

Parametric equations and polar coordinates

Parametric equations: Parametric equations defined that equations involving the two variables **x** and **y** describe a curve by expressing both coordinates as a function of a third parameter, often called **t**. One way to interpret this is to think of t as \time" where x (t) is the x-coordinate of a moving point at time t and y (t) is the y-coordinate of the point at the same time. In each of the following examples, draw the start/end points and the direction of motion.

$$x= f(t)$$

$$y= g(t)$$
Use a function
$$f \text{ to find } x$$

$$(x = f(t))$$
Plot point
$$t$$
Use a function
$$g \text{ to find } y$$

$$(y = g(t))$$

1- Sketch and identified the parametric functions:

Example1: sketch the graph of the parametric equations and identify x = 1 + 2ty = -3t for -1< t < 1

Solution

			_ ^ ↑
t	x(t)	y(t)	2
-1	-1	3	
-1/2	0	3/2	
0	1	0	-1 1 2 3
1/2	2	-3/2 -3	
1	3	-3	-2

For identified

$$t = \frac{x-1}{2}$$
 Sub in y

Y= -3
$$(\frac{x-1}{2}) = -\frac{3}{2}x + \frac{1}{2}$$
 (line equation, slope = $-\frac{3}{2}$)

- Line equation

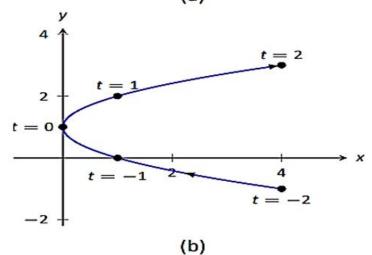
$$Y=ax + b$$
 $slope = a$

Example2: sketch and identify the graph of the parametric equations

$$x=t^2$$
, $y=t+1$ for -2< t < 2

Solution

X	y
4	-1
1	O
O	1
1	2
4	3
	4 1 0 1



To eliminate the parameter $t=\sqrt{x}=x^{1/2}$

$$y = x^{1/2} + 1$$

Identify:

- Circle

(x-a)
2
 + (y-b) 2 = \mathbf{r}^2 circle center (a,b) and radius = $\sqrt{r^2}$ = r

Example 3: sketch and identify the graph of the parametric equations

$$X = cos(t)$$
 $y = sin(t)$

$$\cos^2 t + \sin^2 t = 1$$

$$x^2 + y^2 = 1$$
 circle center (0,0) $r = 1$

- Ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Example 4: sketch and identify the graph of the parametric equations

$$X= 3 \cos 2t$$
 $y = 2\sin 2t$

$$\cos 2t = \frac{x}{3} \qquad \sin 2t = \frac{y}{2}$$

$$\cos^2 2t + \sin^2 2t = 1$$

$$\left(\frac{x}{3}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$$

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 (Ellipse a = 3, b = 2)

Home Work1/sketch and identify the graph of the parametric equations

$$X-1=3sint$$
 $y = 3cost-2$

Slope of tangent line:

The slope of the tangent line is $still \frac{dy}{dx}$, and the Chain Rule allows us to calculate this in the context of parametric equations. If x=f(t) and y=g(t), the Chain Rule states that:

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

Solving for $\frac{dy}{dx}$, we get

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

Example 5: if $x=5t^2$ -6t +4 and $y=t^2+$ 6t -1 and let C be the curve defined by these equations.

Find the equation of the tangent line to curve at t=3.

Solution

$$\frac{dy}{dt} = 2 t + 6$$
, $\frac{dx}{dt} = 10 t - 6$

$$\frac{dy}{dx} = \frac{2t+6}{10t-6}$$

At
$$(t = 3)$$
 $\frac{dy}{dx} = \frac{2*3+6}{10*3-6} = \frac{12}{24} = \frac{1}{2}$ (slope of tangent line $m = \frac{1}{2}$)

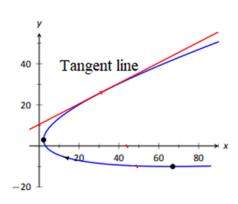
$$x_0 = 5* (3)^2 - 6(3) + 4 = 31$$
, $y_0 = 3^2 + 6*3 - 1 = 26$

Equation of tangent lines

$$y - y_o = m(x - x_o)$$

y-
$$26 = \frac{1}{2}(x - 31)$$

$$y=\frac{1}{2}(x-31)+26$$



$$\frac{d^2y}{dx^2} = \frac{d}{dx}\frac{dy}{dx} = \frac{d}{dx}(\bar{y})$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{d}{dt} \frac{dy}{dx}}{\frac{dx}{dt}} = \frac{\frac{d}{dt} (\bar{y})}{\frac{dx}{dt}}$$

Example 6: find $\frac{d^2y}{dx^2}$ as a function of **t** if $x=t-t^2$, $y=t-t^3$

Express
$$\bar{y} = \frac{dy}{dx}$$

$$\bar{y} = \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{1 - 3t^2}{1 - 2t}$$

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\bar{y})}{\frac{dx}{dt}}$$

$$\frac{d}{dt}(\bar{y}) = \frac{d}{dt} \left(\frac{1 - 3t^2}{1 - 2t} \right) = \frac{2 - 6t + 6t^2}{(1 - 2t)^2}$$

$$\frac{d^2y}{dx^2} = \frac{\frac{2-6t+6t^2}{(1-2t)^2}}{1-2t} = \frac{2-6t+6t^2}{(1-2t)^3}$$

<u>Home Work2</u>: If $x = \sec t$, $y = \tan t$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$

- 1- Find the equation of the tangent line $(\frac{dy}{dx})$ to curve at $\mathbf{t} = \frac{\pi}{4}$.
- 2- Find $\frac{d^2y}{dx^2}$