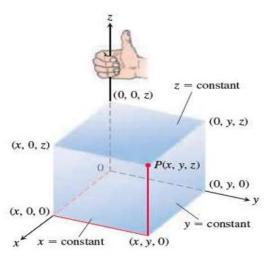
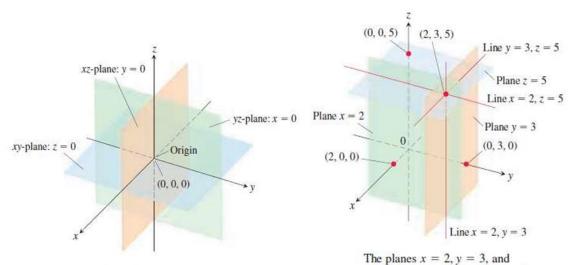


Vectors and the Geometry of Space

Three-Dimensional Coordinate Systems



The Cartesian coordinate system is right-handed.



The planes x = 0, y = 0, and z = 0 divide space into eight octants.

the planes x = 2, y = 3, and z = 5 determine three lines through the point (2, 3, 5).

EXAMPLE 1 We interpret these equations and inequalities geometrically.

(a) $z \ge 0$ The half-space consisting of the points on and above the xy-plane.

(b) x = -3 The plane perpendicular to the x-axis at x = -3. This plane lies parallel to the yz-plane and 3 units behind it.

(c) $z = 0, x \le 0, y \ge 0$ The second quadrant of the xy-plane.

(d) $x \ge 0, y \ge 0, z \ge 0$ The first octant.

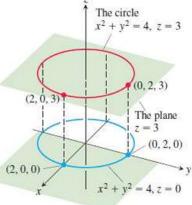
(e) $-1 \le y \le 1$ The slab between the planes y = -1 and y = 1 (planes included).

(f) y = -2, z = 2 The line in which the planes y = -2 and z = 2 intersect. Alternatively, the line through the point (0, -2, 2) parallel to the x-axis.

EXAMPLE 2 What points (x, y, z) satisfy the equations

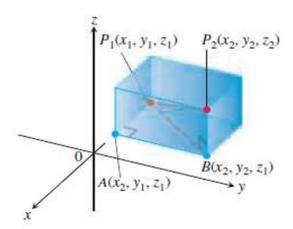
$$x^2 + y^2 = 4$$
 and $z = 3$?

Solution The points lie in the horizontal plane z = 3 and, in this plane, make up the circle $x^2 + y^2 = 4$. We call this set of points "the circle $x^2 + y^2 = 4$ in the plane z = 3" or, more simply, "the circle $x^2 + y^2 = 4$, z = 3"



The circle $x^2 + y^2 = 4$ in the plane z = 3

Distance and Spheres in Space



We find the distance be tween P_1 and P_2 by applying the Pythagorean theorem to the right triangles P_1AB and P_1BP_2 .

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

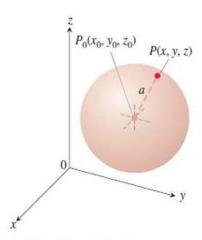
EXAMPLE 3 The distance between $P_1(2, 1, 5)$ and $P_2(-2, 3, 0)$ is

$$|P_1P_2| = \sqrt{(-2-2)^2 + (3-1)^2 + (0-5)^2}$$

= $\sqrt{16+4+25}$
= $\sqrt{45} \approx 6.708$.

The Standard Equation for the Sphere of Radius a and Center (x_0, y_0, z_0)

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = a^2$$



The sphere of radius a centered at the point (x_0, y_0, z_0) .

EXAMPLE 4 Find the center and radius of the sphere

$$x^{2} + y^{2} + z^{2} + 3x - 4z + 1 = 0.$$

$$x^{2} + y^{2} + z^{2} + 3x - 4z + 1 = 0$$

$$(x^{2} + 3x) + y^{2} + (z^{2} - 4z) = -1$$

$$\left(x^{2} + 3x + \left(\frac{3}{2}\right)^{2}\right) + y^{2} + \left(z^{2} - 4z + \left(\frac{-4}{2}\right)^{2}\right) = -1 + \left(\frac{3}{2}\right)^{2} + \left(\frac{-4}{2}\right)^{2}$$

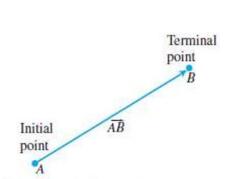
$$\left(x + \frac{3}{2}\right)^{2} + y^{2} + (z - 2)^{2} = -1 + \frac{9}{4} + 4 = \frac{21}{4}.$$

From this standard form, we read that $x_0 = -3/2$, $y_0 = 0$, $z_0 = 2$, and $a = \sqrt{21}/2$. The center is (-3/2, 0, 2). The radius is $\sqrt{21}/2$.

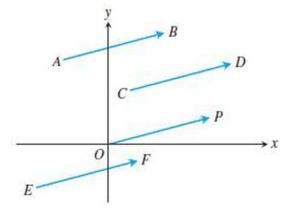
Vectors

Some of the things we measure are determined simply by their magnitudes. To record mass, length, or time, for example, we need only write down a number and name an appropriate unit of measure. We need more information to describe a force, displacement, or velocity. To describe a force, we need to record the direction in which it acts as well as how large it is. To describe a body's displacement, we have to say in what direction it moved as well as how far. To describe a body's velocity, we have to know its direction of motion, as well as how fast it is going. In this section we show how to represent things that have both magnitude and direction in the plane or in space.

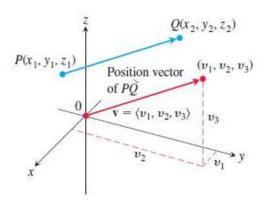
DEFINITIONS The vector represented by the directed line segment \overrightarrow{AB} has initial point A and terminal point B and its length is denoted by $|\overrightarrow{AB}|$. Two vectors are equal if they have the same length and direction.



The directed line segment \overrightarrow{AB} is called a vector.



The four arrows in the plane (directed line segments) shown here have the same length and direction. They therefore represent the same vector, and we write $\overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{OP} = \overrightarrow{EF}$.



A vector \overrightarrow{PQ} in standard position has its initial point at the origin. The directed line segments \overrightarrow{PQ} and v are parallel and have the same length.

DEFINITION If v is a two-dimensional vector in the plane equal to the vector with initial point at the origin and terminal point (v_1, v_2) , then the component form of v is

$$\mathbf{v} = \langle v_1, v_2 \rangle.$$

If v is a three-dimensional vector equal to the vector with initial point at the origin and terminal point (v_1, v_2, v_3) , then the component form of v is

$$\mathbf{v} = \langle v_1, v_2, v_3 \rangle.$$

The magnitude or length of the vector $\mathbf{v} = \overrightarrow{PQ}$ is the nonnegative number

$$|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

EXAMPLE 1 Find the (a) component form and (b) length of the vector with initial point P(-3, 4, 1) and terminal point Q(-5, 2, 2).

Solution

(a) The standard position vector \mathbf{v} representing \overrightarrow{PQ} has components

$$v_1 = x_2 - x_1 = -5 - (-3) = -2,$$
 $v_2 = y_2 - y_1 = 2 - 4 = -2,$

and

$$v_3 = z_2 - z_1 = 2 - 1 = 1.$$

The component form of \overrightarrow{PQ} is

$$v = \langle -2, -2, 1 \rangle$$
.

(b) The length or magnitude of $\mathbf{v} = \overrightarrow{PQ}$ is

$$|\mathbf{v}| = \sqrt{(-2)^2 + (-2)^2 + (1)^2} = \sqrt{9} = 3.$$

EXAMPLE 2 A small cart is being pulled along a smooth horizontal floor with a 20-lb force F making a 45° angle to the floor . What is the *effective* force moving the cart forward?

Solution The effective force is the horizontal component of $F = \langle a, b \rangle$, given by

$$a = |\mathbf{F}|\cos 45^\circ = (20)\left(\frac{\sqrt{2}}{2}\right) \approx 14.14 \text{ lb.}$$

Notice that F is a two-dimensional vector.



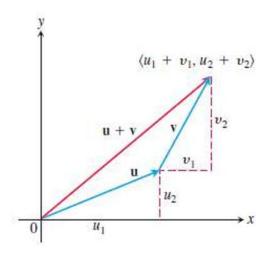
The force pulling the cart forward is represented by the vector F whose horizontal component is the effective force

Vector Algebra Operations

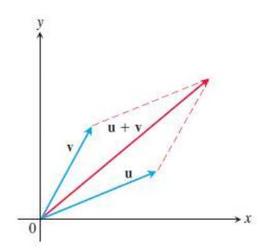
DEFINITIONS Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ be vectors with k a scalar.

Addition: $u + v = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$

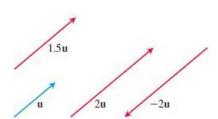
Scalar multiplication: $k\mathbf{u} = \langle ku_1, ku_2, ku_3 \rangle$



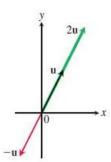
Geometric interpretation of the vector sum.



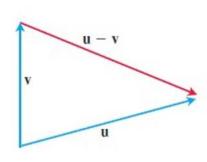
The parallelogram law of vector addition in which both vectors are in standard position.



Scalar multiples of u.



Scalar multiples of a vector u in standard position.



u $-\mathbf{v}$ $\mathbf{u} + (-\mathbf{v})$

The vector u - v, when added to v, gives u.

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v}).$$

EXAMPLE 3 Let $\mathbf{u} = \langle -1, 3, 1 \rangle$ and $\mathbf{v} = \langle 4, 7, 0 \rangle$. Find the components of

(a)
$$2u + 3v$$
 (b) $u - v$ (c) $\left| \frac{1}{2}u \right|$.

(c)
$$\left| \frac{1}{2} \mathbf{u} \right|$$
.

Solution

(a)
$$2\mathbf{u} + 3\mathbf{v} = 2\langle -1, 3, 1 \rangle + 3\langle 4, 7, 0 \rangle = \langle -2, 6, 2 \rangle + \langle 12, 21, 0 \rangle = \langle 10, 27, 2 \rangle$$

(b)
$$\mathbf{u} - \mathbf{v} = \langle -1, 3, 1 \rangle - \langle 4, 7, 0 \rangle = \langle -1, 4, 3, 7, 1, 0 \rangle = \langle -5, -4, 1 \rangle$$

(b)
$$\mathbf{u} - \mathbf{v} = \langle -1, 3, 1 \rangle - \langle 4, 7, 0 \rangle = \langle -1 - 4, 3 - 7, 1 - 0 \rangle = \langle -5, -4, 1 \rangle$$

(c) $\left| \frac{1}{2} \mathbf{u} \right| = \left| \left\langle -\frac{1}{2}, \frac{3}{2}, \frac{1}{2} \right\rangle \right| = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \frac{1}{2} \sqrt{11}.$

Properties of Vector Operations

Let u, v, w be vectors and a, b be scalars.

$$1. u + v = v + u$$

2.
$$(u + v) + w = u + (v + w)$$

3.
$$u + 0 = u$$

4.
$$u + (-u) = 0$$

5.
$$0u = 0$$

6.
$$1u = u$$

7.
$$a(b\mathbf{u}) = (ab)\mathbf{u}$$

8.
$$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$$

9.
$$(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$$

Unit Vectors

A vector v of length 1 is called a unit vector. The standard unit vectors are

$$\mathbf{i} = \langle 1, 0, 0 \rangle, \quad \mathbf{j} = \langle 0, 1, 0 \rangle, \quad \text{and} \quad \mathbf{k} = \langle 0, 0, 1 \rangle.$$

Any vector $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ can be written as a *linear combination* of the standard unit vectors as follows:

$$\mathbf{v} = \langle v_1, v_2, v_3 \rangle = \langle v_1, 0, 0 \rangle + \langle 0, v_2, 0 \rangle + \langle 0, 0, v_3 \rangle$$

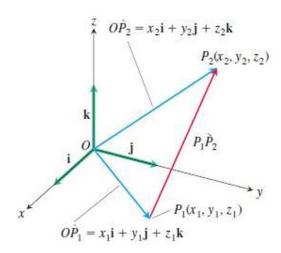
= $v_1 \langle 1, 0, 0 \rangle + v_2 \langle 0, 1, 0 \rangle + v_3 \langle 0, 0, 1 \rangle$
= $v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$.

$$\overrightarrow{P_1P_2} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}.$$

If $v \neq 0$, then its length |v| is not zero and

$$\left|\frac{1}{|\mathbf{v}|}\mathbf{v}\right| = \frac{1}{|\mathbf{v}|}|\mathbf{v}| = 1.$$

That is, $\mathbf{v}/|\mathbf{v}|$ is a unit vector in the direction of \mathbf{v} , called the direction of the nonzero vector \mathbf{v} .



The vector from P_1 to P_2 is $\overrightarrow{P_1P_2} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}$.

EXAMPLE 4 Find a unit vector \mathbf{u} in the direction of the vector from $P_1(1, 0, 1)$ to $P_2(3, 2, 0)$.

Solution We divide $\overrightarrow{P_1P_2}$ by its length:

$$\overrightarrow{P_1P_2} = (3 - 1)\mathbf{i} + (2 - 0)\mathbf{j} + (0 - 1)\mathbf{k} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k}
|\overrightarrow{P_1P_2}| = \sqrt{(2)^2 + (2)^2 + (-1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3
\mathbf{u} = \frac{\overrightarrow{P_1P_2}}{|\overrightarrow{P_1P_2}|} = \frac{2\mathbf{i} + 2\mathbf{j} - \mathbf{k}}{3} = \frac{2}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} - \frac{1}{3}\mathbf{k}.$$

This unit vector **u** is the direction of $\overrightarrow{P_1P_2}$.

EXAMPLE 5 If v = 3i - 4j is a velocity vector, express v as a product of its speed times its direction of motion.

Solution Speed is the magnitude (length) of v:

$$|\mathbf{v}| = \sqrt{(3)^2 + (-4)^2} = \sqrt{9 + 16} = 5.$$

The unit vector $\mathbf{v}/|\mathbf{v}|$ is the direction of \mathbf{v} :

$$\frac{\mathbf{v}}{|\mathbf{v}|} = \frac{3\mathbf{i} - 4\mathbf{j}}{5} = \frac{3}{5}\mathbf{i} - \frac{4}{5}\mathbf{j}.$$

So

$$v = 3i - 4j = 5\left(\frac{3}{5}i - \frac{4}{5}j\right)$$
.

Length Direction of motion (speed)

If $v \neq 0$, then

- 1. $\frac{\mathbf{v}}{|\mathbf{v}|}$ is a unit vector called the direction of \mathbf{v} ;
- 2. the equation $v = |v| \frac{v}{|v|}$ expresses v as its length times its direction.

EXAMPLE 6 A force of 6 newtons is applied in the direction of the vector $\mathbf{v} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$. Express the force \mathbf{F} as a product of its magnitude and direction.

Solution The force vector has magnitude 6 and direction $\frac{\mathbf{v}}{|\mathbf{v}|}$, so

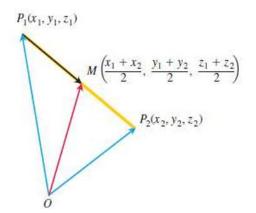
$$\mathbf{F} = 6 \frac{\mathbf{v}}{|\mathbf{v}|} = 6 \frac{2\mathbf{i} + 2\mathbf{j} - \mathbf{k}}{\sqrt{2^2 + 2^2 + (-1)^2}} = 6 \frac{2\mathbf{i} + 2\mathbf{j} - \mathbf{k}}{3}$$
$$= 6 \left(\frac{2}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} - \frac{1}{3}\mathbf{k}\right).$$

Midpoint of a Line Segment

Vectors are often useful in geometry. For example, the coordinates of the midpoint of a line segment are found by averaging.

The **midpoint** M of the line segment joining points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is the point

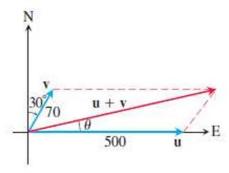
$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right).$$



EXAMPLE 7 The midpoint of the segment joining $P_1(3, -2, 0)$ and $P_2(7, 4, 4)$ is

$$\left(\frac{3+7}{2}, \frac{-2+4}{2}, \frac{0+4}{2}\right) = (5, 1, 2).$$

EXAMPLE 8 A jet airliner, flying due east at 500 mph in still air, encounters a 70-mph tailwind blowing in the direction 60° north of east. The airplane holds its compass heading due east but, because of the wind, acquires a new ground speed and direction. What are they?



$$\mathbf{u} = \langle\,500,0\,\rangle \qquad \text{and} \qquad \mathbf{v} = \langle\,70\cos60^\circ,70\sin60^\circ\,\rangle = \left\langle\,35,35\sqrt{3}\,\right\rangle.$$

Therefore,

$$\mathbf{u} + \mathbf{v} = \langle 535, 35\sqrt{3} \rangle = 535\mathbf{i} + 35\sqrt{3}\,\mathbf{j}$$

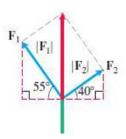
 $|\mathbf{u} + \mathbf{v}| = \sqrt{535^2 + (35\sqrt{3})^2} \approx 538.4$

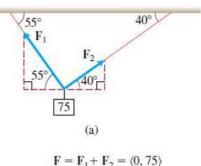
and

$$\theta = \tan^{-1} \frac{35\sqrt{3}}{535} \approx 6.5^{\circ}.$$

The new ground speed of the airplane is about 538.4 mph, and its new direction is about 6.5° north of east.

EXAMPLE 9 A 75-N weight is suspended by two wires, Find the forces F_1 and F_2 acting in both wires.





$$\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2 = \langle 0, 75 \rangle$$

$$\mathbf{F}_1 = \langle -|\mathbf{F}_1|\cos 55^\circ, \ |\mathbf{F}_1|\sin 55^\circ \rangle \qquad \text{and} \qquad \mathbf{F}_2 = \langle \ |\mathbf{F}_2|\cos 40^\circ, \ |\mathbf{F}_2|\sin 40^\circ \rangle.$$

and
$$\mathbf{F}_2 =$$

$$\mathbf{F}_2 = \langle |\mathbf{F}_2| \cos 40^\circ, |\mathbf{F}_2| \sin 40^\circ \rangle.$$

Since $\mathbf{F}_1 + \mathbf{F}_2 = \langle 0, 75 \rangle$, the resultant vector leads to the system of equations

$$-|\mathbf{F}_1|\cos 55^{\circ} + |\mathbf{F}_2|\cos 40^{\circ} = 0$$
$$|\mathbf{F}_1|\sin 55^{\circ} + |\mathbf{F}_2|\sin 40^{\circ} = 75.$$

Solving for $|F_2|$ in the first equation and substituting the result into the second equation, we get

$$|F_2| = \frac{|F_1|\cos 55^\circ}{\cos 40^\circ} \qquad \text{and} \qquad |F_1|\sin 55^\circ + \frac{|F_1|\cos 55^\circ}{\cos 40^\circ}\sin 40^\circ = 75.$$

It follows that

$$|\mathbf{F}_1| = \frac{75}{\sin 55^{\circ} + \cos 55^{\circ} \tan 40^{\circ}} \approx 57.67 \text{ N},$$

and

$$\begin{aligned} |\mathbf{F}_2| &= \frac{75\cos 55^{\circ}}{\sin 55^{\circ}\cos 40^{\circ} + \cos 55^{\circ}\sin 40^{\circ}} \\ &= \frac{75\cos 55^{\circ}}{\sin (55^{\circ} + 40^{\circ})} \approx 43.18 \text{ N.} \end{aligned}$$

The force vectors are then

$$\mathbf{F}_1 = \langle -|\mathbf{F}_1|\cos 55^\circ, |\mathbf{F}_1|\sin 55^\circ \rangle \approx \langle -33.08, 47.24 \rangle$$

and

$$\mathbf{F}_2 = \langle\,|\mathbf{F}_2|\cos 40^\circ,\,|\mathbf{F}_2|\sin 40^\circ\,\rangle \;\approx\; \langle\,33.08,\,27.76\,\rangle.$$