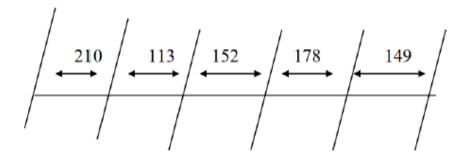

Rock Mechanical University of Mosul Third class By Lecturer: Sura M.Ali Dept.: Petroleum & Refining Engineering

C.Classification Systems of Discontinuity Surfaces

1- Joint Spacing, (Js) OR Fracture Intercept, (FI):


Joint System: nearly parallel system with approximately same distances between individual joints and nearly with the same dip amount and direction.

The practical method to compute Js, FI is Scan-Line.

Descriptive terms for joints spacing (After Geological Society of London, 1977)

Intervals (cm)	Symbols	Description	
>200	\mathbf{F}_{1}	Extremely wide spaced	
60 – 200	F_2	Widely spaced	
20 - 60	F ₃	Moderately wide spaced	
6-20	F ₄	Closely spaced	
2-6	F ₅	Very closely spaced	
< 2	F ₆	Extremely closed spaced	

Example:

There are two methods to compute Joint Spacing:

1-
$$Av.J.s = \frac{distance\ between\ joints}{number\ of\ specimens\ between\ joints}$$

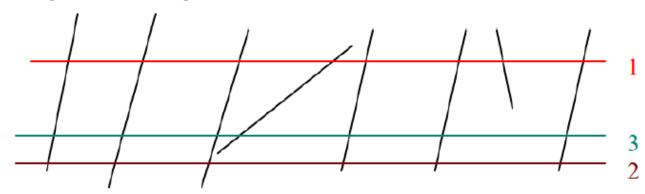
2-
$$Av.J.s = \frac{length\ of\ scan\ line}{number\ of\ joints}$$

Solution:

First method:

$$Av.J.s = \frac{149+178+152+113+210}{5} = \frac{802}{5}$$

:. Av.
$$J.s = 160.4 \text{ cm}$$


Second method:

$$Av.J.s = \frac{800}{5} = 160 \ cm$$

Classification: according the previous table, these joints classified as Widely spaced (F2).

Computing Fracture Intercept:

Compute Fracture Intercept for 8 meter if:

1.
$$Av.FI = \frac{800}{8} = 100 \ cm$$

2.
$$Av.FI = \frac{800}{6} = 133.3 \ cm$$

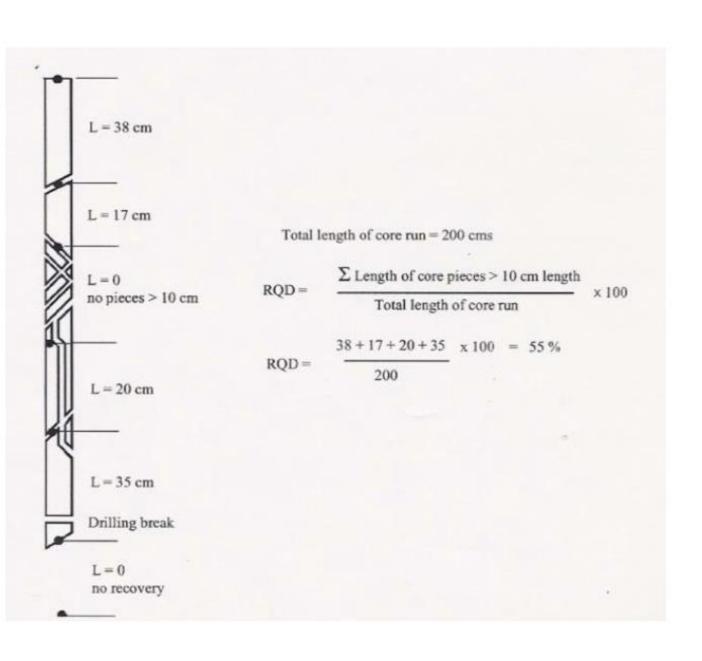
3.
$$Av.FI = \frac{800}{7} = 114.3 \ cm$$

$$Av.FI = \frac{100+133.3+114.3}{3} = 115.87 \ cm$$

Classification: according the previous table, these joints classified as Widely spaced (F2).

2-RQD-System

By Deere and Miller (1964)


2-1 Computing RQD value using the Formula below:

$$RQD$$
 (%) = $\frac{\sum Samples \ge 10cm, \ge 4inch}{TotalRun}$

Rock Mechanical University of Mosul Third class By Lecturer: Sura M.Ali Dept.: Petroleum & Refining Engineering

Descriptive terms for Rock Quality Designation (After Deere and Miller, 1966)

Descriptive Term	RQD %	Symbols
Very Good	90 – 100	R_1
Good	75 – 90	R ₂
Fair	50 – 75	R ₃
Poor	25 - 50	R ₄
Very Poor	<25	R ₅

Third class By Lecturer: Sura M.Ali Dept.: Petroleum & Refining Engineering

Example:

Total Run 300 cm

Total Sum of solid samples:

$$\therefore Tcr = \frac{299}{300} * 100 = 99.7\%$$

$$RQD = \frac{278}{300} * 100 = 93\%$$

2-2 At mountainous areas, Palmstrom (1982) introduced the equation below to compute RQD:

$$RQD = 115 - 3.3 * (J_v)$$

 J_v (Volumetric Joints) = No. of Joints in $1m^3$

Table Block size expressed in terms of J_v (Joints/m³) (After Barton, 1978)

J _v (Joints/m ³)	Descriptive Terms
< 1	Very Large Blocks
1-3	Large Blocks
3-10	Medium-sized Blocks
10-30	Small Blocks
> 30	Very Small Blocks

Example:

Calculate RQD value for 12 joints in a sector of 4 m length.

$$RQD = 115 - 3.3 (J_v)$$

Face 1 = 12 Joints/4m = 3 Joints/1m

Face 2 = 3 Joints/1m

Face 3 = 3 Joints/ 1m

:.
$$J_v = 3 + 3 + 3 = 9 \text{ Joints} / 1 \text{m}^3$$

RQD = 115 - 3.3(9)

RQD = 115 - 29.7

RQD = 85 %

Class: (R2) Good Quality

Third class By Lecturer: Sura M.Ali Dept.: Petroleum & Refining Engineering

2021-2022

RQD calculation from Joint Spacing, (Js) & Fracture Intercept, (FI)

Example:

Calculate RQD value with classification for all the following data:

The first face of Granitic rock masses:

First face: 25 joints in 5m Second face: **J.** S = 25cm Third face: **FI** = 20cm

Solution:

$$RQD = 115 - 3.3 (J_v)$$

 \therefore Face 1 = 25 Joints/5m = 5 Joints/1m

Face 2 = 25 cm \implies 4 Joints/1m

Face $3 = 20 \text{ cm} \implies 5 \text{ Joints/ } 1 \text{m}$

 $J_v = 5 + 4 + 5 = 14 \text{ Joints}/1 \text{ m}^3$

$$RQD = 115 - 3.3 (14) = 69 \%$$

The rock mass of Granite has a fair quality (R3) according to RQD system by Palmstrom (1982) and the fracture is moderately wide to closely spaced (F3 – F4) according to Geological Society (1977) and has a small blocks based on Jv system according to Barton (1978).