{D^2}\right)^{0.61} \left(\frac{D_c}{D}\right)^{-0.74} \left(\frac{H}{D}\right)^{-0.33}, \text{ The maximum tangential} \\ \text{velocity; } \chi_c, \text{ length of the central core; and } \beta \text{ can be calculated from} \\ \ln \beta &= 0.62 - 0.87 \ln \left(d_{p_{50}}\right) + 521 \times \ln \left(\frac{ab}{D^2}\right) + 1.05 \left[\ln \left(\frac{ab}{D^2}\right)\right]^2. \end{aligned}$